
An Interpolated Volume Data Model

Tianqiu Wang
Department of Computer Science and Engineering

tiwang@cs.ucsd.edu

Simone Santini
National Center for Biomedical Research

ssantini@ncmir.ucsd.edu

Amarnath Gupta
San Diego Supercomputer Center

gupta@sdsc.edu

University of California San Diego

Abstract

1 Introduction
Representing volume data is an important task in many
fields, from medicine [1] to physics and geology. Volumes
are generated by collecting discrete measurements over a
finite region of space, and this collection process leads nat-
urally to two observations: first, what is usually called a
volumeis in reality a functionf : V → M from a volume
V to a measurement spaceM ; second, the volume—which
is commonly understood to be a continuum—is in reality
represented as a discrete (finite, in fact) set of samples.

Most volume data models carry the discreteness of the
measurements all the way to the level of the abstract data
type. Many a model, for instance, consider a volume as a
rectangular arrangement of cubic elements called “voxels”
that is, essentially, as a three-dimensional array [2]. From
the point of view of storing volume data into a database and
querying them, this solution has the obvious advantage of
relying on a data type (the array) that is already available in
commercial databases and for which a sizable literature ex-
ists on issues like their effects on query optimization [3, 4].
We argue, however, that a discrete data type is not the best
way to model a continuum such as a volume at an abstract
level: the finiteness of the sample should be confined to
the internal representation, while the abstract data model
should be continuous.

Consider, as a simple example, a “one dimensional vol-
ume” that is, an interval on a line. Assume that the mea-
surements available for this volume consist of a single real

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

a

b

Figure 1: A simple “one dimensional” volume.

a

b

Figure 2: Results of the query on the one dimensional vol-
ume example.

valuev, so that the volume can be represented as a curve in
the cartesian plane, as in Figure 1. The discrete represen-
tation of the volume is constituted of the points marked by
crosses. Assume now that the following query is posed:

return all the sub-volumes for which it isv < b
or v > a

wherea andb are suitable constants. A query on the dis-
crete set would return all the points in the data model that
is, it would return a single, connected volume. In reality, by
considering the volume as a continuum (which allows us to
introduce the further hypothesis of continuity of the vol-
ume functions), it is clear that the query should return three
separate pieces, as in Figure 2. In two or three dimensions,
using the discrete model at the abstract data type level can
result not only in the union of disconnected components,
but in other topological defects as well. In particular, holes
may disappear, as exemplified in the surface in Figure 3.
In three dimension, other topological defects are possible,
such as an incorrect fundamental group (which happens,
for instance, when the “hole” of a torus is filled). Note that
in many cases the precision afforded by the grid is suffi-
cient for the application at hand (if not, presumably, there

Figure 3: Topological defect (the disappearing of a
hole) consequent to the discrete representation of a two-
dimensional volume.

would have been a denser measurement grid to begin with),
so that the error committed in placing the boundary at a lo-
cation instead of another within a grid cell can be regarded
as negligible; yet, the use of a discrete model can produce
results that, although metrically within an acceptable pre-
cision, are topologically incorrect.

One obvious way of obtaining a continuous model is by
interpolating the measurements. The use of interpolated
data as an abstract data type is not new, and some principles
regarding their use have begun to be established. In [5], for
example, it is argued that the interpolation function and the
underlying discrete data set should be kept hidden, and that
only the continuous model should be visible in the abstract
data type. From the point of view of our application, the
model in [5] suffers from two drawbacks. First, while the
continuum (which is there considered as an infinite rela-
tion) is used in the query condition, there appears to be no
way to return it as the result of a query: only finite relations
are returned. Second, the model in [5] doesn’t include the
explicit representation of the boundaries of a bounded con-
tinuum, so that the topology problems outlined previously
would not disappear.

In our model, volumes are not infinite relations, but data
types. This means that, at least conceptually, they are not
tables, but elements that are stored in columns of tables.
They are, in other words, first class values and, among other
things, can be returned as results of queries. This doesn’t
mean, of course, that the underlying data can’t be stored
in tables. If this is the case, however, care must be taken
to ensure that the volumes returned as query results and,
potentially, exported out of the database still have access to
the underlying representation in a way that is transparent
to the user. This and other representation issues will be
considered in the next section.

2 The volume model

In this section, we will briefly discuss the two principal
aspects of our volume model, namely the abstract data type
that is exported (including the algebra that manipulate it)
and the representation upon which the model is based.

2.1 The abstract data type

Formally, a volume is a continuous functionf : V →
M , whereV is a three dimensional closed, compact, and
bounded set, andM is a measurement spacethat we will
assumed endowed with the structure of a vector space and
such that all the components ofM are named. That is,M
is represented asM = (N1 : T1, . . . , Nn : Tn), whereNi

are names andTi are data types. In order to be able to inter-
polate, we assume that each one of the data typesTi has the
structure of a linear space. The measurement spaceM is
specific to each volume, and it goes without saying that two
volumesf1 : V → M1 andf2 : V → M2 which share the
same domain but map into different measurement spaces
should be regarded as instances of two different data types.
A special volume type is what we call themask. Formally,
a mask is a volume that maps to the data typeunit (the “bot-
tom” data type, with one value only). A mask is uniquely
identified by its domainV and will be used mostly to “cut”
pieces from other volumes.

The most important operations of the volume algebra are
summarized in Table 1. Other operations are defined for
determining the bounding box of a volume, returning the
points in its representation, creating a volume, determining
the connectivity of its fundamental group, and so on, but
they are not essential for the discussion that follows.

The selection operatorsel extracts from a volume the
portions that satisfy the conditionC. Since in our model
volumes are always connected, the operation returns a set
of connected components, each one represented as a vol-
ume, rather than a single volume. The conditionC can be
based on the values of the volume (being expressed in terms
of the names of the measurement spaceM) or on the coor-
dinates of the points, using the conventional name$pt to
represent a volume point and$pt.x , $pt.y , $pt.z for
its coordinates. The next operation, for instance, returns the
sub-volumes off : V → [meas : R] composed of points
with negativex coordinate and such that theirmeas value
is at least 5:

f2 = sel(f, $pt.x ≤ 0 and meas ≥ 5) (1)

Note that the conditionsmeas > 5 or $pt.x < 0 would be
illegal because they would not return a closed set that is,
they would return a set that, according to our definition, is
not a volume.

The projection operator works on the measurement
space much like the synonymous relational algebra oper-
ator. The intersection (resp. union) operator acts as a set
intersection (union) on the domain of its arguments and
uses the operatorop to compute the values associated to
the points of the resulting domain. Iff1 : V1 → M1,
f2 : V2 → M2, andop : M1 ×M2 → M , then

intrs(f1, f2, op) : V1 ∩ V2 → M. (2)

In the case of union, we have the additional complica-
tion that the functionsf1 and f2 may not be defined on
the whole V1 ∪ V2. The missing values are replaced

Name Use Description
affine V1 = affine(A, V) Applies an affine transform to a volume
sel {V } = sel(V,C) Selects fromV based on the conditionC.
proj V = proj(V, [C1, . . . , Cn]) Projects out columns in the measurement space.
intrs V = intrs(V1, V2, op) Algebraic intersection
union V = union(V1, V2, op) Algebraic union
inside t = inside(p, V) Checks is a point belongs to the domain of a volume.
val v = val(p, V) Value of volumeV at pointp.

Table 1: Operations of the volume algebra

Figure 4: Boundaries of a volume at creation time.

with the conventional value “null” which, conventionally
is the neutral element for each operatorop, that is, for
eachx and each operator,xop null = x. This means, of
course, that in the regions wheref1 is not defined, we have
intrs(f1, f2, op)(x) = f2(x) and similarly for the regions
wheref2 is not defined. The common operators supported
natively in our data type are addition (“+”), subtraction (“-
”), multiplication by a scalar (“*”) and join (on).

2.2 Representation

Our abstract data model is compatible with a number of fi-
nite representations: the only requirement is that the finite
representation allows the definition of a suitable interpo-
lation function. This is true, in general, for all represen-
tation that considers point measurements. It doesn’t hold
for “voxel” model, for which the measurement is associ-
ated with a finite volume, unles some additional assump-
tion is made as to the location of the measurement inside
the volume. Several measurement structures accommodate
this model, from a regular grid of measurement points, to
an irregular tetrahedral grid, to a set of disconnected points
(also called a “point cloud”).

In our current implementation, the measurements are
arranged in a regular parallelepipedal grid. The interpo-
lation function used is a configuration parameter deter-
mined during the installation of the system; in the follow-
ing we will always make reference to the common case of
a tri-linear interpolation function. When a volume is cre-
ated, its boundaries are determined naturally by the grid
on which the volume is defined, as exemplified, for a two-
dimensional volume, in Figure 4. Any topological error
with respect to the real data introduced by this represen-
tation would fall below the measurement precision, and

Figure 5: Boundaries of a volume dispalced with respect to
the grid.

Figure 6: Boundaries of three-dimensional volume.

would be undetectable.
When a volume is obtained by cutting pieces of another

volume, for example with a selection operation, the bound-
aries if the volume will not in general be aligned with the
grid. Approximating the boundary with points on the grid
would introduce the topological problems outlined in the
previous section. In order to avoid these problems, we al-
low the boundary of the volume to be displaced with re-
spect to the data grid by registering, for each boundary cell,
the position of the boundary inside it. The resulting model
is that of a piecewise linear boundary, as exemplified for a
two-dimensional volume, in Figure 5. In order to extend
the interpolation up to the boundary, it is necessary to keep
a number of points not belonging to the volume. There
pahntom pointsare represented by crosses in Figure 5.

In volumes, the specification of the boundary is a bit
more complicated. First, the boundary itself is a piecewise
linear surface rather than a simpler piecewise linear curve;
second, the relation between a portion of the boundary and
a parallelepipedal cell must take into account a larger num-
ber of possibilities, some of which are illustrated in Fig-
ure 6 Once the various possibilities have been accounted
for, however, we have the representation of a continuous

piecewise bi-linear surface up to which we can interpolate
the volume values, and that can be placed at arbitrary posi-
tions with respect to the grid points.

A final issue that we want to discuss briefly here arises
when volumes are returned as results of queries. The
“things” that are returned are volume objects and, to fix
the ideas, let us say that these results are exported from the
database as java objects (which is actually the case in our
implementation). This volume object must carry with it its
internal representation that is, the grid of of volume points
and phantom points necessary for its computation.

Carrying along the representation can be a problem
when the volume is represented by thousands or tens of
thousands of points (a typical volume for a human brain de-
rived from an MRI scan has between 100,000 and 500,000
points). Especially if the volume object is to be sent over
a communication network, such large data set can make
the communication extremely slow. All this is more un-
reasonable if we consider that the user (or the application)
that requested the volume to begin with might not need to
access all the points in the representation to carry out the
computation that is needed: if all that is necessary is to call
methods to, say, measure the volume (which is usually kept
in a separate variable and doesn’t have to be computed on
the fly), keeping the representation is useless.

To avoid moving around inordinate amounts of data, we
allow the volume object to have a virtual representation.
That is, while the volume object travels around the sys-
tem, its representation stays in the database. The various
methods, instead of accessing a local representation, issue
dtabase queries to access just enough of the internal rep-
resentation to do their job. Clearly, every volume has the
possibility to be “grounded” into a local representation by
calling a suitable method. This will create a full local repre-
sentation for the volume object independent of the database
and is useful, in addition to the case in which the represen-
tation is manageably small, if there is the risk that during
the life of the volume object the database will be updated.

3 The Demo

In this demonstration we show the basic functionality of
our volume data model. We will consider examples from
biology (brain MRI data) and volumes of measurement
from quantuum physics. The data model is similar in the
two cases, but the operations that are commonly used are
quite different. In the second case, for instance, one is often
interested in conditions on the behavior of local differential
operators, such as zero-flow surfaces, while in the biologi-
cal case one has a mix of value conditions (e.g. homogene-
ity) and geometric condition (e.g. conditions on curvature).
We hope, with these two application fields, to highlight the
generality and flexibility of our model.

The system is based on a commercial database (specifi-
cally, the Oracle 9i database), augmented with specialized
functions to manipulate our volume data model. We will

demonstrate various operations specifying queries both us-
ing a graphical user interface and entering them directly in
SQL augmented with the volume algebra operations.

The demo testbed includes utilities to translate the vol-
umes that are created as results to queries into standard
graphic formats that can be used by volume display pro-
grams, as well as a volume display program that we will
use to give a more visual demonstration of the query re-
sults.

4 Acknowledgements
The work presented in this paper was done under the aus-
pices and with the funding of NIH project NCRR RR08
605,Biomedical Imaging Research Network, which the au-
thors gratefully acknowledge.

References
[1] A. Toga and P. Thmpson, “Multimodal brain atlases,”

in Medical Image Databases(S. Wong, ed.), Kluwer
Academic, 1998.

[2] J. D. F. amd Andries Van Dam and S. K. Feiner,Intro-
duction to Computer Graphics. Addison-Wesley, 1993.

[3] A. P. Marathe and K. Salem, “A language for maniplat-
ing arrays,” inProceedings of the 23rd VLDB Confer-
ence, Athens, pp. 46–55, 1997.

[4] A. Alcantara and B. Buckles, “Supporting array types
in monoid comprehensions.”

[5] S. Grumbach, P. Rigaux, and L. Segoufin, “Manipulat-
ing interpolated data is easier than you thought,” inThe
VLDB Journal, pp. 156–165, 2000.

La Jolla, February 2003

