
VLDB Journal, 4, 493-517 (1995), Malcolm Atkinson, Editor 493
(~)VLDB

Th6mis: A Database Programming Language Handling
Integrity Constraints

V6ronique Benzaken and Anne Doucet

Received June, 1993; revised version received, June, 1994; accepted March, 1995.

Abstract . This article presents a database programming language, Th6mis, which
supports subtyping and class hierarchies, and allows for the definition of integrity
constraints in a global and declarative way. We first describe the salient features of
the language: types, names, classes, integrity constraints (including methods), and
transactions. The inclusion of methods into integrity constraints allows an increase
of the declarative power of these constraints. Indeed, the information needed to
define a constraint is not always stored in the database through attributes, but is
sometimes computed or derived data. Then, we address the problem of efficiently
checking constraints. More specifically, we consider two different problems: (1)
statically reducing the number of constraints to be checked, and (2) generating an
efficient run-time checker. Using simple strategies, one can significantly improve
the efficiency of the verification. We show how to reduce the number of constraints
to be checked by characterizing the portions of the database that are involved in
both the constraints and in a transaction. We also show how to generate efficient
algorithms for checking a large class of constraints. We show how all the techniques
presented exploit the underlying type system, which provides significant help in
solving (1) and (2). Last, the current status of the Th6mis prototype is presented.

Key Words. Database programming languages, integrity constraints, program
analysis.

1. Introduction

Research in da tabase p rog ramming languages has been devoted mainly to the
definit ion of e labora ted type systems and persis tence mechan isms for those languages.
T h e p rob lems of po lymorphism, static typing and inference, and object identi ty have
been the main topics (Cardell i 1984, 1987, 1988; Cardell i and Wegner, 1985; Atk inson

V6ronique Benzaken, Ph.D., is Associate Professor, Universit6 de Paris 1-Sorbonne, 12 place du Panth6on,
75005 Paris, France, and Researcher at LRI, bat 490, Universit6 de Paris XI, 91405, Orsay, France, ben-
zaken@lri.lri.~, and Anne Doucet, Ph.D., is Professor, Univerist6 de Paris VI, Place Jussieu, LAFORIA,
75005 Paris, France, doucet@laforia.ibp.fr

494

and Buneman, 1987; Hull et al., 1989; Castagna, 1995a, 1995b; Castagna et al.,
1995).

In general, database programming languages are not able to express integrity
constraints in a global and declarative way, although some interesting work has
been done in the context of object-oriented databases (Martin, 1991).

A first specification of a language able to express integrity constraints has been
proposed (Benzaken et al., 1992; Benzaken and Doucet, 1993). However, the class
of constraints expressible by this language is restricted to first-order logic, well-typed
formulas. Some derived data (computed attributes such as the age of a person,
given the birth date, or the computation of the incoming and outcoming degrees of a
directed graph) cannot be defined by first-order logic.. In object-oriented languages,
the only way to express derived data is by using a set of operations called methods
(Section 3.1) To precisely capture the semantics of an application, some integrity
constraints must consider derived data. Thus, it is necesary to introduce method
calls in the language used to express constraints.

Relational and extended relational systems take integrity constraints and views
into consideration (Stonebraker, 1975; Gardarin and Melkanoff, 1979; Weber et al.,
1983; Sheard and Stemple, 1989). These systems pr~wide models in which relation
attribute domains are not necessarily atomic, but cart be constructed using abstract
types. The associated query language also can be extended to manipulate these user
defined types instances. However, extended relational systems are not integrated
in the sense of database programming languages. In these systems, relations are a
very special kind of data type that cannot be used orthogonally to the others. In
most systems, sets cannot be constructed independently of relations, and the query
languages are not integrated within the language used to define the new attributes
domains.

A second approach assumes transactions to be provided with the atomicity
property, and consists of restricting the constraints to be enforced and of avoiding
a retest of the portion of the database that is known to be consistent after the
execution of the transaction (Nicolas, 1979; Hsu and Imielinski, 1985).

In the deductive database field, the problem of integrity constraint checking
has been fully investigated (Bry and Manthey, 1986; Kowalski et al., 1987; Bry et
al., 1988). Most of the techniques proposed are based on the Linear resolution
with function Selection on Definite clauses with Negation as Failure (SLD/SLDNF
resolutions) and theorem proving.

The work described by Sheard and Stemple (1989) consists of proving at compile
time that database transactions respect integrity constraints, to reduce the overhead
of unnecessary runtime tests. Their framework is the relational model. Transactions
are complex updates of multiple relations, and constraints can be functional depen-
dencies, inclusion dependencies, aggregate constraints, intersection dependencies,
and inter-relational redundancies. Sheard and Stemple (1989) used the axiomatic se-
mantics method, in which properties about language constructs are defined. These
properties are found by using axioms and inference rules. Inference rules are

VLDB Journal 4 (3) Benzaken: Thfmis-A Database Programming Language 495

re-write rules on functional expressions of theorems, which allow the reduction
of these expressions to true by using axioms, function definitions, and previously
proven theorems. This leads to a formal proof of the property. The system uses a
mechanical theorem prover in higher order computational logic to build a formal
theory about database systems. That theory is extended to a specific database by
generating specific knowledge from the structures and constraints contained in the
schema. It is finally used by a transaction safety verifier.

We first describe the salient features of the Th6mis language: types, names,
classes, integrity constraints (including methods), and transactions. Then, we con-
sider two different problems: (1) statically reducing the number of constraints to be
checked, and (2) generating an efficient run time checker. Of course, in the general
case, the problem is very complicated, and finding an optimal solution to (1), for
instance, is undecidable. What we want to show is that, using simple strategies,
we can significantly improve the efficiency of the verification. In this article, we
suppose that transactions can be neither nested nor call other transactions. The
general case will be the topic of a forthcoming study.

Our main goal is to fully exploit the type information to simplify constraint
violation detection, and to speed up constraint checking. Not only are classes partially
ordered according to an inheritance hierarchy, but we also have to face the problem
of constraint checking in an environment that allows updates to be propagated
among several distinct paths among objects. A first part of the article consists of
using simple compilation techniques to statically determine which constraints might
be violated by a transaction. The originality of this static analysis is that it captures
the notion of inheritance and subtyping, and of late binding.

A second contribution consists of generating a checking algorithm from a
transaction and a (restricted) constraint, which will operate on the smallest portion
of the database involved by the transaction. We show how to significantly reduce the
number of checking operations to be performed, relying on the underlying typing
information.

This article is organized as follows. In Section 2, we summarize the main
techniques that have been developed in the domain. In Section 3, we describe the
salient features of the Th6mis language: types, names, classes, integrity constraints
(including methods), and transactions. We also present a detailed example to moti-
vate and illustrate our language and checking techniques. Then, we consider the two
steps of the verification process. In Section 4, we use simple compilation techniques
to statically determine which constraints might be violated by a transaction, thus
reducing the number of constraints to be checked. In Section 5, we propose the
generation of constraint checking algorithms for a special class of constraints (uni-
versally quantified formulas). These algorithms are shown to significantly improve
naive checking methods. In Section 6, we describe the current implementation of
the Th6mis prototype, which allows us to validate our work. Section 7 contains
some concluding remarks.

496

2. Related Work

Relational and extended relational systems generally handle integrity by means of
triggers. Triggers allow a user-defined procedure to be executed when a predicate
is satisfied. Integrity constraints can be seen as ru]tes, but they do not perform
database updates. They simply return an error condition when an attribute is
incorrectly modified. Although rules (or triggers) allow integrity constraints to be
specified in a declarative way, it is the responsibility of the application programmer
to code the procedures that will guarantee database safety. In our approach, we
propose that these checking procedures be automatically generated, thus relieving
the programmer of such a task, and therefore enhancing his/her productivity. To
ensure database integrity, the user only describes the; constraints.

Hsu and Imielinski (1985) proposed another solution, which extends Blaustein's
work (1981). The constraints they considered are closed formulas of tuple calculus
in prenex normal form. Here, the simplification method consists of transforming
a constraint into an AND-OR tree of constraints, which is simpler to evaluate
(simpler means that the checking space is reduced). Indeed, instead of testing the
constraint on all the data, they only consider the data that might affect the database
consistency with respect to both constraints and transactions. Interesting data are
either inserted tuples or deleted tuples (updates consisting of deletions followed
insertions).

Constraint simplification is performed in three steps. The constraint is first
transformed into an updated form, involving the updated data. The second step
consists of applying decomposition rules to the prefix of the updated constraint.
These rules, which take into account only some prefix patterns, are recursively
applied to the constraint, and produce either a conjunction or a disjunction of new
formulas. The third step consists of eliminating the subformulas that are known to
be true.

Our work adapts and extends these techniques to the object-oriented framework.
More precisely, we use a similar technique in the second phase of our checking
process, namely the generation of checking algorithms.

The deductive framework is well suited to integrity constraint management (Bry
and Manthey, 1986; Kowalski et al., 1987; Bry et al., 1988). Deductive databases are
a set of facts associated with a set of rules, which represent derived data. Integrity
constraints can be expressed in this formalism as rules. Such rules, of course, do not
perform updates or generate new facts. In this context, two problems are addressed:
satisfaction and satisfiability. Two kinds of updates are considered for the problem
of satisfaction, which are the addition of a new fact and the deletion of an existing
one. According to the update, a first step consists of detecting which integrity
constraint might be affected. Then, the checking process operates on the facts
contained in the database. Both steps are achieved using SLD/SLDNF resolution.

For the second problem, namely satisfiability, the update considered is the addi-
tion of a new constraint. To detect whether the constraint is consistent with respect

VLDB Journal 4 (3) Benzaken: Th6mis-A Database Programming Language 497

to the existing ones, the method aims at generating a finite model, independent of
the existing instance. The method has been shown to be semi-decidable. In both
cases, only a restricted set of integrity constraints is handled, all of which are either
universally quantified or existentially quantified constraints.

3. Basic Concepts of the Th~mis Language

In this section, we present the basic concepts of the Th~mis language. These
concepts are illustrated by detailed examples (Section 3.5). Th6mis is a strongly and
statically typed object-oriented database language. In Th6mis, a schema is defined
using abstract and concrete types, classes, integrity constraints, and transactions.

3.1 Types

We consider a framework in which all database manipulations are strongly and
statically typed. Let us suppose the existence of the set 79 of atomic types containing
integer, string, and boolean. Types can either be concrete types or abstract types.

3.1.1 Concrete Types. The set of expressions of concrete types, denoted Tc, is
built by induction in the following way:

• Basic types: 79

• If tl, ..., tn E ~C and al, ..., an E ,,4 (ai 5~ aj for i;] E..n, i 7A] and n > 1)
then [al: tl, ..., a n : tn] E ~C, {tl} E ~C, and (tl) 6 ~C

where [], { }, and () denote the constructors tuple, set, and list, respectively,
and ,,4 denotes the set of attribute names.

Concrete type equivalence is structural. Subtyping of concrete types is structural
and inferred, following the classical rules of Cardelli (1984). For instance, we have:

[num: integer, label: string] -4 [num: integer]

Concrete type instances are non shared, non mumble values.

3.1.2 Abstract Types. Abstract types have names. An abstract type is composed of a
structural part and a behavioral part. The structural part is similar to concrete types.
The behavioral part is described by a set of operations, called methods. Methods are
defined in the following section. Instances of abstract types are objects, and have an
identi~ which is independent of their value. These instances are mutable and may
be shared values. Equality of instances of abstract types is identity. Equivalence
of abstract types is name equivalence. Subtyping of abstract types is explicit. The
subtyping relation is declared in the definition of the abstract type.

3.1.3 Methods. Methods describe the behavior of the objects. They are composed
of a signature and an implementation (the body of the method). Methods are not
considered here as first class objects, and thus cannot be passed as parameters of

498

other methods. Let m be a method defined for the abstract type T We denote its
signature by m@T(~-l, ..., ' m - l) : 7"n, where "rl, ..., %~-1 represents its pa ramete r
types, and where Tn represents the result type.

Passing a message is denoted by o ~-- m (Xl, ..., xn-1). This means that the
method m is sent to the object o, called the receiver of the message. The xi's
denote the actual parameters of method m. We denote o ~-- m 0 when the method
m has no parameters.

Message passing can be more complex and may consist of the passing of several
messages. This is denoted by: o ~-- m l (x~, ..., xlnl) ~--- ... ~ mk (Xl k, ..., xknk). When
a method is redefined in a subtype hierarchy, the corresponding signatures are
constrained to be covariant.

3.2 Classes

Types are used to describe the components of a database. The database can be
seen as a graph of interconnected objects and value,,;. The persistent roots of this
graph are classes. Persistence is achieved through reachability.

A class gathers the set of objects having the same characteristics and the same
behavior. The notion of class is an extensional notion. It represents a collection of
objects of one type (abstract or not) and is characterized by a name and the type
of its elements.

Classes are organized in a subclass hierarchy. The semantics of the inheritance
relation is inclusion.

3.3 Integrity Constraints

In our framework, integrity constraints are well-typed boolean expressions, built
using the names and classes of the schema and general operators. More formally,
terms are defined as follows:

• Constants (e.g., true, false, nil) are terms.

• Each variable x is a term.

• Let t be a term, let a be an attribute (and not an operation), t.a is a te rm
(provided that t is a tuple-structured term with attribute a).

• Let t be a term, xb ..., xn be variables; let m be a method, t ~-- m (Xl, ..., xn)
is a term.

• Let tl and t2 be two terms; let/9 be an arithmetical operator (+ , - - , *, q-),
tlO t2 is a term.

An integrity constraint, A, is an expression of the form:

A = Qxl C $1, ..., Qxk C Sk M(xl , ..., xk)

where Q E {V, 3}, Sj is a set-structured expression, and M(xl , ..., xk) is a quantifier-
free formula. Expression Qxl C $1, ..., Qxk E Sk is usually referred to as the
constraint prefix, while M denotes the matrix of the constraint. More precisely,
formulas M are defined as follows:

VLDB Journal 4 (3) Benzaken: Th6mis-A Database Programming Language 499

• Let 0 be a comparator (= , 7~, < , > , < , >) , let x and y be two terms, x Oy

is an atomic formula,

• Each atomic formula is a formula,

• Let F and F t be two formulas, F A F ~, F V F ~, --1 F and (F) are also then
formulas.

The equality operator can be applied to values of any type. The other comparators
can be applied to numbers and sets.

3.3.1 Remarks and Restrictions. The introduction of methods into integrity con-
straints allows us to increase the declarative power of these constraints. Indeed,
the information needed in the definition of a constraint is not always stored in
the database through attributes, but is sometimes computed or derived data. This
happens for information requiring important computations, or for derived data
structures that cannot be defined with the first-order logic (e.g., transitive closure).

To keep the declarative aspect of a constraint, a method cannot modify the
data stored in the database, but it must be allowed to define virtual data (methods
allowed in the definition of constraints are overloaded queries). This virtual data
represents the intensional structures of the database.

A method can appear in both the prefix and the matrix of a constraint. The
signature of a method appearing in the prefix of the constraint must return a
set structured result. However, in a constraint, all quantified variables denote
persistent data. Therefore, to keep this property, a method appearing in the prefix
of a constraint must return a set of persistent data. Hence, the body of this method
can only contain a set of selections over the classes.

3.4 Transactions

Transactions are provided with the atomicity property: a transaction is either com-
pletely executed, or not executed at all. This mechanism allows us to overcome
some errors, and to provide consistent executions. For the sake of simplicity, in this
article, we consider only simple "fiat" transactions (a transaction that does not call
other transactions). A transaction is syntactically defined as follows: T = trans (~-1,
..., T~)F where T i E { ~C U 'TA} 1 and F represents the set of all elementary
statements of a transaction. This set is recursively defined as follows:

• assignment

el := e2 E r
el.a := ez E F if (a E ,,4)
where e2 represents any expression

• method call

o ~ m (x l , . . . , X n) E F

1. 7.4 denotes the set of abstract types.

500

• sequencement
V sl, s2 E F
Sl; S 2 E F

• conditional test
V sl, s2 C F
if (b) then sl else s2 E F
where b denotes a boolean expression

• iteration loop
V s E F
f o r (o i n x) s E F
where x denotes a set expression, and o an element of x

• set operations
insert o into x C F
drop o from x E F
where x denotes a set expression, and o an element ofx for the drop instruction

3.5 Example

To illustrate the concepts of Th6mis, we give an example, which will be used in the
remainder of this article. Let us consider the types given in Figure 1. The type
Person has five attributes (name, age, b i r thday , spouse, and chi ldren) , and
three methods. The method descendants () computes the graph representing all
the descendants of a given person. The method ances tor () computes the graph
representing the ancestors of a given person. The method genealogy() computes
both the ancestors and the descendants of a person..

A graph is represented by a pair < V; E >, where V is a finite set of vertices,
and E is a finite set of edges, each edge being a pair of vertices.

The type Matrix is used as an alternative representation of a graph which
simplifies the implementation of some algorithms. The type Matrix is a list of lists
of booleans. The closure () operation returns a matrix representing the set of all
possible paths in the graph. The connected() operation indicates if the graph is
strongly connected or not. Finally, the non_c i rcu i t () operation determines if the
graph has a circuit or not.

For this schema, we define the classes and constraints described in Figure 2.
Constraint A1 expresses that the descendants of a given person are represented by
a directed acyclic graph, while constraint A2 expresses that the genealogy of a given
person is a strongly connected graph. Constraint A3 states that the age of a person
ranges between 0 and 130. Constraint A4 expresses that every person is either the
spouse of his/her spouse or is not married, and constraint As expresses that every
child must be younger than his (her) parents. Finally, constraint A~ expresses that
every Ferrari is owned by an instance of Persons older than 40. In our schema, we
define the transactions given in Figure 3.

VLDB Journal 4 (3) Benzaken: Th6mis-A Database Programming Language 501

Figure 1. A Th~mis schema

type Person is abstract [
name : string,
age : integer,
b i r t h d a y : integer,
spouse: Person,
c h i l d r e n : set {Person}]
d e s c e n d a n t s () : Graph,
a n c e s t o r s () : Graph,
genea logy() : Graph

end
type Graph is abstract [edges: Edge, v e r t i c e s : Vertex]

add_edge (Vl, v2: Vertex),
delete_edge (e: Edge),
ma t r i x () : Matrix

end
type Matrix is abstract ((boolean))

c l o s u r e () : Matrix,
connec ted() : boolean,
n o n _ c i r c u i t () : boolean

end
type Vertex is abstract [num: integer, id : Person]

incoming_degree (g: Graph): integer,
ou tgo ing_degree(g : Graph): integer

end
type Edge is abstract [ver tex1 : Vertex, ve r t ex2 : Vertex, weight : integer]
end
type Vehicle is abstract [name: string, owner: Person]
end

4. Static Analysis of a Thdmis Schema

To avoid checking unnecessary constraints, we want to be able to statically characterize
the integrity constraints that may be violated by a given transaction. Because
the problem of determining if a transaction definitely will violate a constraint is
undecidable, we are only looking for the set of constraints that might be violated.
To characterize this superset of constraints, for a given transaction, we consider
the parts of the database that are dealt with in a given constraint, and/or involved
in a given transaction. A syntactic analysis of the constraints and the transactions
has been defined (Benzaken et al., 1992; Benzaken and Doucet, 1993). Such an
analysis consists, informally, of a set of paths in the database, gathering the set of
classes and attributes used in the constraints and the transactions.

502

Figure 2. Classes and Integrity Constraints

class Persons of type Person
class Vehicles of type Vehicle

(A1) V p 6 Persons, p ~-- descendants() ~--matrix() ~-- closure() +-

non_circuit () ;

(A2) Vp C Persons,p ~-genealogy () ~--matrix () 4- closure () ~-- connected() ;

(A3) V p 6 Persons, p.age < 130 A p.age >_ 0;
(A4) V p 6 Persons, p .spouse .spouse = p Vp.spouse = nil;
(As) V p C Persons, V c E p.chi ldren, p.age > c.age
(A6) V p 6 Persons, V v 6 Vehicles, (v.name # "Ferrari" V v.owner ~ p) V

p.age >_ 40

Figure 3. Transactions

T1 = trans(pl, p2: Person) {

insert p2 in pl.children }

/* this transaction adds a new child to a person */

T2 = trans(pl, p2: Person) {

pl.spouse := p2;

p2.spouse := pl }

/* this transaction performs a marriage between two persons */

T3 = trans() {

for p in Persons when (today = p.birthday) {

print(C'Happy Birthday'', p.name);

p.age := p.age + i } }

/* this transaction updates the age of all Persons born on the current day */

The analysis proposed by Benzaken et al. (1992) and Benzaken and Doucet
(1993) only considers the structure of the database, but does not take methods
into consideration. The introduction of methods makes the situation much more
complex. Indeed, the data structures they manipulate are not always explicitly
present in the database, but can be defined only for computing purposes. Thus, a
syntactic analysis of the methods will retrieve the set of "paths" that create these
"temporary structures."

In this section, we propose a structural and behavioral syntactic analysis of the
constraints and transactions.

4.1 Syntactic Analysis of the Constraints

4.1.1 Structure. The structural analysis of the constraints is recursively defined as
follows:

T (expt 0 exp2) = T (expl) U T (exp2), where 0 denotes any comparator;

VLDB Journal 4 (3) Benzaken: Thdmis-A Database Programming Language 503

T (C) = Uc~<_c { c i } (the set of all subclasses of C, including itself).
T (exp .a) = Ut<type(exp) { t . a } u T (exp), if t ype (exp) is an abstract type

(type () is a function which, given an expression, returns its corresponding
type);

= T (exp) otherwise.
T (x) = T (s),
where x represents a quantified variable in the constraint ranging over the set

expression S;
T (F A F') = T (F) U (F'), where F and F' are two quantifier-free formulas;
T (F V F') = T (F) t_l (F'), where F and F' are two quantifier-free formulas;
T (-~ F) = T (F), where F is a quantifier-free formula;
T ((F)) = T (F), where F is a quantifier-free formula.

4.1.2 Behavior. The syntactic analysis of a method requires more details. A method
m of signature m@T(7 l , ..., T~-i):Tn is applied to an object o of abstract type T in
the following way: o ~ m (xl, ..., Xn -1) . The syntactic analysis ff of the operations
1[I m performed in m is defined as follows:

• Assignment: The syntactic analysis of an assignment "el := e2" is the union
of the syntactic analysis of the two expressions el and e2.

(el := e2) = ~ (el) U • (e2)

Indeed, in an assignment "el := e2," the left part (el) cannot represent a
persistent variable (a variable attached to a persistent root). However, the
expression el can be built from a constructor using persistent parameters;
therefore, we have to analyse the expression e2.

• FieM extraction: • (exp. a) = T (exp. a) if exp is a variable attached to a
persistent root.
While analyzing exp. a, we do not take into account temporary variables
(non-persistent variables), which appear in the bodies of the methods for
computing purposes, nor instances of concrete types, because they are non-
mutable, non-shared. In the case where exp is represented by the key word
sel:~, which refers to the receiver of the method, type (s e l f) is equal to the
abstract type of the receiver.

• Sequencement: The syntactic analysis of a sequence of elementary statements
is the union of the syntactic analysis of all these statements.
tI) (SI~S2) = (I) (Sl) U (I) (Sn)

• Iteration loop: The syntactic analysis of an iteration loop is the union of the
syntactic analysis of all the statements performed in the loop, and of the set
on which the iteration holds.
ffP (for(o in x) s) = q5 (x) t2 ~ (s)

• Conditional test: The syntactic analysis of a conditional test is the union of
the syntactic analysis of the boolean expression b, and of the statements Sl
and s2, which might be performed.
gP (if(b) sl else s2) = ~ (b) t..J ~ (s1) U (I) ($2)

504

It is necessary to consider the syntactic analysis of the boolean expression
(b) for the same reasons as those given above, concerning the iteration set
in the case of the syntactic analysis of a conditional test.

• Set operations:
(insert 0 in x) = • (0) U • (x).

if2 (drop 0 from x) = • (0) U ffP (x).

allows the body of the methods invoked in the constraints to be analyzed. The
methods to execute are dynamically linked to the selector (the name of the method),
according to the abstract type of the receiver. For a given selector, it happens that
there are several methods belonging to different abstract types, corresponding to
different implementations. It is not always possible to determine at compile time
which method to link. Thus, the same message passing may have different results,
depending on the abstract type of the receiver.

To analyze a message passing 0 e - m , it is necessary to take into account the
set of all methods that might be executed, according to the abstract type of the
receiver. It is sufficient to consider, for each message passing 0 ~-- m, the set of all
methods m declared in the subtypes Ti of the receiver To.

The syntactic analysis of a method call in a constraint corresponds to the syntactic
analysis (~) of the operations invoked in this method:

T(o~- - -m(x l , . . . , xn)) = U ~(Nm@~')

The syntactic analysis of multiple calls is defined by:

T (0 ~ ml (x~, 1 (Xl 2, 2 mk (Xl k, k ...~ ...~ X n 2 _ l) ~ +.--- ...~ = Xnl_l) ~-- m2 ... Xnk--1))

U u U u ... u U
Ti~To Ti~TTnl 1 Ti~_Tnkk_ 1

UTi ~'Tnkk--1 (I) (Hmk ~Ti) represents the union of the syntactic analysis of the operations

appearing in the methods mk declared in the type 'r k (abstract type of the result
T~ k -- 1

of the previous method mk- i) and in the subtypes of 7 k n k _ l •

4. 7.3 Example. Table 1 represents the results yielded by T 0 for the constraints
defined in Figure 2. We detail the syntactic analysis of A1.

(A1) V p E Persons, p e - descendants() ~ matr ix() e-- c lo su re () e--
n o n - c i r c u i t () . We have to analyze the following:

T (p ~ descendants() ~-- matrix() ~ closure() ~ non-circuit())

which is:

U (~1 (l~IdescendantsO @~-i) U ~ (I-Im~t~ix()¢~')
' ri < P e r s o n 7"i < G r a p h

VLDB Journal 4 (3) Benzaken: Th6mis-A Database Programming Language 505

Table 1. Syntactic analysis of constraints

Constraint Syntactic Analysis T (A)

Zl

A2
A3
A4
A5

A6

Persons Person, Person.children

Persons Person, Person.children

Persons Person.age

Persons Person.spouse

Persons Person.children, Person.age

Persons Vehicles, Person.age, Vehicle.owner, Vehicle.name

Figure 4. Implementation of method descendants ()

{ Graph g;

Person x ;

g = new (Graph);

for(x in self.children) {

insert x ~-- descendants() in g;

insert [vertex1: self, vertex2: x] in g.edges }

insert self in g.vertices;

return(g) }

U ~ (I~cl°sure0@~'~) U ~ (I~n°n-circuit()@Ti)

T i _<Matrix Ti --<Matrix

which yields:

(H descendantsOQPers°n) U ~ (I~ matrixO@GraPh) U

(H cl°sure0@satrix) t3 ~ (11 n°n-circuit0@Matrix)

Let us assume that method descendants () is implemented as shown in Figure 4.
The analysis of the loop leads to W (self. children), which is Person. children.
The analysis of the code in the loop reduces to the analysis of g.edges, which
is empty since g is a temporary variable, and of [vertexl: self, vertex2: x]
which is Person. The analysis of the last assignment is again Person.

Furthermore,

~) (H matrix0QGraph) U • (I~ cl°sure0QMatrix) LJ (~ (II n°n-circuit0QMatrix) --

0

because no persistent variable (no variable that might be attached to a persistent

506

root) appears in these methods.
The syntactic analysis T (A1) of the constraint A1 is thus:

{Persons, Person, Person.children}.

4.2 Syntactic Analysis of Transactions

The syntactic analysis of a transaction Tyields the set q~ (T) of all paths involved in T.
This set again represents "paths" in the database, that is, those paths corresponding
to data that might be modified by a transaction.

The syntactic analysis of transactions containing no methods is recursively built
as follows :

~/($1; $2) = (I) (S1) [-J (I)(s2)

(if(b) Sl else s2) = ff (if(b) Sl else s2)

(for(o in x) s) = 6p (s)

(exp. a) = W (exp. a)

In the analysis of • (exp. a), we do not take into

account non-persistent temporary variables that appear

in the body of the methods for computing purposes.

(e I : = e2) = W (el)
In an assignment "el := e2," the left part

(el) can represent a variable attached to a persistent root.
(insert 0 in x) = • (x)

(drop 0 from x) = • (x)
k~ (0 ~-- ml(x~, 1 m2(x~, 2 mk(xl k, k Xnl_l) ~ ..., ...~ ...~ Xr~2_l) 4--- 4--- • .. X . k _ D)

¢~ (0 ~ m l (X~, 1 m2(x12, 2 = .., X n l _ l) ~ ..., Xn2_ l)
~-- ... ~-- mk(x~, k • .., X n k _ l))

4.2.7 Example. The analysis of transactions T1, T2, and T3 yields the results given
in Table 2.

4.3 Safety Detection

While analyzing transactions and constraints, we detected the set of "paths" used
in a constraint or invoked by a transaction. This set of paths gathers the various
structures that are manipulated by the transactions and the constraints. Intuitively,
a transaction T might violate a constraint A, if T and A manipulate the same "data
structures." This property (Benzaken et al., 1992; Benzaken and Doucet, 1993) is
still valid in this context. It can be expressed the following way:

Property 1. Given a transaction T and a constraint ,4, transaction T might violate
constraint A if and only if T (A) U if2 (T) 5& O.

VLDB Journal 4 (3) Benzaken: Th6mis-A Database Programming Language 507

Table 2. Syntactic analysis of transactions

Transaction Syntactic Ana~sis (~ (T))

T1 Person, Person.children

T 2 Person, Person.spouse

T 3 Persons, Person, Person.age

Table 3. Constraints hit by transactions

Transaction Constraints

T1 ! A1, A2, A5

T2 A4
T3 ~ A31 A4, A~, A6

Table 3 gathers the set of the constraints that might be violated by a given
transaction. Note that Ta is detected as a transaction that might (potentially)
violate the constraint A6, even if this will never happen, since this transaction only
increments the attribute age of a Person instance. This is, indeed, one limitation
of this approach. Such a problem will be solved using more powerful techniques,
namely, abstract interpretation of programming languages (Cousot and Cousot,
1976).

5. Generation of Enforcement Tests

5.1 Restrictions

The problem addressed in this section is to generate, given a constraint, a checking
algorithm that guarantees that either the constraint is satisfied at the end of the
transaction or the transaction is aborted. In a first approach, we restrict our
constraints to constraints without methods. We also impose some restrictions on
the constraint prefixes allowed.

Indeed, incremental checking is not possible for every constraint. Existential
quantifiers, for example, cannot be simply incrementally checked as illustrated by
the following example:

3 x in aSet, M(x)

If a transaction removes an element ce from aSet, and M(o 0 is true, then there is no
simple and cheap way to ensure that there is still another element that satisfies the
predicate. In the remainder of this section, we consider only universally quantified
constraints.

508

Figure 5. Integrity constraints

(A3) V p E Persons, p.age < 130 A p.age _> 0;

(A4) V p C Persons, p.spouse.spouse = p V p.spouse = nil;

(As) Vp E Persons, V c C p.ch±ldrenp.age > c.age;

(A6) V p E Persons, V v C Vehicles, (v.name ~ "Ferrari" V v.owner ~-p) V

p.age _> 40

5.2 Constraint checking

The problem of efficiently checking a constraint at the end of a transaction consists
of finding the minimal set of objects involved in the process of checking. Then, the
constraint will be checked only on this set, which guarantees that data consistency
is ensured at the end of checking. However, this set, unfortunately, is not always
reachable at run time. To illustrate this, we use the following four constraints A3,
A4, A5, and A6, together with transactions T1, T2, and T3 as shown in Figure 5.

If we consider T3 for the first constraint, we just have to collect the identifiers of
every person whose age is modified. The objects collected by this process correspond
to the ideal relevant set of objects on which A3 has to be checked.

For the second constraint, when executing transaction T2, the ideal relevant
set is not so easy to obtain. This set consists of the identifiers of Pl and P2, as
well as the identifiers of pl.spouse and p2.spouse before the assignment. Indeed,
we need to know the former spouses o fp l and P2, because the constraint A4 will
certainly be violated for them. Of course, collecting those identifiers requires that
the constraint checking manager be provided with some kind of "intelligence." This
problem is addressed in Benzaken et al. (1995), and relies on abstract interpretation
techniques.

For the third constraint, when executing T3, we have no means to collect the
parents of a child whose age has been modified, because we don't have backward
pointers or indexes.

As a consequence, we do not attempt to obtain the ideal set of relevant objects.
At the same time, we do not assume the existence of special access structures like
indexes or backward pointers. Instead, we address the problem of finding an efficient
checking algorithm that can be applied to all constraints. For constraints such asZ3,
the algorithm will operate on the ideal relevant set of objects; for other constraints,

VLDB Journal 4 (3) Benzaken: Thfmis-A Database Programming Language 509

we show that the checking algorithm improves the trivial approach, which consists
of performing a whole scan on the populations involved in the constraints.

Let Tbe a transaction and letA be a constraint. We are looking for an algorithm
that satisfies the following properties:

• The evaluation of this algorithm at the end of the transaction ensures that
the constraint A is still satisfied.

• The evaluation of this algorithm is more efficient than the direct evaluation
of A.

At execution time, the only objects that can be collected are those instances of
abstract data types whose attributes, relevant with respect to the constraints, have
been modified. It may be the case that such a set of objects exactly matches the
ideal relevant set, as for constraintA3. But, in general, the set obtained at execution
time only intersects the relevant set, as for constraint A4. Therefore, we propose
that checking algorithms be generated, which allows us to test the constraint on the
whole set of relevant objects, thus ensuring database consistency. As a consequence,
we have to perform some additional work to get these objects.

To define these algorithms, let us introduce the following definitions.

Definition 1: ZX C
Given a class C, we posit ~ c the set of instances of class C that have been created
(and inserted in C) by a transaction.

Definition 2: F a r(z)

Given an iteration variable x of type 7- (x), and an attribute a of x, we posit Pa r (z)
the set of instances of the abstract type 7- (x), in which attribute a has been modified
by a given transaction.

This set represents information on the updates that a transaction has made on
the database. The constraints considered here have the following generic form:

VX 1 E C1, Vx1,1 ~xl .Pl ,1 , .-., VXl,nl ~ xl .Pl,nl ,
V X 2 ~ C2, V x2,1 ~ x2.P2,1 , ..., V x2,n2 ~ x2.P2,n2, ...,

Vxk E Ck, ..., V Xk,nk C xk.Pk,nk, M(Xl, Xl,1, ..., Xk, ..., Xk,nk)

where Pi,j denotes prefix paths.

510

Figure 6. Generic checking algorithm

For each class Ci, we generate the following enforcement test:
V x E A c~

check [V xl E C1, ..., VXi+i E C i + l , ...,

M (x l , ..., x, ..., xi+l, ...)]
For each path x-a1 ... ak (either in the prefix or in the matrix), we generate the
following enforcement test:

VxECi
V y EW(z) i f y = x ,
check [V Xl E C1, ..., V x i+ l E C i + l , ...,

M (X l , ..., x~ ..., Xi+l, ...)]
. o .

V y E F r(x 'al" ' 'ak-1) i fy = x . . . a k - i ,
a k

check [V xx E Ci, ..., V x i + i E Ci+i, ...,
M (x l , ..., x, ..., x i + l , ...)]

For each path y+bl. . .bt in the matrix (where Yi ranges in x.pl) ,

we generate V x E Ci
V y E x.pi

V z E F~ (v), if z = y,
check [VXx I E C1, ..., V Xi+l E C i+l , ...,

M (xl, ..., x, ..., y, ..., Xi+l , -..)]
oo .

V z E F~ (y ' ' 'bl- j , i f z Y.. .bl-1,

check [~ x l E C1, ..., ~/ E Ci+l, Xi+l ...,

M (Xl, ..., x, y, ..., Xi+l , ...)]

Let x be a variable ranging over class Ci, and let Yl , Yn be variables ranging,
respectively, over x.pl , ..., x .pn, where Pi denotes a prefix path leading to a set
structured component of x. In Figure 6, we show how to generate generic checking
algorithms.

For a given constraint A, the enforcement test generation consists of generating
the above tests for each class Ci involved in the constraint prefix. Let us illustrate
this on the constraints, A3, A4 , A s , and A6. For the constraint A3,

(A3) k /p E Persons, p.age <_ 130 A p.age > 0;

and the checking algorithm is shown in Figure 7.
Fl'erson actually This can be rewritten as shown in Figure 8. In this case, the set -age

represents the relevant set of objects on which the constraint has to be checked.
pPerson testing Indeed, this algorithm leads to a check of the constraint on the set -age ,

if each element belongs to the class Persons. Thus, we perform as many check
operations as the minimal algorithm does. Note that the trivial algorithm would
have performed as many checks as the number of elements in the class Persons.

VLDB Journal 4 (3) Benzaken: Th6mis-A Database Programming Language 511

Figure 7. Algorithm for A3

V x 6 ~X Psrs°ns, check (A3 (x))

V x 6 Persons
~Person

Vy 6 --age ,

if y = x, check (As (x))

For the constraint .a4

(A4) V p E Persons, p .spouse.spouse = p Vp.spouse = nil;

the checking algorithm is described in FigUre 9. For this algorithm, we have to scan
the whole class Persons and test whether an element t,t/. spouse -~ r~Person corresponds with
either an instance of class Persons, or to the spouse attribute of a given instance
of Persons.

For the constraint A5

(As) V p 6 Persons, V c 6 p.children, p.age > c,age

the checkitig algorithm is shown in Figure 10.
-- r ~ P e r a o n ~ r ~ P e r s o n For This algorithm iterates over three setS: rersons, lag e , ano J" children"

each element x of Persons whose age has been modified, we have to check the
constraint. For each element x of Persons, if the age of one of his/her children has
been modified, we have to check whether the constraint is still valid. Last, for each
element of Persons whose set of children has been modified, we also have to check
the constraint.

Finally, for the constraint A6,

(As) k/p 6 Persons, V v 6 Vehicles, (v.name ~ "Ferrari" V v.owner ~ p) V
p.age _> 40

The checking algorithm is illustrated by Figure 11. This algorithm can be rewritten
as shown in Figure 12.

This last example deserves some comments: checking As means that we check
As with respect to all the elements in either Vehicles or Persons. Therefore, some
tests are redundant. When checking the set of Persons whose age has been modified,
we consider all Vehicles, particularly those Vehicles whose name or owner attribute
has been updated. In the second phase of the algorithm, we test the constraint
for all updated Vehicles with respect to all Persons, including those whose age
has been modified. To avoid such redundant tests, we refine this algorithm in the
following way. In the previous examples (for the constraintsA3 andAs), the checking
algorithms could be rewritten in an optimized form. Such an optimization can take
place only for the algorithms containing no navigation in the type structures. For
example, it is not possible to optimize in the way the algorithm was generated for
constraint As, because y has to range over x.children.

512

Figure 8. Optimized algorithm for A3

V x E A Pers°ns, check (A3 (x))

n r Pe~s°n check (A3 (x)) V x E Persons ' ' - age '

Figure 9. Checking algorithm for A4

V X E L~k Pers°ns, check (A 4 (x))

V x E Persons
~Person

V y E -spouse'
if y = x, check (A4 (y))

~Person
V y E --spouse'

if y = x.spouse, check (A4 (y))

Figure 10. Checking algorithm for As

V x G 2X Pets°as, check (As (x))

V x G Persons
~Person

V y E -age ,
if y = x, check (A 5 (y))

]-~Person
Y E ~children,

if y = x, check (A 5 (x,y))
V y E x.children

~Person V Z E --age '

if z = y, check (A 5 (x,y))

We now give a general optimized version of this class of algorithms (Figure
13). The union of Fi denotes the set of all instances of an abstract type whose
attributes relevant to a given constraint have been updated. Such an optirrlized
version prevents us from testing the same constraint on the same objects more than
one time.

6. Implementation

Th6mis is implemented on top of the 02 system, using a preprocessing approach.
The 02 integrity preprocessor takes a schema written in Thrmis, and produces an
02 schema and a set of 02 executable programs, which allows us to instantiate
the constraints while preserving the inclusion semantics. 02 integrity is written in
C ++, and uses lex and yacc.

VLDB Journal 4 (3) Benzaken: Th6mis-A Database Programming Language 513

Figure

Vx
Vx

V x
Vx

11. Checking algorithm for A6
C A Pers°ns, check (A 6 (x))
C Persons

~Person V y E --age '
if y = x, check (A 6 (y))

E A vehiclee, check (A6 (x))
E Vehicles
V y E pVehicle

--name

if y = x, check (A6 (y))
V y E pVehicle

--owner

if y = x, check (A6 Cv))

Figure 12. Optimized checking algorithm for A6

V x E Z2~ pers°ns, check (A6 (x))
Parson ~ A "pPerson

V x E check (A6 (~I
= ~ ~ H h a e

V x C &Vehicles, check (A6 (x))
V x C Vehicles f'l F veh±cle tlFVehicle~ --name ~--owner /

check (A6 (x))

Figure 13. Optimized algorithms

V x E c l n (uF1)
check [V x2 E C2, ..., V xk E Ck, ...,

M(x, ..., x2, ..., xk, ...)]

V x c c~n (uF~)
check [V x l E Cl - - (C1N (U F 1)) , ...,

: V Xi_ 1 E C i - 1 - - (C i - 1 N (UFi-1)),- .- ,
: Vxi+ 1 ~ C i + l , ...,

M (X l , x2 x, ..., Xk, ...)]

V x E Ckn (UFk)
check [V Xl E e l - - (Clf-] (U F 1)) , ...,

: V xi E Ci- - (CiN (UFi)), ...,
: V Xk_ 1 E C k - 1 - - (Ck- lN (UFk-1)) ,
M (X l , ..., x2, ..., x, ...,)]

514

6.1 Mapping Between Thdmis and 02

In this section, we describe the mapping between the Thdmis language and 02.

6.1.1 Atomic Types

Thdmis

int

string

boolean

02

integer

string

boolean

real

bits

6.1.2 Type Constructors. In the 02 language, it is possible to define complex objects
and values by using various constructors, as in Thdmis.

Thrmis 02

[al : tl,.., an : t'n] tuple(al : tl,.., an: tn)
{tl } set(t1)
(tl) list(tt)

6.1.3 Types and Classes. In the 02 language, the instances of a type are values,
and the instances of a class are objects. These properties are offered in Thdmis
through concrete and abstract types.

Thdmis O2

Concrete type type
Abstract type class

Classes named values

6.1.4 Subtyping and Inheritance. 02 and Thdmis follow the same subtyping rules:
• An explicit subtyping for abstract types (Thrmis) and the classes (02).
• An implicit subtyping for concrete types (Thdmis) and types (02).

6.2 Constraints and Transactions

The constraints defined in Thrmis are instances of a predefined class "Constraint" in
02. The transactions are translated into 02 transactions, and compiled by the O2C
compiler. Each time a transaction is compiled, the 02 Integrity preprocessor updates
a global table describing which constraints might be violated by the transaction.

VLDB Journal 4 (3) Benzaken: Th6mis-A Database Programming Language 515

Meanwhile, the corresponding checking algorithms are generated at the end of the
transaction.

The user can visualize the set of constraints defined on the schema, and the
global table showing the constraints that will be checked for a given transaction.
Each time a constraint is actually violated by the execution of a transaction, the
user is warned and the transaction is aborted.

7. Conclusion

This work proposes a specification of a database programming language allowing
for the definition of integrity constraints in a global and declarative way. The
characteristics of the object-oriented data model, in particular, inheritance and
subtyping, are taken into account. The language used to express the integrity
constraints is not limited to first-order logic formulas, but also includes method
calls. This allows an increased declarative power of the constraints.

To detect which constraints may be violated by a given transaction, we define a
syntactic analysis of both the constraints and the transactions. This analysis takes
into consideration the specificities of the object-oriented model, such as inheritance,
subtyping, late binding, and the persistent nature of the data. It allows us to obtain a
necessary and sufficient condition to determine at compile time if a transaction might
violate a constraint. A second part of this work concerns the automatic generation
of constraint checking algorithms at the end of transactions. Those algorithms are
generated for a sub-class of formulas: universally quantified formulas.

A first prototype of the Th6mis language has been implemented. This prototype
allows the proposed analysis to be validated. We propose that our work be extended
in the following directions:

The analysis proposed detects transactions as being (potentially) unsafe when
they are actually safe. More generally, we would like to refine our static analysis
by using abstract interpretation techniques.

To be able to generate an efficient constraints checker, we extend our checking
algorithms to constraints including methods and existential quantifiers.

Finally, our last aim is to build a complete compiler for the Th6mis language.
Such a compiler should be implemented on a persistent object manager (e.g., 02
Engine, Napier88 Store).

Acknowledgments

We would like to thank EY. Policella and P. Tronowski for implementing the first
Th6mis prototype. We also greatly acknowledge the referees for their enlightening
comments and helpful suggestions.

516

References

Atkinson, M. and Buneman, P. Types and persistence in database programming
languages. ACM Computing Surveys, 0(0):00-00, 1987.

Benzaken, V. and Doucet, A. Th6mis: A database programming language with
integrity constraints. Proceedings of the Fourth International Workshop on Database
Programming Languages, Workshop in Computing, New York, 1993.

Benzaken, V., Doucet, A., and Schaefer, X. Integrity constraint checking optimiza-
tion based on abstract databases generation and program analysis. Journal de
l'Ing~nierie des Syst~mes d'Information, 1(3):9-29, 1995.

Benzaken, V., I_~cluse, C., and Richard, E Enforcing integrity constraints in data-
base programming languages. Proceedings of the F~h International Workshop on
Persistent Object Systems, Workshop in Computing, Pisa, Italy, 1992.

Blaustein, B.T. Enforcing database assertions. Ph.D. thesis, Harvard University,
Computer Science Department, Cambridge, MA, 1981.

Bry, E, Decker, H., and Manthey, R. A uniform approach to constraint satisfaction
and constraint satisfiability in deductive databases. Proceedings of the EDBT
International Conference, LNCS 303, Venice, Italy, 1988.

Bry, E and Manthey, R. Checking consistency of database constraints: A logical
basis. Proceedings of the VLDB International Conference, Kyoto, Japan, 1986.

Cardelli, L. A semantics of multiple inheritance. In: Semantics of Data Types, LNCS
173, Springer-Verlag, 1984, pp. 51-67.

Cardelli, L. Basic polymorphic type checking. Science of Computer Programming,
8(2):147-172, 1987.

Cardelli, L. Structural subtyping and the notion of power type. ACMPOPL Inter-
national Conference, San Diego, CA, 1988.

Cardelli, L. and Wegner, E On understanding types, data abstraction and polymor-
phism. ACM Computing Surveys, 17(4):310-440, 1985.

Castagna, G. Covariance and contravariance: Conflict without a cause. ACM
Transactions on Programming Languages and Systems, 17(3):220-237, 1995a.

Castagna, G. A proposal for making 02 more type safe. Rapport de Recherche
liens-95-4, LIENS, March 1995b.

Castagna, G., Ghelli, G., and Longo, G. A calculus for overloaded functions with
subtyping. Information and Computation, 117(1):115-135, 1995.

Cousot, P. and Cousot, R. Static determination of dynamic properties of programs.
Proceedings of the Second International Symposium on Programming, Location?,
1976.

Gardarin, G. and Melkanoff, M. Proving the consistency of database transactions.
VLDB International Conference, Rio, Brazil, 1979.

Hsu, A. and Imielinski, T. Integrity checking for multiple updates. Proceedings of
the ACM SIGMOD International Conference, Austin, TX, 1985.

Hull, R., Morrison, R., and Stemple, D., eds. International Workshop on Database
Programming Languages. Salishan Lodge, OR, 1989.

VLDB Journal 4 (3) Benzaken: Th6mis-A Database Programming Language 517

Kowalski, R., Sadri, E, and Soper, E Integrity checking in deductive databases.
Proceedings of the VLDB International Conference, Brighton, UK, 1987.

Martin, H. Contr61e de la coh6rence dans les bases objets: Une approche par le
comportement. Ph.D. thesis, Universit6 Joseph-Fourier--Grenoble I, 1991.

Nicolas, J.M. Logic for improving integrity checking in relational databases. Tech-
nical report, ONERA-CERT, 1979.

Sheard, T. and Stemple, D. Automatic verification of database transaction safety.
A C M Transactions on Database Systems, 14(3):322-368, 1989.

Stonebraker, M. Implementation of integrity constraints and views by query modi-
fication. A C M SIGMOD International Conference, San Jose, CA, 1975.

Weber, W., Stugky, W, and Karzt, J. Integrity checking in database systems. Infor-
mation Systems, 8(2):125-136, 1983.

