
Column-Store Support for RDF Data Management:
not all swans are white

Lefteris Sidirourgos
CWI, Amsterdam
The Netherlands

lsidir@cwi.nl

Romulo Goncalves
CWI, Amsterdam
The Netherlands

goncalve@cwi.nl

Martin Kersten
CWI, Amsterdam
The Netherlands

mk@cwi.nl

Niels Nes
CWI, Amsterdam
The Netherlands

niels@cwi.nl

Stefan Manegold
CWI, Amsterdam
The Netherlands

manegold@cwi.nl

ABSTRACT
This paper reports on the results of an independent evalu-
ation of the techniques presented in the VLDB 2007 paper
“Scalable Semantic Web Data Management Using Vertical
Partitioning”, authored by D. Abadi, A. Marcus, S. R. Mad-
den, and K. Hollenbach [1]. We revisit the proposed bench-
mark and examine both the data and query space cover-
age. The benchmark is extended to cover a larger portion
of the query space in a canonical way. Repeatability of the
experiments is assessed using the code base obtained from
the authors. Inspired by the proposed vertically-partitioned
storage solution for RDF data and the performance figures
using a column-store, we conduct a complementary analy-
sis of state-of-the-art RDF storage solutions. To this end,
we employ MonetDB/SQL, a fully-functional open source
column-store, and a well-known – for its performance – com-
mercial row-store DBMS. We implement two relational RDF
storage solutions – triple-store and vertically-partitioned –
in both systems. This allows us to expand the scope of [1]
with the performance characterization along both dimen-
sions – triple-store vs. vertically-partitioned and row-store
vs. column-store – individually, before analyzing their com-
bined effects. A detailed report of the experimental test-bed,
as well as an in-depth analysis of the parameters involved,
clarify the scope of the solution originally presented and
position the results in a broader context by covering more
systems.

1. INTRODUCTION
This paper has been written in response to the challenge

put forward by the organizers of VLDB 2008 and the VLDB
endowment to promote independent evaluation of previous
papers. For this, we have chosen the paper titled “Scalable
Semantic Web Data Management Using Vertical Partition-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

ing”, authored by D. Abadi, A. Marcus, S. R. Madden, and
K. Hollenbach as a focal point [1]. It is among the first
papers in the database community reporting on the effects
of modern database engines on scalable RDF data manage-
ment.

The authors of [1] review the prevalent approaches to im-
plement an RDF storage scheme using existing relational en-
gines. In particular, they compare the triple-store approach
pioneered in systems such as Sesame [3] to a property table
approach proposed in [4, 9]. Performance and scalability
of both RDF storage schemes are analyzed using a real-life
application based on a core table of more than 50 million
triples.

Their results and contributions can be summarized as fol-
lows:

• To address the limitations of the triple-store and the
property table approach, the authors propose a dif-
ferent physical organization technique for RDF data.
They “(...) create a two-column table for each unique
property in the RDF dataset where the first column
contains subjects that define the property and the sec-
ond column contains the object values for those sub-
jects”. This technique can be thought of as a verti-
cally partitioned database on property value. We refer
to this RDF storage solution as vertically-partitioned.

• Inspired by a real-life application scenario, a new bench-
mark is designed to assess the behavior of RDF storage
solutions using a fixed set of queries.

• Using PostgreSQL the authors show that both prop-
erty table and vertically-partitioned solutions outper-
form the standard triple-store solution by more than a
factor of 2 and have superior scaling properties. More-
over, the authors argue that the vertically-partitioned
RDF storage is simpler to implement than the prop-
erty table.

• The vertically-partitioned approach is implemented on
a column-store DBMS, namely C-Store [8], where “an-
other order of magnitude performance improvement is
observed, with query times dropping from minutes to
several seconds.” and “(...) showed that on a version
of the C-Store column-oriented database, it is possi-

1553

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this wor k owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

ble to achieve a factor of 32 performance improvement
over the current state of the art triple store design.”

In line with the charter of the Experiments and Analysis
VLDB-track, we embark upon a faithful re-examination of
the techniques proposed and re-execution of the performance
experiments. The evaluation is focused on the quantitative
results obtained from new implementations of triple-store
and vertically-partitioned approach on both a row-store and
a column-store system. We do not analyze the property ta-
ble dimension, which requires amongst others an evaluation
using database design wizards.

The predominant questions driving this study are “what
is the scope of the benchmark?” and “does the performance
of the vertically-partitioned approach carry over to more
systems?”.

The benchmark proposed and used in [1] is based on a real
application. This way both data and queries are generally
accessible and provide an easy to use yardstick for RDF
storage schemes. From a design space perspective we study
the extent to which it also provides a canonical basis for the
RDF query space. This step leads to an extension of the
benchmark by one more query to cover a part of the query
space previously left out and to assess the flexibility of the
RDF storage solutions.

The code base for the repeatability of the original exper-
iments was obtained from the authors. It should be noted
that C-Store is a layer over BerkeleyDB and all queries are
hardwired in C++ code. This low-level approach prohibits
us from extending the query set or implementing other RDF
storage solutions without major resource investments. To
this end, we employ MonetDB/SQL [6], a mature fully-
functional open source column-store. The limited capabil-
ities of PostgreSQL to experiment with efficient clustered
bulk access to base tables, drives our choice to include in-
stead a well-known – for its performance – commercial row-
store DBMS, in the sequel referred to as DBX.

We implement the experiments on both MonetDB/SQL
and DBX. The meticulous report of the experimental test-
bed and the in-depth analysis of the parameters involved
can help to clarify the different aspects of the proposed RDF
storage solutions.

Our contributions can be summarized as follows:

• The trends observed for C-Store (and PostgreSQL) are
confirmed.

• The original observation in [1] that the vertically-parti-
tioned approach outperforms triple-store when both
are implemented in a row-store engine cannot be sub-
stantiated in general.

• For the given benchmark, the vertically-partitioned
approach outperforms triple-store when both are im-
plemented in a column-store. Moreover, our experi-
ments show that the processing efficiency of column-
stores is particularly suited for RDF data management
applications.

• We point out potential scalability problems for the
vertically-partitioned approach when the number of
properties in an RDF dataset is high.

The re-evaluation of techniques and software from previ-
ously published results is a sign of maturity of computer sci-
ence as a scientific discipline. The landscape of techniques

total triples 50,255,599
distinct properties 222
distinct subjects 12,304,739
distinct objects 15,817,921
distinct subjects that appear also
as objects (and vice versa)

9,654,007

strings in dictionary 18,468,875
data set size 1253 M.Bytes

Table 1: Data set details

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

%
 o

f t
ot

al
 tr

ip
le

s
% of total *

properties
subjects
objects

Figure 1: Cumulative Frequency Distribution graphs
for properties, subjects and objects

for efficient data management is well carved out and fun-
damental changes are becoming rare. The step taken to
re-evaluate results leads to a deepening of our understand-
ing of the techniques and their applicability. It calls for a
standing on each others’ shoulders, which brings with it an
attitude and drive to make the input for the experiments
publicly available. Therefore, all additional experiments re-
ported here and the complete software base is available from
the authors.

The remainder of the paper is organized as follows. In Sec-
tion 2 we revisit the benchmark proposed in [1]. In Section 3
we repeat part of the original experiments on different plat-
forms. Section 4 re-runs all experiments and the extended
versions of them using both MonetDB/SQL and DBX. We
summarize our results and conclude the discussion in Sec-
tion 5.

2. BENCHMARK IN DETAIL
Easy to use benchmarks, with a clear embedding in real

life applications, form a good yardstick to assess a technical
solution. From a scientific perspective, a query benchmark
should cover a sizable part of the query design space, prefer-
ably encapsulated in a limited set of canonical queries, which
can be glued together to issue arbitrarily complex challenges
to a system. Likewise, the data distribution should be made
explicit to ease clarification of the results obtained.

In this section, we review the RDF benchmark proposed
in [1] for performance evaluation of an RDF storage solu-
tion. Our analysis of the structural characteristics of both
the RDF data set and the queries, reveals useful insights to
significantly improve the benchmark for the task at hand.

1554

Triple Patterns

p1 (s, p, o)
p2 (?s, p, o)
p3 (s, ?p, o)
p4 (s, p, ?o)
p5 (?s, ?p, o)
p6 (s, ?p, ?o)
p7 (?s, p, ?o)
p8 (?s, ?p, ?o)

Join Patterns

join pattern A

o o
p p

?s ?s

join pattern B

s s
p p

?o ?o

join pattern C

s o
p p

?o ?s

Figure 2: Simple RDF query patterns

2.1 Data Set
The data set is taken from the publicly available Bar-

ton Libraries data set [2]. There are more than 50 million
triples in this data set and more than 18 million distinct
RDF classes and literals. Table 1 summarizes the numbers
obtained by counting over different aspects of the data (i.e.,
triples, strings, etc.).

Figure 1 illustrates the cumulative frequency distribution
of properties, subjects, and objects over the total popula-
tion of triples. The most frequent property, namely #type,
appears in 12,327,859 triples, while the top 13% of the total
properties account for the 99% of all triples.

Subjects follow a more uniform distribution than prop-
erties. The most frequent subject appears in only 3,794
triples; this frequency drops to below 1,000 after the top 10
most popular subjects, reaching 100 already after the first
97 subjects.

The most popular object accounts for 8% of the total
triple population. It is the object #Date, which appears in
4,035,522 triples, all of them being of the form <subject

#type #Date>. The next 8 most frequent objects, each
ranging from 1,824,082 to 1,008,697 occurrences, also ap-
pear as objects for the property #type.

The frequency distribution illustrates the highly Zipfian
skew of the properties. Queries should be designed such
that the predominant characteristics of this distribution is
explored. The three distributions are sufficiently distinct to
consider each as a potential candidate to be supported by
an index.

The distribution figure tempts to focus experiments on
the left part only, since there the frequency quickly changes.
The most frequent items are also likely candidates as a first
target to zoom into as an area of interest. However, from
an implementation perspective, the long tail of less frequent
items calls for efficient handling of large numbers of small
sets; i.e., the least frequent properties lead to a multiplica-
tive increase of the number of columns, each with hardly
any data associated. This increases the disk storage require-
ments, stresses the flexibility of the catalog system, and may
overload the optimizer with very complex queries. We come
back to this issue in Section 4.4.

2.2 Query Design Space
Most of the proposed RDF query languages are based on

pattern matching using triples of the form (s, p, o)1. A triple
is a statement about a subject s that has a property p whose
value is an object o. A simple triple query pattern consists of

1Including W3C’s recommendation of SPARQL [7] and the
SQL translations in the appendix of [1].

Query Pattern Coverage
Triple Join

q1 p7 –
q2 p2,p8 A

q3 p2,p8 A

q4 p2,p8 A

q5 p2,p7 A, C

q6 p2,p7,p8 A, C

q7 p2,p7 A

q8 p6,p8 B

Table 2: Coverage of the query space

a triple where any of the subject, property or object can be
bound to a variable, denoted by ?s, ?p and ?o respectively.
The left table of Figure 2 depicts all 8 possible combinations
of simple triple query patterns.

From a relational database perspective, these patterns can
be combined into more complex patterns using join condi-
tions. That is, the patterns (s, p, o) and (s′, p′, o′) can be
related using an equality condition in 6 different ways. Of
these, the predicates s = s′, p = p′, and o = o′ are seman-
tically strongly typed. The predicate s = o′ (or o = s′) can
be seen as semantic role change. The remainder, s = p′,
and o = p′ (or similarly p = s′, and p = o′) play a role in
semantic reasoning, usually found on the RDF Schema level
(RDF/S). For each combination we have 4 terms left that
either are a target variable or constant. It leads to a total

of 24×6
2

different patterns to consider for even the simplest
queries.

Three different join patterns are shown in the right ta-
ble of Figure 2. These join patterns are of interest because
they form the RDF data graph. We adopt a standard graph
interpretation to illustrate RDF patterns, where nodes are
either subjects or objects (i.e., RDF classes) and edge labels
denote properties. Edges are directed from subject to ob-
ject. Join pattern A is a join on the subjects of two triples.
Join pattern B is a join on the objects of two triples and
join pattern C is a join on the object of one triple and the
subject of the other.

Having identified the query space for the RDF query lan-
guage, we can investigate the coverage of this space by the
benchmark proposed in [1]. The benchmark covers a small
fraction of the query space, namely only 7 queries. This is a
direct consequence from the underlying real-life application;
not all patterns are equally important. However, for sci-
entifically sound conclusions, the challenge is to determine
equivalence classes, i.e., patterns supported by an underly-
ing implementation that exhibit identical behavior.

For a high-level description of each query, we refer the
reader to [1]. Figure 3 depicts the graph interpretations for
those 7 queries. For clarity, we have omitted the bow-tie
symbol of the join operator. The shaded nodes and labels
indicate the values returned by the query. For completeness
we include the SQL code of all queries in the appendix.

Table 2 lists the queries and their coverage over the simple
triple and join patterns (queries q1 to q7). Most of the
queries use join pattern A (i.e., a join between subjects),
while there is no join between objects (i.e., join pattern B).
Only 3 out of the 8 simple triple patterns are used. Patterns
{ p1, p3, p4, p5, p6 } are all absent. Of these, pattern p1

1555

?p

?s
type

"text""french"
lang

?o
type

?o

"end"
point

encoding

?s ?o

?p

?ptype records
?s|o

?s

"text"

type
"text"

?o ?s

?o

type
!="text"

?o
records

?s|o

?s
origin

"dlc"
type

"text"
?p

?o ?s

type
"text"

?p
?o ?s

?s
type

?o

q1

q2

q4 q6

q7

q5q3

Figure 3: Graph Interpretation of queries q1 to q7

?s ?o
?p "conf."!="conf." ?p

q8

Figure 4: Graph interpretation of query 8

can be seen as a point query, which returns true if the triple
belongs to the database. It is a basic composite key value
lookup query, which should be present in every benchmark
to highlight index support in the target system.

A similar conclusion can be drawn from the join coverage.
To illustrate a possible extension of the benchmark, we in-
troduce query q8 using patterns p6 and p8 with a join on
objects as depicted in Figure 4. A high level description of
q8 is that it returns all subjects that share the same objects
with a defined subject (in this case "conferences"). These
kinds of queries are common in RDF applications since they
are part of a big set of inference rules that try to identify
connections between different subjects. The SQL equivalent
code for a triple-store is:

SELECT B.subj

FROM triples AS A,

triples AS B

WHERE A.subj = ’conferences’

AND A.obj = B.obj

AND B.subj != ’conferences’

The SQL implementation of q8 for the vertically-partitioned
storage is discussed in Section 4.2.

The addition of one more query with join pattern B allows
us to study the proposed RDF storage schemes by covering
the query space in a slightly more canonical way.

2.3 Benchmark Conventions
Every benchmark definition requires a set of rules and

definitions to enable comparison of results. This section
explains the rules and definitions adopted in our study.

The database loading, clustering and index construction
are all kept outside the scope of the benchmark. The ra-
tionale is based on the perceived predominantly read-only
nature of an RDF store. The benchmark is comprised of
the 8 queries above, which should all be run to completion.
The timing is focused both on cold and hot runs.

To clarify these rules we define some terminology.

Cold run A cold run is a run of the query right after a
DBMS is started and no (benchmark-relevant) data is
preloaded into the system’s main memory, neither by
the DBMS, nor in filesystem caches. Such a clean state
can be achieved via a system reboot or by running an
application that accesses sufficient (benchmark-irrele-
vant) data to flush filesystem caches, main memory,
and CPU caches.

Hot run The counterpart, a hot run, is defined as repeated
runs of the same query without stopping the DBMS,
ignoring the initial (semi) cold run.

Real Time The real execution time of a query is defined as
the wall clock time passed between the server receiving
the query and just before returning the results to the
client, i.e., it measures the time spent on the server
to read, parse, optimize and execute the query. For
a “fair” comparison between stand-alone and client-
server architectures, this definition purposely ignores
client-server communication.

User Time The user time is related to the real time and in-
volves the same boundaries, but measures (CPU-)time
spent by the user-space application (here: the DBMS),
excluding the (CPU-)time spent by the operating sys-
tem.

3. EXPERIMENTATION REDO
In this section we report on our attempt to reproduce

and verify the experimental results in [1]. We repeated the
experiments both on PostgreSQL and C-Store, but focus our
study on C-Store [8] since this is the fastest reported engine.

Our test-bed consists of two machines with different CPU
architectures and I/O capabilities. Table 3 details their
characteristics. Although the memory size is different, in
both machines the data fits in memory during hot runs.
The most notable difference is that machine A has 2 disks
of striped raid (software raid, level 0) capable of reading
data with a rate of approximate 100MB/s; while machine B
has 10 disks of striped raid (software raid, level 5) and reads
data with a speed of approximate 390 MB/s. For complete-
ness and ease of comparison, we include the characteristics
of the machine used in [1] as machine C in Table 3.

The code base of the original experiments has been ob-
tained from the authors, including a short how-to-install

1556

Machine A B C [1]

Num. of CPU 1 2 1

CPU
AMD Athlon 64 Intel Xeon Intel Pentium IV

Dual Core Hyperthreaded
CPU speed 2 GHz 3 GHz 3 GHz
cache size 512 KB 1024 KB 1024 KB
RAM size 2 GB 4 GB 2 GB
I/O read 100–110 MB/s 380–390 MB/s 150-180 MB/s

RAID disks 2 10 3
RAID level 0 5 0

Operating Fedora 8 Fedora Core 6 RedHat Linux
System (Linux 2.6.22) (Linux 2.6.23)

Table 3: Machine configuration

 0

 5

 10

 15

 20

 25
A cold real

A cold user
A hot real

A hot user
B cold real

B cold user
B hot real

B hot user

q1 q2 q3 q4 q5 q6 q7 G

1.01 2.21 10.33 2.47 18.46 11.42 1.94 4.2
0.47 1.14 3.06 1.37 9.28 8.91 0.34 1.8
0.59 1.33 3.63 1.62 10.42 10.36 0.83 2.3
0.49 1.14 3.01 1.37 9.13 8.91 0.30 1.7

0.79 1.79 10.13 2.80 21.13 12.71 1.09 3.8
0.49 1.18 3.44 1.30 11.64 10.56 0.37 1.9
0.59 1.35 4.08 1.52 12.95 12.04 0.77 2.4
0.49 1.17 3.45 1.28 11.67 10.49 0.34 1.9

[1] 0.66 1.64 9.28 2.24 15.88 10.81 1.44 3.4

Table 4: Repetition Results

description. After fixing some minor engineering problems
due to reliance on outdated environment settings (e.g., com-
pilers), the code compiled and ran on our platforms. We
compiled it with the GNU/g++ (ver. 3.4) using optimiza-
tion level -O3.

Table 4 details the results of the repetition experiment,
performing both cold and hot runs as discussed in Sec-
tion 2.3. For each machine, we list the real and user time in
seconds as reported by C-Store. The results represent the
average timing observed over a run of 3 tests, in between cold
tests zapping the memory completely. We do not report the
standard deviation of the average time of each query, since
the differences were less than 30 milliseconds. The last col-
umn of Table 4 (titled G) lists the geometric mean for all
queries; the last row is taken from [1] and represents the
original experiment of C-Store. Albeit small variations due
to different machine architectures, the trends observed are
in-line with the results presented in [1].

An interesting observation drawn from our first attempts
to run the experiments is the impact of I/O management.
Machine B has a much better I/O throughput capability,
it can handle I/O 4 times faster than machine A, yet it
does not materialize in a significant improvement in the tim-

Data read Number of rows
from disk returned

q1 100 MB 30
q2 135 MB 9
q3 175 MB 3336
q4 142 MB 297
q5 250 MB 12916
q6 220 MB 14
q7 135 MB 74866

Table 5: Data relevant to a query

 20
 40
 60
 80

 100

 0 2 4 6 8 10 12 14da
ta

 r
ea

d
(M

B
)

time history (seconds)

Query q3

A
B

 0
 5

 10
 15
 20
 25

 0 5 10 15 20 25

time history (seconds)

Query q5

A
B

Figure 5: I/O Read history for q3 and q5

ings. Moreover, despite the significant difference in pure
CPU clock speed, the user times on both machines are very
similar. In fact, they are slightly higher on machine B with
higher clock speed, suggesting that the C-Store code com-
piled with GNU/g++ v3.4 using -O3 runs more efficiently on
the AMD CPU than on the Intel CPU. Triggered by these
results, we investigate the actual code behavior using iostat
and top (for memory consumption).

The amount of data transported from disk into memory
shows the effects of a restrictive buffer space. The total
database is not more than 270 MB on disk2. The queries
read major portions (Table 5) and we assess that data is
read multiple times as well. Figure 5 illustrates for the I/O
dominant queries q3 and q5, the amount of data read into
memory during the complete run. These figures show that
C-Store only exploits a small fraction of the I/O bandwidth.
Pre-caching actions and better asynchronous I/O manage-
ment would have significantly improved the performance.

C-Store is a database kernel in an early development stage,
thus usable only to conduct micro benchmarks. It lacks
the functionality of a mature database management system
making it virtually impossible for a third party to imple-
ment, in reasonable time, other RDF storage schemes or
even extend with new queries (e.g., the query plans in C-
Store are hard-wired in C++ code). For these reasons, we
were unable to extend C-Store with either query q8 (intro-
duced in Section 2) or with other RDF storage schemes like
triple-store. The absence of an implementation of triple-
store for C-Store in the original paper is a major drawback
in our opinion, since there is no comparison between the
vertically-partitioned approach and triple-store with both
of them implemented in the same column-store engine.

In the next section, we continue our analysis and compar-
ison of vertically-partitioned approach with the state-of-the-
art RDF storage schema triple-store on MonetDB/SQL and
DBX.

2C-Store is loaded with data associated with 28 properties,
hence the small size.

1557

4. THE “BLACK SWANS”
A key observation of [1] is that the vertically-partitioned

RDF storage approach on a column-store outperforms a
triple-store implementation on a row-store engine with a fac-
tor 32. In this section we place this claim in a broader per-
spective using the latest MonetDB/SQL [6] software release3

and the latest version of DBX. We compare both triple-store
and vertically-partitioned storage schemes. All our code is
available for independent assessment4.

4.1 Triple-Store Implementation
Triple-stores have been realized with relational technol-

ogy for a long time [3, 4, 5, 10]. As for any database design
with a priori known query patterns, the choice of indices,
clustered and un-clustered, is central to achieving good per-
formance. The authors of [1] implemented triple-store on
PostgreSQL by defining three B+tree indices: one clustered
on SPO (subject, property, object) and two un-clustered on
POS (property, object, subject) and OSP (object, subject,
property).

In order to be aligned with the original experiments, we
implement the same set of indices on DBX. Since Mon-
etDB/SQL does not include user defined indices, we rely
on ordering the data on subject, property, object. However,
clustering on SPO is not the closest equivalent to the clus-
tering achieved by the vertically-partitioned approach, thus
it entails an unfair comparison. The vertically-partitioned
approach creates different tables, one for each property, and
clusters data subsequently on SO (subject, object). The
closest equivalent for triple-store is clustering on PSO (prop-
erty, subject, object). In fact, mature B+tree implementa-
tions support key-prefix compression, thus in practice not
storing the entire property column. Similarly, column-stores
with compression (e.g., RLE or delta-compression) can achie-
ve the same effect on the sorted property column.

Based on this observation, we also implement triple-store
on DBX with a B+tree clustered on PSO. In addition, we
define five more un-clustered B+tree indices on all other
permutations of (property, subject, object). Having all in-
dex permutations allows DBX’s optimizer to create more
efficient query plans. With MonetDB/SQL, we realize the
PSO-clustering by sorting the triples table on (property,
subject, object).

Our SQL implementation for queries q1 to q7 follows that
of [1], and for q8 the one described in Section 2.2. The
authors of [1] assume that “(...) the Longwell administra-
tor has selected a set of 28 interesting properties over which
queries will be run (...). For queries Q2, Q3, Q4, and Q6,
only these 28 properties are considered for aggregation.”.
The filtering of the 28 properties is achieved by populat-
ing a “properties” table with these property values and
join it against the properties returned by q2, q3, q4 and q6.
We follow the same strategy in our implementation. In addi-
tion, we implement a version without applying this filtering.
These queries are marked with an * symbol (i.e., q2*, q3*,
q4* and q6*). The SQL code for all queries is given in the
Appendix at the end of this paper.

3We use stable version MonetDB 5.6.0 with SQL 2.24.0 from
the publicly accessible MonetDB repository on SourceForge.
4Contact the authors.

4.2 Vertically-Partitioned Approach
The vertically-partitioned RDF data approach of [1] is

a horizontal partitioning of the corresponding triples table
clustered on property. Triples with the same property are
grouped in the same partition, which results in as many par-
titions as properties. Each partition table is named after the
property, which leaves two columns for subject and object.
For the Barton Libraries data set this calls for 222 tables,
many with just a small number of rows (less than 10).

The vertically-partitioned approach is implemented in both
DBX and MonetDB/SQL. For MonetDB/SQL the data is
sorted on (subject, object). For each table in DBX we de-
fine one clustered B+tree on SO (subject,object) and one
un-clustered on OS (object, subject).

Query q8 is implemented by first visiting the property
tables and select objects for which the subject has value
"conferences". The union of all qualifying objects is stored
in a temporary table t. Next, t is joined back with the prop-
erty tables after filtering out all "conferences" subjects to
avoid the join with the same triple twice. The final result is
union-ed and the subjects are returned.

In our vertically-partitioned implementation using SQL,
the relevant properties are iterated in the from clause. Thus,
filtering the 28 properties selected by the Longwell adminis-
trator is achieved by including only those properties in the
from clause.

For our full-scale implementation, where no restriction on
the properties is introduced, this leads to a sizable SQL
clause. Queries q2*, q3*, q4*, q6* and q8 grow to a size that
seriously challenges the optimizer of DBX, yielding a mes-
sage analogous to “the generated plans might be sub-optimal
due to the size of the SQL statement”. Each query contains
more than two hundred unions and joins, since these are ex-
actly the queries that have at least one property bound to
a variable.

The exercise of implementing the storage and queries for
the vertically-partitioned approach leads to the following ob-
servations:

• Since the logical schema of vertically-partitioned stor-
age is data-driven, we had to implement a front-end
to produce the correct SQL code. This is mainly due
to the fact that SQL does not provide a mechanism to
iterate over the tables in the from clause. Moreover, in
case of an update in properties, the queries have to be
re-produced. Here holds the general observation that
data-driven logical schemes make queries susceptible
to updates.

• The authors of [1], base their criticism against the
property table storage solution on three points, one
of which is:

“Proliferation of union clauses and joins. (...),
queries are simple if they can be isolated to querying a
single property table like the one described above. But
if, for example, the query does not restrict on property
value, or if the value of the property will be bound when
the query is processed, all flattened tables will have to
be queried and the results combined with either complex
union clauses, or through joins. To address these lim-
itations, we propose a different physical organization
technique for RDF data.(...)”

However, we identify the same drawback for the vertical-

1558

ly-partitioned approach. If a query is not isolated to
access a predefined number of properties, the SQL code
becomes large and complex. It challenges the capabil-
ities offered by most optimizers.

• Finally, one of the beneficial properties, presented in [1],
for the vertically-partitioned RDF storage is:

“Fewer unions and fast joins. Since all data for a
particular property is located in the same table (unlike
the property-class schema), union clauses in queries
are less common. And although the vertically parti-
tioned approach require more joins relative to the prop-
erty table approach, properties are joined using simple,
fast (linear) merge joins.”

If the property in a query is bound to a variable, then
the rows returned from each property table must be
union-ed. In the case where the property is not part of
the result, then the union operator must also perform
a duplicate elimination. Finally, since the data is not
clustered on objects, a query which joins on objects
(e.g., query q8), will not allow the use of a fast (linear)
merge join.

4.3 Experimental Results
In any experimental observation, it is impossible to assert

that “all swans are white”, no matter how many white swans
are observed. However, if at least one black swan is found,
one may safely conclude that “not all swans are white”. In
this section, we embark on our quest to locate at least one
“black swan” for each RDF storage solutions and for each
database system.

All experiments are conducted on machine B, described
in Table 3 of Section 3. We conduct experiments for both
cold and hot runs, as discussed in Section 2.3. We report
both the user time and real time. These times are obtained
by the built-in timing mechanism provided by each system.

Table 6 reports on the results obtained with cold runs.
Each query is run 3 times and we report the average time.
To ensure that none of the relevant data pages reside in
memory, between every two query runs we stop the DBMS
server, clear the memory, and then restart the server.

Table 7 reports the results for hot runs. For both Mon-
etDB/SQL and DBX we start the server, run the query once
to load the relevant data, and then perform 3 measured runs
without stopping the server or clearing the memory. We re-
port the average of the latter 3 runs.

The queries marked with an asterisk (*) represent our full-
scale experiment where all 222 properties are included in the
aggregation. The G* column of Tables 6 and 7 indicates the
geometric mean of all 12 queries. To draw the complete
picture we also include the results obtained from C-Store
in Section 3. Since not all queries are implemented in C-
Store, we include also a G column presenting the geometric
mean over the initial 7 queries, i.e., excluding q8 and the
asterisk versions of queries q2, q3, q4, and q6. Finally, the

last column titled
G∗

G
reports the relative increase of the

geometric mean G* compared to the geometric mean G, i.e.,
when moving from the initial set of 7 queries restricted to 28
properties to our extended set of 12 queries also considering
all 222 properties.

A detailed reading of the execution times for cold runs in
DBX leads to some surprising conclusions. An important
observation is that the order of clustering is paramount to

the triple-store implementation. Compared to the original
proposal of clustering on SPO, our choice to cluster on PSO
achieves a significant improvement.

For example, query q1 improves by a factor of 5, queries
q2*, q5 and q6* by a factor of 3, and the remaining queries
depict an improvement of a factor 2. By examining the
query plans created by the optimizer of DBX, we notice
the beneficial impact of the PSO clustering; the remaining
indices have little impact. This result is backed up also
by the fact that for queries q2, q2*, q3, q3*, q6, and q6*
the user time is close to the real time when PSO clustering
is used, while for SPO the real time is almost twice the
user time. In other words, DBX is spending half of the
execution time waiting for the data to be retrieved from
disk. This indicates that clustering on PSO achieves better
I/O performance than clustering on SPO. However, query
q8 serves as the “black swan” for that last statement. It
exhibits the same time with both PSO and SPO, apparently
not benefiting from either clustering.

Vertically-partitioned execution times for cold runs in DBX
draw a fuzzy picture. For queries q1, q4, q5, q6, and q7,
which are restricted to (at most) 28 properties, vertically-
partitioned storage performs better than triple-store: for q1,
q4, and q6 slightly better, for q5 twice as well and for q7,
4 times better. However, the picture changes for the rest
of the queries. For queries q2, q2*, q3, q3*, q4*, q6*, and
q8, triple-store is faster than the vertically-partitioned ap-
proach, ranging from slightly faster to 9 times faster (i.e.,
q4*). The increased number of joins and unions for these
queries stresses the row-store optimizer and execution en-
gine to its limits.

The general conclusion for a row-store engine is that the
vertically-partitioned approach performs only slightly worse
than triple-store, given that the correct clustering and in-
dices are chosen for the latter. For both cold and hot runs,
triple-store clustered on PSO exhibits a lower geometrical
mean G* than vertically-partitioned. We consider this con-
clusion to be the “black swan” for the conclusion drawn in [1]
regarding the performance of the vertically-partitioned ap-
proach when implemented in row-stores. However, the same
cannot be entirely said for column-stores.

By examining the results of the MonetDB/SQL column-
store engine, the vertically-partitioned approach achieves
better times than either clusters of triple-store. This be-
havior can be explained if one compares the user and real
time for cold runs of triple-store clustered on PSO. Mon-
etDB/SQL spends a large portion of the total time on read-
ing the triples table into memory. On the other hand, this
is not the case for the vertically-partitioned approach, since
only the property tables relevant to a query must be read
into memory. This effect is easily noticeable for queries that
are isolated to a few properties, i.e., q1, q2, q3, q4, q5, q6,
and q7. However, the runtime overhead of reading data can
be alleviated using a column-store that supports table com-
pression along similar rows.

That said, the “black swans” are queries q2*, q3*, q6*
and q8. For these queries, triple-store sorted on PSO, or
SPO for q8, exhibits better times. Mainly because, the over-
head of reading all tables of the vertically-partitioned stor-
age scheme and the cost of the increased number of joins and
unions is bigger than the overhead of reading the triples ta-
ble into memory. This observation becomes even more clear
in the hot runs. Since reading data into memory is not an

1559

store cluster time q1 q2 q2* q3 q3* q4 q4* q5 q6 q6* q7 q8 G G*
G*

G

D
B

X triple
SPO

real 12.59 53.65 108.76 50.35 144.81 16.08 13.82 45.06 127.45 170.99 9.62 19.45 31.4 40.8 1.3
user 9.69 28.82 70.50 30.48 94.70 9.06 6.89 12.88 76.74 114.66 1.91 9.68 14.6 21.0 1.4

PSO
real 2.35 34.08 37.93 39.73 72.72 10.64 9.84 14.01 54.66 60.66 8.62 19.61 15.5 20.9 1.3
user 1.77 30.85 36.46 36.49 63.67 3.68 2.85 11.04 50.16 58.79 1.72 9.56 9.5 13.1 1.4

vert. SO
real 1.92 44.29 99.46 49.88 121.08 10.11 84.03 6.32 51.23 173.49 2.70 39.75 12.0 28.2 2.4

user 1.57 40.62 73.56 46.27 95.80 6.34 14.63 5.78 47.01 154.67 1.24 8.37 9.3 17.5 1.9

M
o
n
e
tD

B

triple
SPO

real 3.06 12.16 12.30 14.04 27.32 11.10 11.00 32.86 25.79 26.08 29.03 6.65 14.6 14.5 1.0
user 1.26 2.96 3.16 4.7 16.52 1.48 1.712 2.83 6.67 6.21 2.07 3.76 2.6 3.3 1.3

PSO
real 2.66 6.48 6.62 8.59 16.92 14.85 20.67 4.11 9.60 8.96 3.46 8.43 6.0 7.8 1.3
user 0.72 2.32 2.40 3.83 10.89 2.09 2.30 1.21 3.90 3.95 0.21 4.50 1.4 2.2 1.6

vert. SO
real 1.20 3.50 9.16 5.22 19.34 2.28 6.22 2.00 7.20 16.58 0.61 7.99 2.3 4.4 1.9

user 0.68 1.87 5.85 2.96 14.16 0.57 2.68 1.09 4.94 12.46 0.06 3.35 0.9 2.0 2.2

C
-S

to
re

vert. SO
real 0.79 1.79 – 10.13 – 2.80 – 21.13 12.71 – 1.09 – 3.8 – –
user 0.49 1.18 – 3.44 – 1.30 – 11.64 10.56 – 0.37 – 1.9 – –

Table 6: Experimental results for cold runs.

store cluster time q1 q2 q2* q3 q3* q4 q4* q5 q6 q6* q7 q8 G G*
G*

G

D
B

X triple
SPO

real 4.29 42.61 93.11 34.86 97.92 8.02 6.12 11.70 89.11 142.10 1.34 14.47 13.2 21.1 1.6
user 4.29 33.31 68.88 34.16 95.11 8.02 6.10 11.68 74.96 120.36 1.27 10.58 12.3 19.0 1.5

PSO
real 1.72 40.18 38.35 45.65 67.32 3.22 2.49 10.61 57.52 63.04 1.42 12.14 9.8 13.6 1.4
user 1.72 40.17 38.35 45.64 66.85 3.22 2.47 10.60 57.33 63.03 1.34 8.02 9.7 13.1 1.4

vert. SO
real 1.55 39.62 74.85 45.17 94.59 6.12 14.18 5.69 45.57 154.81 1.25 11.55 9.1 17.7 1.9

user 1.55 39.61 74.83 45.16 94.09 6.12 14.15 5.67 45.56 153.08 1.18 7.49 9.1 17.0 1.9

M
o
n
e
tD

B

triple
SPO

real 1.53 3.50 3.63 5.28 17.54 1.68 1.98 2.77 8.37 7.33 1.82 4.76 2.9 3.7 1.3
user 1.36 2.73 2.91 4.33 15.40 1.41 1.65 2.30 6.20 5.70 1.65 3.75 2.4 3.1 1.3

PSO
real 0.78 2.80 2.83 4.36 12.59 1.70 1.97 1.44 5.67 4.59 0.18 5.23 1.5 2.4 1.6
user 0.69 2.31 2.31 3.69 10.54 1.59 1.86 1.16 3.80 3.65 0.17 3.60 1.3 2.0 1.5

vert. SO
real 0.79 1.50 5.50 2.64 14.01 0.50 2.57 1.29 4.65 11.51 0.06 5.05 0.9 2.0 2.2

user 0.68 1.44 5.20 2.52 13.25 0.48 2.40 1.03 4.40 11.23 0.06 4.20 0.8 1.9 2.4

C
-S

to
re

vert. SO
real 0.59 1.35 – 4.08 – 1.52 – 12.95 12.04 – 0.77 – 2.4 – –
user 0.49 1.17 – 3.45 – 1.28 – 11.67 10.49 – 0.34 – 1.9 – –

Table 7: Experimental results for hot runs.

 3

 4

 5

 6

 7

 8

 9

 10

 28 56 84 112 140 168 196 222

tim
e

(s
ec

)

number of properties

Query q2

triple
vert

 4

 6

 8

 10

 12

 14

 16

 18

 20

 28 56 84 112 140 168 196 222

tim
e

(s
ec

)

number of properties

Query q3

triple
vert

 2

 4

 6

 8

 10

 12

 14

 16

 18

 28 56 84 112 140 168 196 222

tim
e

(s
ec

)

number of properties

Query q4

triple
vert

 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17

 28 56 84 112 140 168 196 222

tim
e

(s
ec

)

number of properties

Query q6

triple
vert

Figure 6: Execution time for queries q2, q3, q4, and q6 when increasing the number of properties

1560

issue anymore, all asterisk (*) versions of the queries are
faster on triple-store than on the vertically-partitioned im-
plementation. However, q4* is yet another “black swan”,
since for cold runs it does not follow the same pattern. The
increased time is caused by large intermediate results pro-
duced by query q4 and q4* for the triple-store implementa-
tion.

The geometric mean of query times for the vertically-
partitioned approach and triple-store implemented on Mon-
etDB/SQL, shows that the former achieves a better perfor-
mance. Our conclusion is aligned with the results presented
in [1], albeit the performance difference is small – within
a factor 2 – when the proper clustering is chosen. How-
ever, the increased query execution time of the vertically-
partitioned approach when all properties are considered is
troublesome and calls for further experimentation. The last

column titled
G∗

G
of the result tables, shows that when all

queries are included in the calculation, the geometric mean
for the vertically-partitioned approach, on both DBX and
MonetDB/SQL, exhibits a larger increase (factor 1.9 to 2.4)
than for triple-store (factor 1.0 to 1.6). This is an indi-
cation that the vertically-partitioned approach may exhibit
scalability problems if the application does not restrict the
number of the properties to be considered for a query, or if
the data-set contains more property values.

Finally, the comparison of the execution time for each
query over DBX, MonetDB/SQL and C-Store, verify that
column-stores are better suited for RDF data management
applications. Both MonetDB/SQL and C-Store achieve at
least an order of magnitude improvement over the equivalent
implementations on the row-store engine DBX. Comparing
the column-stores with each other, C-Store is faster than
MonetDB/SQL for queries q1 and q2. MonetDB/SQL out-
performs C-Store for the rest of the queries, namely q3, q4,
q5, q6, and q7.

4.4 Scale up Experiment
In real-life RDF applications the number of properties

may grow in the order of thousands, and their semantics
may not permit an a priori restriction on the number of
properties to consider. From the experiments conducted so
far we notice that the execution time of queries implemented
on a vertically-partitioned storage increases as the number
of properties is increased from 28 to 222. This behavior
indicates a potential scalability problem.

The scalability problem arises from the increased number
of tables to be read and the number of unions and joins
to be done in the vertically-partitioned approach when the
number of properties is increased. The logical schema of
vertically-partitioned RDF storage is data dependent, mak-
ing it sensitive to data distribution. In our row-store exper-
iments this effect becomes clear when we compare execution
times of cold runs for queries q2, q3, q4 and q6 with their
asterisk (*) counterparts, e.g., q4* is 8 times slower than q4.

Figure 6 presents the different times for queries q2, q3,
q4, and q6 on MonetDB/SQL, for both triple-store clus-
tered on PSO and the vertically-partitioned implementa-
tion, when the number of properties is gradually increased.
For all queries, there is a clear tendency for the vertically-
partitioned query execution times to increase when the num-
ber of properties is increased. On the other hand, although
initially triple-store is slower than the vertically-partitioned
approach, the time line drawn is non-increasing, which re-

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 200 300 400 500 600 700 800 900 1000 1100

tim
e

(s
ec

)

number of properties

q2* vert
q3* vert
q4* vert
q6* vert

q2* triple
q3* triple
q4* triple
q6* triple

Figure 7: Scalability experiment

sults in all cases but q4 to eventually outperform vertically-
partitioned queries. The steep increase observed with triple-
store between the 28 and 56 properties is explained by the
skewed distribution of the properties in the data-set. These
56 properties account for the 99% of the total rows in the
triples table. When all 222 properties are included the exe-
cution time of all queries in triple-store drops because there
is no final join required anymore to filter out properties.

The highly Zipfian skew of property distribution and the
small number of properties observed on the benchmark data-
set5 keeps this effect to a minimum level. Given an RDF
data-set with more properties but with the same overall
number of triples, we anticipate that these scalability issues
will arise to the surface in a more obvious way.

To further investigate this claim, we conduct a scalabil-
ity experiment using the same data-set, thus keeping the
same number of triples, but increasing gradually the num-
ber of properties in the data-set. This is done by splitting
in each round an arbitrary number of properties into n sub-
properties, where n = 1 . . . 9. The triples defined over the
split properties are re-defined on one of the sub-properties
following a uniform distribution.

Figure 7 depicts the times obtained for queries q2*, q3*,
q4*, and q6* for both triple-store and the vertically-partition-
ed implementation on MonetDB/SQL. We start with the
initial data-set (i.e., 222 properties) and re-run the queries
each time a splitting step takes place, until the number of
properties reaches to 1000.

When the number of properties is 222, vertically-partition-
ed query execution times outperform the triple-store times.
However, when the number of properties is increased, triple-
store exhibits better performance results than the vertically-
partitioned approach. This is explained from the fact that
the size of intermediate results for triple-store is reduced.
Although the same reduction of intermediate results takes
place for the vertically-partitioned approach, we observe that
the query execution times are steadily increasing. The over-
head of hundreds of unions and joins becomes more dom-
inant and thus the vertically-partitioned approach scales
poorly.

5see Section 2

1561

5. SUMMARY AND CONCLUSIONS
In this experimentation paper we look at the scope of va-

lidity of the techniques and results presented in [1]. We
study the benchmark from its design perspective as being
representative for RDF storage. Our study illustrates that
a better designed benchmark is called for to cover a signifi-
cantly larger portion of the query space.

The base line redo experiment confirms the performance
trends observed in the original paper. Re-implementation
of both triple-store and vertically-partitioned approach in
MonetDB/SQL and DBX draws a more balanced picture.

Concerning the comparison between the triple-store RDF
storage solution and the vertically-partitioned approach, both
implemented using a state-of-the-art commercial row-store
engine, we conclude that once the proper clustered indices
are used, the triple-store performs better than the vertically-
partitioned approach. On our column-store implementation
we show that the vertically-partitioned approach exhibits
better query execution times, for the benchmark data-set
at hand. However, we point out potential scalability prob-
lems for the vertically-partitioned approach when the num-
ber of properties in an RDF data-set is high. With a larger
number of properties, the triple-store solution manages to
outperform the vertically-partitioned approach also on our
column-store engine. Combined with the fact that the log-
ical schema of the vertically-partitioned approach is data-
dependent, we are skeptical whether the proposed vertically-
partitioned approach is a viable solution for scalable RDF
data management applications. We believe, that these ex-
perimental results greatly expand the amount of reference
data for the performance verdict in [1].

Overall, we may conclude that the processing efficiency
of column-stores is particularly suited for RDF data man-
agement applications, while traditional systems combined
with proper database management skills remain a serious
contender.

Acknowledgments
We thank the authors of [1] for their help in setting up the
C-store software. The members of the CWI Database group
all have contributed one way or another to embark upon
this new track of scientific papers and the effort it requires
to execute it in a short time frame.

6. REFERENCES
[1] D. J. Abadi, A. Marcus, S. R. Madden, and

K. Hollenbach. Scalable Semantic Web Data
Management Using Vertical Partitioning. In
Proceedings of the 33rd International Conference on
Very Large Data Bases, pages 411–422. VLDB
Endowment, September 2007.

[2] Barton Library Catalog Data.
http://simile.mit.edu/rdf-test-data/barton/.

[3] J. Broekstra, A. Kampman, and F. van Harmelen.
Sesame: A Generic Architecture for Storing and
Querying RDF and RDF Schema. In Proceedings of
the First International Semantic Web Conference on
The Semantic Web, pages 54–68, 2002.

[4] E. I. Chong, S. Das, G. Eadon, and J. Srinivasan. An
efficient SQL-based RDF querying scheme. In
Proceedings of the 31st international conference on
Very large data bases, pages 1216–1227, 2005.

[5] S. Harris and N. Gibbins. 3store: Efficient Bulk RDF
Storage. In Proceedings of the 1st International
Workshop on Practical and Scalable Semantic
Systems, pages 1–15, 2003.

[6] MonetDB/SQL. http://monetdb.cwi.nl/SQL.

[7] SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/.

[8] M. Stonebraker, D. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin,
S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran,
and S. Zdonik. C-Store: A Column Oriented DBMS.
In Proceedings of the 31st international conference on
Very large data bases, pages 553–564, 2005.

[9] K. Wilkinson. Jena Property Table Implementation.
In Proceedings of the Second International Workshop
on Scalable Semantic Web Knowledge Base Systems,
pages 54–68, 2006.

[10] K. Wilkinson, C. Sayers, H. Kuno, and D. Reynolds.
Efficient RDF Storage and Retrieval in Jena2. In
Proceedings of the First International Workshop on
Semantic Web and Databases, pages 131–150, 2003.

1562

APPENDIX
Below, we list the SQL code of all benchmark queries as
used with the triple-store implementation. The SQL code
for the vertically-partitioned implementation is produced by
a Perl script. The input of the Perl script is the SQL code of
triple-store and a list of properties to be iterated over in the
FROM clause. We use the newly introduced SQL/2003 con-
structor WITH to define the temporary tables needed for the
vertically-partitioned implementation. The actual queries
use integer predicates, since all strings are encoded on a
dictionary structure.

-- Query 1

SELECT A.obj, count(*)

FROM triples AS A

WHERE A.prop = ’<type>’

GROUP BY A.obj;

-- Query 2

SELECT B.prop, count(*)

FROM triples AS A, triples AS B,

properties P

WHERE A.subj = B.subj

AND A.prop = ‘<type>’

AND A.obj = ‘<Text>’

AND P.prop = B.prop

GROUP BY B.prop;

-- Query 2*

SELECT B.prop, count(*)

FROM triples AS A, triples AS B

WHERE A.subj = B.subj

AND A.prop = ‘<type>’

AND A.obj = ‘<Text>’

GROUP BY B.prop;

-- Query 3

SELECT B.prop, B.obj, count(*)

FROM triples AS A, triples AS B,

properties P

WHERE A.subj = B.subj

AND A.prop = ‘<type>’

AND A.obj = ‘<Text>’

AND P.prop = B.prop

GROUP BY B.prop, B.obj

HAVING count(*) > 1;

-- Query 3*

SELECT B.prop, B.obj, count(*)

FROM triples AS A, triples AS B

WHERE A.subj = B.subj

AND A.prop = ‘<type>’

AND A.obj = ‘<Text>’

GROUP BY B.prop, B.obj

HAVING count(*) > 1;

-- Query 4

SELECT B.prop, B.obj, count(*)

FROM triples AS A, triples AS B, triples AS C,

properties P

WHERE A.subj = B.subj

AND A.prop = ‘<type>’

AND A.obj = ‘<Text>’

AND P.prop = B.prop

AND C.subj = B.subj

AND C.prop = ‘<language>’

AND C.obj = ‘<language/iso639-2b/fre>’

GROUP BY B.prop, B.obj

HAVING count(*) > 1;

-- Query 4*

SELECT B.prop, B.obj, count(*)

FROM triples AS A, triples AS B, triples AS C

WHERE A.subj = B.subj

AND A.prop = ‘<type>’

AND A.obj = ‘<Text>’

AND C.subj = B.subj

AND C.prop = ‘<language>’

AND C.obj = ‘<language/iso639-2b/fre>’

GROUP BY B.prop, B.obj

HAVING count(*) > 1;

-- Query 5

SELECT B.subj, C.obj

FROM triples AS A, triples AS B, triples AS C

WHERE A.subj = B.subj

AND A.prop = ‘<origin>’

AND A.obj = ‘<info:marcorg/DLC>’

AND B.prop = ‘<records>’

AND B.obj = C.subj

AND C.prop = ’<type>’

AND C.obj != ’<Text>’;

-- Query 6

SELECT A.prop, count(*)

FROM triples AS A,

properties P,

(

(SELECT B.subj

FROM triples AS B

WHERE B.prop = ‘<type>’

AND B.obj = ‘<Text>’)

UNION

(SELECT C.subj

FROM triples AS C, triples AS D

WHERE C.prop = ‘<records>’

AND C.obj = D.subj

AND D.prop = ‘<type>’

AND D.obj = ‘<Text>’)

) AS uniontable

WHERE A.subj = uniontable.subj

AND P.prop = A.prop

GROUP BY A.prop;

-- Query 6*

SELECT A.prop, count(*)

FROM triples AS A,

(

(SELECT B.subj

FROM triples AS B

WHERE B.prop = ‘<type>’

AND B.obj = ‘<Text>’)

UNION

(SELECT C.subj

FROM triples AS C, triples AS D

WHERE C.prop = ‘<records>’

AND C.obj = D.subj

AND D.prop = ‘<type>’

AND D.obj = ‘<Text>’)

) AS uniontable

WHERE A.subj = uniontable.subj

GROUP BY A.prop;

-- Query 7

SELECT A.subj, B.obj, C.obj

FROM triples AS A, triples AS B, triples AS C

WHERE A.prop = ‘<Point>’

AND A.obj = ‘"end"’

AND A.subj = B.subj

AND B.prop = ‘<Encoding>’

AND A.subj = C.subj

AND C.prop = ’<type>’;

-- Query 8

SELECT B.subj

FROM triples AS A, triples AS B

WHERE A.subj = ‘conferences’

AND B.subj != ‘conferences’

AND A.obj = B.obj;

1563

