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ABSTRACT

Influence maximization (IM) is a fundamental task in social net-
work analysis. Typically, IM aims at selecting a set of seeds for
the network that influences the maximum number of individuals.
Motivated by practical applications, in this paper we focus on an IM
variant, where the owner of multiple competing products wishes to
select seeds for each product so that the collective influence across
all products is maximized. To capture the competing diffusion pro-
cesses, we introduce an Awareness-to-Influence (AtI) model. In the
first phase, awareness about each product propagates in the so-
cial graph unhindered by other competing products. In the second
phase, a user adopts the most preferred product among those en-
countered in the awareness phase. To compute the seed sets, we
propose GCW, a game-theoretic framework that views the various
products as agents, which compete for influence in the social graph
and selfishly select their individual strategy. We show that AtI
exhibits monotonicity and submodularity; importantly, GCW is a
monotone utility game. This allows us to develop an efficient best-
response algorithm, with quality guarantees on the collective utility.
Our experimental results suggest that our methods are effective,
efficient, and scale well to large social networks.
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1 INTRODUCTION

Given a graph and an integer 𝑘 , the objective of Influence Maxi-
mization (IM) is to discover a set of 𝑘 seed nodes that influence the
largest number of nodes in the graph. Finding the seed set with
the maximum influence is NP-Hard according to most common
models of influence spread. However, polynomial algorithms can
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obtain approximate solutions of high quality for models that exhibit
monotonicity and submodularity [26]. Traditionally, IM is concerned
with the diffusion of a single product in the social graph (the term
“product” is generic and may also refer to ideas, innovations, tech-
nologies, etc.). On the other hand, in several emerging applications
the owner of multiple competing products may be interested in their
joint diffusion in the underlying social network. For example, an
e-shop promoting various laptop models may wish to find seed sets
of influencers for each model so that the total influence is maxi-
mized. As an alternative example, an agency may be in charge of
advertising several social events on a given date, with the goal of
maximizing the total attendance. The term “competing” essentially
refers to the fact that products compete to get adopted by users.
We consider that the owner has a budget for each product, which
refers to the maximum number of seeds for that product. Users
may have different weights for different products, which signify
their importance. For instance, users whose profile or demographic
characteristics match the advertised product have high weights.

Inspired by the above, we introduce the problem of collective
weighted influence maximization CWim, where the owner of multi-
ple competing products wishes to maximize their total weighted
influence in a social graph. To capture the diffusion of the com-
peting products we adopt an awareness-to-influence (AtI) model,
which separates awareness and influence. AtI assumes that the
influence of each product diffuses independently in the underlying
social graph during the awareness phase. A node may thus become
aware of several products, but in the end it adopts only one of them
in the subsequent influence phase. For instance, although a user
may find out about several events, he will choose the one most
similar to his preferences (e.g., closest to his location).

We show that AtI possesses monotonicity and submodularity.
Furthermore, we cast it as a game where products compete for influ-
ence in the social graph and show that it falls under the important
class of monotone utility games. This enables a single-round best-
response algorithm with an approximation bound on the collective
utility. In summary, AtI is expressive and realistic enough to cap-
ture interesting dynamics for the diffusion of multiple competing
products, while allowing for the efficient computation of solutions
with good guarantees on the collective utility. Our contributions
are summarized as follows:

• We formulate the collective influence maximization (CWim)
problem for an owner with multiple competing products.
• We introduce an awareness-to-influence model (AtI) that
captures the behavior of social network users, who process
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and transmit the information they receive, before making
a decision. We prove that AtI preserves submodularity and
monotonicity.
• We compute the seed sets for the various products with a
game-theoretic framework, termed GCW, where we treat
the products as agents that compete for influence in the
underlying social graph. We show that GCW falls under
the class of monotone utility games, which leads to an effi-
cient best-response algorithm with good quality guarantees.
Furthermore, we are able to derive price of anarchy bounds.
• We evaluate our approach for different settings and real data
sets, and demonstrate its high efficiency, solution quality,
and scalability.

The remainder of the paper is organized as follows. Section 2 sur-
veys influence diffusion models, and related work on competitive
influence maximization. Section 3 formally defines the CWim prob-
lem, and presents the AtI diffusion model. Section 4 introduces
a utility game with special properties that enable the fast game-
theoretic algorithm of Section 5. Section 6 experimentally evaluates
the proposed scheme, whereas Section 7 concludes our work.

2 BACKGROUND AND RELATEDWORK

Section 2.1 overviews background on IM, and Section 2.2 related
work on competitive IM.

2.1 Influence Maximization Background

Let 𝐺 = (𝑉 , 𝐸, 𝑃) be a directed social graph1 , where 𝑉 is the set of
nodes, 𝐸 is the set of edges, and 𝑃 is the set of edge probabilities.
Given a set 𝑆 of seed nodes for a single product, there are several
models that capture the spread of influence of 𝑆 in 𝐺 . Among the
most popular ones is the independent cascade (IC) model [26]. In
IC, all nodes except for the seeds are initially considered inactive.
At time 𝑡 = 1, each node 𝑣 in 𝑆 influences every neighbor 𝑢 with a
probability 𝑝 (𝑣,𝑢), i.e., the probability of edge (𝑣,𝑢) ∈ 𝐸. Influenced
nodes remain active throughout the spread process. Every node
activated at time 𝑡 has a single chance, at step 𝑡 + 1, to influence
its inactive neighbors. The influence set 𝐼𝐼𝐶 (𝑆) of 𝑆 under the IC
model contains all active nodes at the end of the diffusion process.

Another popular diffusion model is linear threshold (LT) [26]. In
LT, each node 𝑣𝑖 has a threshold 𝜃𝑖 , chosen uniformly at random2 in
the range [0,1]. In addition, the influence probabilities of the incom-
ing edges of 𝑣𝑖 are subject to the constraint that

∑︁
(𝑣,𝑣𝑖 ) ∈𝐸

𝑝 (𝑣, 𝑣𝑖 ) ≤ 1.

According to the LT model, a node 𝑣𝑖 is activated when the total
probability of incoming edges from active neighbors reaches its
threshold 𝜃𝑖 , i.e., ∑︂

(𝑣,𝑣𝑖 ) ∈𝐸∧𝑣:𝑎𝑐𝑡𝑖𝑣𝑒
𝑝 (𝑣, 𝑣𝑖 ) ≥ 𝜃𝑖 .

The live edge model (LE) [26] provides an equivalent view of the
influence spread for IC and LT, which is order independent and
facilitates proofs. Let 𝑋 be a possible world, i.e., a sample outcome
of the spread process. For IC, 𝑋 is generated by selecting each edge
(𝑣,𝑢) ∈ 𝐸 in advance with probability 𝑝 (𝑣,𝑢). Selected edges are
1We use the terms graph/network and node/user interchangeably.
2The random thresholds capture the lack of knowledge about their values. In some
approaches [3, 33] all thresholds are set to some fixed value, e.g., 0.5.

considered live. For LT, assuming that thresholds are uniformly
distributed in [0, 1], each node 𝑣𝑖 picks at most one of its incoming
edges (𝑣, 𝑣𝑖 ) with probability 𝑝 (𝑣, 𝑣𝑖 ), and no edge with probability
1 − ∑︁
(𝑣,𝑣𝑖 ) ∈𝐸

𝑝 (𝑣, 𝑣𝑖 ).

In LE, node 𝑣 is active in possible world𝑋 , if there is a path from a
node in the seed set 𝑆 to 𝑣 , consisting only of live edges. Accordingly,
the influence set 𝐼𝑋M (𝑆) of 𝑆 in 𝑋 under diffusion modelM (M
can be IC, LT or some other model that can be represented by LE)
contains nodes reachable from 𝑆 through live edges. Let 𝜎𝑋M (𝑆) =
|𝐼𝑋M (𝑆) | be the cardinality of 𝐼

𝑋
M (𝑆). By repeating the same process

in all possibleworlds, we obtain the influence (or expected spread) of
𝑆 underM: 𝜎M (𝑆) =

∑︁
∀world 𝑋

𝑃𝑟 (𝑋 ) ·𝜎𝑋M (𝑆) = E[|𝐼
𝑋
M (𝑆) |], where

the expectation operator E[·] is taken over all possible worlds 𝑋 .
Formally the influence maximization (IM) problem is defined as:
Given a graph 𝐺 , a diffusion modelM, and an integer 𝑘 , find the

seed set 𝑆 of cardinality 𝑘 that maximizes the influence function

𝜎M (𝑆) = E[|𝐼𝑋M (𝑆) |] underM
3.

The IM problem is NP-Hard for IC and LT. Kempe et al [26]
proposed an approximate greedy method, hereafter referred to as
Gim. Gim starts with an empty seed set 𝑆 , and at each step, it adds
the node 𝑣 that maximizes the marginal gain 𝜎 (𝑆 ∪ {𝑣}) −𝜎 (𝑆); i.e.,
the addition of 𝑣 to 𝑆 yields the largest increase in the influence
function. In weighted IM, each node has a weight proportional to its
importance. In this case, the objective is to maximize the expected
sum of weights of influenced users. Gim is still applicable; the only
difference is that the marginal gain refers to the weight increase
due to the addition of node 𝑣 .

For IC and LT, and in general models where the objective function
𝜎 (·) exhibits monotonicity and submodularity, Gim yields a seed
set whose influence set is within a factor (1 − 1/𝑒) of the optimal
influence (for both the weighted and un-weighted versions), where
𝑒 is the base of the natural logarithm. Let 𝑆1 and 𝑆2 be any two
sets of nodes such that 𝑆1 ⊆ 𝑆2 ⊆ 𝑉 . Monotonicity implies that
𝜎 (𝑆1) ≤ 𝜎 (𝑆2), i.e., adding more elements to the seed set cannot
decrease the influence function 𝜎 (·). Submodularity implies that
𝜎 (𝑆1 ∪ {𝑣}) − 𝜎 (𝑆1) ≥ 𝜎 (𝑆2 ∪ {𝑣}) − 𝜎 (𝑆2), where 𝑣 ∈ 𝑉 − 𝑆2, i.e.,
the marginal gain of a new node decreases as the seed set grows.
Submodularity captures the property of diminishing returns.

Exactly evaluating 𝜎 (𝑆) is #𝑃-complete [39]. In order to find
the node with the largest marginal gain, Gim applies Monte Carlo
sampling to repeatedly simulate the random choices during the dif-
fusion process. Due to Monte Carlo sampling, the quality guarantee
of Gim becomes (1 − 1/𝑒 − 𝜀), where the value of 𝜀 > 0 depends on
the number of samples. The high computational cost of this step
led to several algorithms that can be classified broadly into two
types: (i) those that retain the approximation guarantee of Gim, but
improve the running time in practice [19, 27], and (ii) those that
ensure faster performance, but provide weaker (or no) approxima-
tion guarantees [12, 20, 39]. The Reverse Influence Sampling (RIS)
method [5] attains the benefits of both categories by returning a
(1−1/𝑒−𝜀)-approximate solution with at least 1− |𝑉 |−𝑙 probability,
in𝑂 (𝑘𝑙2 ( |𝑉 | + |𝐸 |)𝑙𝑜𝑔2 |𝑉 |/𝜀3) time, where 𝑙 is a tunable parameter
that adjusts the trade-off between quality and running time.

3For simplicity, in the rest of the paper we omit the diffusion model subscript and
write 𝜎 (𝑆) .
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RIS is based on the concept of Reverse Reachable (RR) sets. An
RR set for a node 𝑣 represents the nodes that can influence 𝑣 in some
possible world𝑋 . In order to create an RR set for 𝑣 , RIS first samples
a possible world 𝑋 using the live edge model. It then computes the
nodes in 𝑋 that can reach 𝑣 by a depth-first-search from 𝑣 , after
reversing the direction of the edges (since RIS searches for nodes
that can influence 𝑣 , as opposed to those influenced by 𝑣). The
nodes encountered constitute the RR set of 𝑣 in 𝑋 . The process
is repeated multiple times with randomly sampled nodes, until a
sufficient number of RRs has been constructed. The intuition is
that if a seed set 𝑆 is highly influential, members of 𝑆 appear in
the RR sets of numerous nodes. Motivated by this, RIS computes
the set of 𝑘 nodes that cover the maximum number of RR sets.
The corresponding maximum coverage problem is solved using the
standard approximate greedy method that iteratively adds nodes
with the highest marginal gain on the number of covered RRs. As
shown in [5], the fraction 𝐹𝑅 (𝑆) of 𝑅𝑅 sets covered by a seed set 𝑆 is
an unbiased estimator of the influence; hence, RIS returns the seed
set 𝑆∗ as the solution of size 𝑘 with the highest coverage 𝐹𝑅 (𝑆∗) on
the sampled RR sets.

Li et al. [29] apply RIS for weighted IM. Instead of creating RR
sets of nodes chosen uniformly at random, they select each node
𝑣𝑖 with probability 𝑤𝑖

𝑊
, where 𝑤𝑖 is the weight of 𝑣𝑖 and𝑊 is the

sum of all weights. Intuitively, “heavy” nodes are sampled with
high probability because they have large contribution to the total
influence. After creating a sufficient number of RR sets, they solve
the maximum coverage problem and return the seed set 𝑆∗ with
the highest coverage. They prove that 𝐹𝑅 (𝑆) ·𝑊 is an unbiased

estimator of E
[︃ ∑︁
𝑣𝑖 ∈𝐼𝑋 (𝑆)

𝑤𝑖

]︃
. Thus, 𝑆∗ also maximizes the weighted

influence. Tang et al. [37, 38] utilize RIS with novel heuristics and
statistics to reduce the samples required in order to maintain the
(1 − 1/𝑒 − 𝜀) approximation. The D-SSA algorithm [34] combines
RIS with the sampling method of [13], and uses a stop-and-stare
strategy that terminates sampling when some quality guarantees
are achieved. Huang et al. [24] improve on the work of [34], and per-
form an experimental analysis of IM algorithms. Another thorough
experimental evaluation of IM methods can be found in [2].

2.2 Related Work on Competitive IM

Competitive IM typically assumes multiple competing agents that
wish to maximize their local utility, and the objective is to reach
a Nash equilibrium, i.e., a stable state where no agent has an in-
centive to deviate given the strategies of the rest. On the other
hand, CWim aims at maximizing the total influence of competing
products. Monotone 𝑘-submodular function maximization [25, 35]
also targets the total influence over multiple topics/products, which,
however, do not compete for influence. Most models assume diffu-
sion processes, where a node gets influenced by the first neighbor
that activates it [1, 4, 7–9, 16, 23, 39]. This is usually progressive:
once a node adopts the product, the decision is irreversible. Non-
progressive processes have also been proposed [36].

Prior work on viral marketing [30] investigates the competitive
setting from the perspective of a host, e.g., a social network host-
ing different companies. Each company specifies its budget, and
the host aims at selecting seed sets that maximize the collective

expected spread, while ensuring fairness. The model, termed 𝐾-LT,
is inspired by the Weighted-Proportional competitive model [6].
𝐾-LT assumes that an activated node chooses a product according
to a proportional scheme, which depends on the products adopted
by its neighbors in the previous time step. On the other hand, in
the proposed AtI model a user is influenced by the product with
the maximum similarity encountered during the awareness phase,
without considering fairness. Due to the special properties of AtI,
we are able to develop a game-theoretic algorithm with quality
guarantees, whereas 𝐾-LT relies on heuristics. Furthermore, 𝐾-LT
is limited to the linear threshold, whereas AtI can also employ
independent cascade.

A 2-phase competitive model proposed by Goyal and Kearns [21]
decomposes the influence dynamics into two parts. A switching
phase, which dictates when a user can change from non-adoption
to adoption, and a selection phase that specifies which product
influences the user, conditional on switching. By considering a
time-expanded graph, He and Kempe [22] prove that the Goyal-
Kearns model is an instance of a general threshold model. They also
show that the social welfare function is submodular; thus, the game
is a utility game, which allows them to establish a price of anarchy
of 2. The goal of the switching-selection model is to capture how
user adoption depends on network effects, whereas AtI does not
consider network effects for product adoption: a node can become
aware of various products through its peers but whether it finally
adopts the product does not depend on the decisions of its peers.

Most similar to AtI is the OR model [6] for competitive IM.
OR is an extension of the conventional threshold model, in which
awareness about each product diffuses independently. The actual
influence/adoption occurs after the end of the diffusion process.
Compared to OR, AtI is not limited to the threshold model. More-
over, while OR assumes general decision functions for the influence
phase, in AtI a user is influenced by the product with the maxi-
mum similarity. This leads to a monotone utility game, a unique
property of AtI that allows the development of a fast best-response
algorithm with good quality guarantees.

3 PROBLEM AND MODEL DEFINITION

We consider an owner that wishes to advertise a set of competing
products 𝐶 to the users of a directed social graph 𝐺 = (𝑉 , 𝐸, 𝑃),
under a competitive diffusion modelM. Each product 𝑐 𝑗 ∈ 𝐶 has
a budget 𝑘 𝑗 ∈ N+ (1 ≤ 𝑘 𝑗 ≤ |𝑉 |), which represents the number
of users in its seed set 𝑆 𝑗 . Every user 𝑣𝑖 ∈ 𝑉 has a weight 𝑤𝑖, 𝑗

(0 ≤ 𝑤𝑖, 𝑗 ≤ 1), for each 𝑐 𝑗 ∈ 𝐶 , that corresponds to the similar-

ity between 𝑣𝑖 and 𝑐 𝑗 . For instance, if a user’s 𝑣𝑖 profile or demo-
graphic characteristics match the advertised product 𝑐 𝑗 ,𝑤𝑖, 𝑗 has a
high value. The owner’s target is to maximize the expected total
similarity of the influenced users across all its products.

Collective Weighted Influence Maximization (CWim)

problem: given a graph 𝐺 , a competitive diffusion modelM, a
set of products 𝐶 , a weight 𝑤𝑖, 𝑗 between each user 𝑣𝑖 and prod-
uct 𝑐 𝑗 , and |𝐶 | integers 𝑘1, . . . , 𝑘 |𝐶 | , find the set of seed sets S =

{𝑆1, . . . , 𝑆 𝑗 , . . . , 𝑆 |𝐶 |}, with |𝑆 𝑗 | = 𝑘 𝑗 , 1 ≤ 𝑗 ≤ |𝐶 |, that maximize
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Table 1: Abbreviations and Symbols

Symbol Meaning

IC, LT, LE Independent Cascade, Linear Threshold, Live Edge
RR set Reverse Reachable set
NE Pure Nash Equilibrium
𝐶 Set of competing products {𝑐1, . . . , 𝑐 𝑗 , . . . , 𝑐 |𝐶 | }
𝑆 𝑗 Seed set of 𝑐 𝑗

𝑘 𝑗 = |𝑆 𝑗 | Budget of 𝑐 𝑗
𝑤𝑖,𝑗 Similarity between user 𝑣𝑖 and product 𝑐 𝑗
S Set of seed sets {𝑆1, . . . , 𝑆 𝑗 , . . . , 𝑆 |𝐶 | }

𝐼𝑋
𝑗
(S) Set of users influenced by 𝑐 𝑗 in possible world 𝑋

𝐴𝑋
𝑗
(𝑆 𝑗 ) Set of users aware of 𝑐 𝑗 in possible world 𝑋

𝜎 (S) Total similarity (weight) of users in all influence sets
𝜎 𝑗 (S) Individual utility of 𝑐 𝑗
𝛽 𝑗 (S) Benefit to 𝜎 (S) due to participation of 𝑐 𝑗
𝛿 𝑗 (S) Divergence of 𝑐 𝑗 (𝜎 𝑗 (S) − 𝛽 𝑗 (S))

𝐴𝑃 (𝑣, 𝑣𝑖 , 𝑐 𝑗 ) Awareness probability that user 𝑣 informs 𝑣𝑖 about 𝑐 𝑗

the following objective function underM:

𝜎 (S) = E
[︄ |𝐶 |∑︂
𝑗=1

∑︂
𝑣𝑖 ∈𝐼𝑋𝑗 (S)

𝑤𝑖, 𝑗

]︄
(1)

where 𝐼𝑋
𝑗
(S) is the set of users influenced by 𝑐 𝑗 in possible world

𝑋 .
We refer to the objective function 𝜎 (S) as the total similarity,

i.e., the expected total weight of users in all influence sets. For the
simple case of a single product and assuming that all weights are
equal to 1, CWim reduces to the traditional IM problem, which
is NP-hard [26]. Therefore, CWim is NP-hard as well. In addition,
since calculating the influence spread of a seed set 𝑆 is #P-hard [10],
computing 𝜎 (S) is also #P-hard.

We cannot use directly IC or LT, which refer to a single prod-
uct, as the underlying competitive diffusion modelM. Moreover,
straightforward extensions of IC and LT to the competitive setting
may not preserve monotonicity or submodularity. Consider, for
instance, a social graph with two users 𝑣1, 𝑣2 connected by edge
(𝑣1, 𝑣2) of probability 1. Assume two products 𝑐1, 𝑐2, and weights
𝑤1,1 = 1,𝑤1,2 = 0.1,𝑤2,1 = 1,𝑤2,2 = 0.1; e.g., both users are much
more similar to 𝑐1 than 𝑐2. For this simple graph, assume a compet-
itive diffusion processM∗ defined as follows for node 𝑣1 (similarly
for 𝑣2): (i) if 𝑣1 is selected as a seed by product 𝑐 𝑗 , then 𝑣1 adopts
𝑐 𝑗 (for simplicity, assume that a node cannot act as a seed for both
products); (ii) if 𝑣1 is not selected as a seed by any product but 𝑣2 is a
seed for 𝑐 𝑗 , then 𝑣1 adopts 𝑐 𝑗 ; (iii) else, if neither 𝑣1 nor 𝑣2 are seeds
for any product, then they do not adopt any product. UnderM∗,
if we only include 𝑣1 in the seed set of 𝑐1 (𝑆1 = {𝑣1}, 𝑆2 = ∅),
then 𝑣1 will influence 𝑣2, yielding 𝐼 (𝑆1) = {𝑣1, 𝑣2}, 𝐼 (𝑆2) = ∅
and 𝜎 ({𝑆1, 𝑆2}) = 𝑤1,1 + 𝑤2,1 = 2. On the other hand, if we set
𝑆 ′1 = {𝑣1}, 𝑆 ′2 = {𝑣2}, then based on the aforementioned diffusion
processM∗ we have 𝜎 ({𝑆 ′1, 𝑆

′
2}) = 𝑤1,1 + 𝑤2,2 = 1.1. Although

𝑆1 ⊆ 𝑆 ′1 and 𝑆2 ⊆ 𝑆
′
2, we have that 𝜎 ({𝑆1, 𝑆2}) > 𝜎 ({𝑆

′
1, 𝑆
′
2}), which

violates monotonicity. In an analogous way, we can construct ex-
amples of submodularity violations underM∗. Next, we introduce
a diffusion model for CWim that preserves both properties. Table 1
contains the most frequent abbreviations and symbols.

3.1 Awareness-to-Influence Model

In many real-world applications users do not blindly follow the first
influence; instead, they collect information, reproduce it and finally
decide. Consequently, the proposed Awareness-to-Influence (AtI)
is a 2-phase model consisting of an awareness and a subsequent
influence phase. Specifically, initially for each product 𝑐 𝑗 ∈ 𝐶 a set
𝑆 𝑗 ( |𝑆 𝑗 | = 𝑘 𝑗 ) of users are selected as its seeds and are informed
about 𝑐 𝑗 . A user can act as seed of multiple products simultaneously;
i.e., it is possible that 𝑆 𝑗 ∩ 𝑆 𝑗 ′ ≠ ∅ for pairs of products 𝑐 𝑗 ≠ 𝑐 𝑗 ′ .
Awareness phase: In the terminology of AtI, when a node 𝑣 is in-
formed about a product 𝑐 𝑗 , it becomes 𝑐 𝑗 -aware (instead of active as
in IC and LT). Then, it propagates information about 𝑐 𝑗 to each of its
neighbors 𝑣𝑖 with awareness probability 𝐴𝑃 (𝑣, 𝑣𝑖 , 𝑐 𝑗 ) = 𝑝 (𝑣, 𝑣𝑖 ) ·𝑤𝑖, 𝑗 ,
so that a user 𝑣 is more likely to notify about 𝑐 𝑗 friends connected
through high-probability edges, and who are similar to 𝑐 𝑗 . AtI
adopts the diffusion processes of IC and LT to model awareness.
Specifically, in Awareness-to-Influence Independent Cascade (AtIic),
when a node becomes 𝑐 𝑗 -aware at time 𝑡 , it informs every neighbor
𝑣𝑖 about 𝑐 𝑗 , with awareness probability𝐴𝑃 (𝑣, 𝑣𝑖 , 𝑐 𝑗 ), at time 𝑡 +1. In
Awareness-to-Influence Linear Threshold (AtIlt), each node 𝑣𝑖 has a
threshold 𝜃𝑖, 𝑗 for every product 𝑐 𝑗 , chosen uniformly at random in
the range [0,1]. Similar to [29], which applies LT to single-product
weighted IM, we normalize the probabilities of the incoming edges
of every user so that their sum equals 1. Node 𝑣𝑖 becomes 𝑐 𝑗 -aware,
when the awareness probabilities of its incoming edges about 𝑐 𝑗
exceed 𝜃𝑖, 𝑗 : ∑︂

(𝑣,𝑣𝑖 ) ∈𝐸∧ 𝑣:𝑎𝑤𝑎𝑟𝑒 𝑜 𝑓 𝑐 𝑗

𝑝 (𝑣, 𝑣𝑖 ) ·𝑤𝑖, 𝑗 ≥ 𝜃𝑖, 𝑗 .

AtIle extends the live edge model to provide equivalent order-
independent views ofAtIic andAtIlt. We first create an augmented
graph 𝐺 ′ from 𝐺 by replacing every edge (𝑣, 𝑣𝑖 ) with |𝐶 | edges
from 𝑣 to 𝑣𝑖 . Each edge (𝑣, 𝑣𝑖 , 𝑐 𝑗 ) in 𝐺 ′ denotes that 𝑣 may inform
𝑣𝑖 about 𝑐 𝑗 ∈ 𝐶 . For AtIic, we generate a possible world 𝑋 by
tossing a biased coin, for every such edge, and keeping it with
probability 𝐴𝑃 (𝑣, 𝑣𝑖 , 𝑐 𝑗 ). For AtIlt, we keep at most one of the
incoming 𝑐 𝑗 -edges to 𝑣𝑖 with probability 𝐴𝑃 (𝑣, 𝑣𝑖 , 𝑐 𝑗 ) and no edge
with probability 1 − ∑︁

(𝑣,𝑣𝑖 ) ∈𝐸
𝐴𝑃 (𝑣, 𝑣𝑖 , 𝑐 𝑗 ). In any case, a kept edge

(𝑣, 𝑣𝑖 , 𝑐 𝑗 ) is marked as 𝑐 𝑗 -live. A 𝑐 𝑗 -path from a user 𝑣 to another 𝑣𝑖
contains only 𝑐 𝑗 -live edges, and it means that 𝑣𝑖 becomes 𝑐 𝑗 -aware
from 𝑣 in 𝑋 . The nodes that become 𝑐 𝑗 -aware are those reachable
through a 𝑐 𝑗 -path from some node in 𝑆 𝑗 .

Figure 1 illustrates an example of AtIic, considering two prod-
ucts 𝑐1 and 𝑐2. The weights of users 𝑣2, 𝑣3, 𝑣4 for the two products
are shown in the top table, e.g., 𝑣2 has similarity 0.5 with 𝑐1 and 0
with 𝑐2. Weights for node 𝑣1 are excluded because it has no incom-
ing edges, and therefore it cannot be made aware of any product.
Figure 1a shows the original graph 𝐺 . The numbers next to the
edges of𝐺 indicate their probabilities, e.g., 𝑝 (𝑣1, 𝑣2) = 0.5. The aug-
mented graph𝐺 ′ in Figure 1b contains two edges for every edge of
𝐺 (dotted lines correspond to 𝑐1). Next to each edge is its awareness
probability: e.g., 𝐴𝑃 (𝑣1, 𝑣2, 𝑐1) = 0.25 and 𝐴𝑃 (𝑣1, 𝑣2, 𝑐2) = 0. After
tossing the coins, assume that the five edges of Figure 1c are marked
as live, yielding three 𝑐1-paths: 𝑣1 → 𝑣2, 𝑣1 → 𝑣2 → 𝑣4, 𝑣2 → 𝑣4,
and four 𝑐2-paths: 𝑣2 → 𝑣4, 𝑣2 → 𝑣3, 𝑣2 → 𝑣3 → 𝑣4, 𝑣3 → 𝑣4. This
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(a) Initial𝐺 (b) Augmented𝐺′ (c) Live edges

Figure 1: Augmented Live Edge model - AtIic

means that in this possible world, 𝑣1 can make 𝑣2 and 𝑣4 aware of
𝑐1, and no node aware of 𝑐2.

In bothAtIic andAtIlt the awareness propagation of 𝑐 𝑗 does not
affect any other product 𝑐 𝑗 ′ ≠ 𝑐 𝑗 . Accordingly, inAtIle there are |𝐶 |
independent diffusion processes, one for each product. Based on this
observation, the equivalence between AtIle and AtIic (AtIlt) can
be established using the equivalence of LE and IC (LT) ([26],[29]).
Influence phase: After the termination of the awareness phase,
each node, having all the information available, makes its final
decision. Obviously, users unaware of any product are not influ-
enced. If a node is aware of multiple products, it is influenced by
the one with the largest similarity, which corresponds to amax rule.
If there are two or more products with the maximum similarity, it
is influenced by the one that it first became aware of. In any case,
the influence sets are disjoint, i.e., for any pair of products 𝑐 𝑗 , 𝑐 𝑗 ′ , it
holds that 𝐼𝑋

𝑗
(S) ∩ 𝐼𝑋

𝑗 ′ (S) = ∅. Observe that 𝑆 𝑗 is not necessarily a
subset of 𝐼𝑋

𝑗
(S), i.e., a user acting as a seed for some product may

be influenced by another.
In an alternative influence scheme, a product could influence

with a probability proportional to its similarity to the user. However,
this proportional rule violates the monotonicity property. Assume
for example a simple graph with a single user 𝑣 and two products
𝑐1 and 𝑐2 with similarities to 𝑣 equal to 0.9 and 0.1, respectively. If
𝑆1 = {𝑣} and 𝑆2 = ∅, then 𝑣 is influenced by 𝑐1 for a total similarity
of 0.9. But if 𝑆1 = {𝑣} and 𝑆2 = {𝑣}, then 𝑣 is influenced by 𝑐1
with probability 90% and by 𝑐2 with probability 10% for a total
similarity of 90% · 0.9 + 10% · 0.1 < 0.9, which obviously violates
monotonicity. In fact, this example demonstrates that in order to
guarantee monotonicity, any product with similarity less than the
maximum (among the products that a user is aware of) must be
selected with zero probability.

In AtIle, among all the 𝑐 𝑗 -paths from 𝑣 to 𝑣𝑖 the one with the
maximum similarity 𝑤𝑖, 𝑗 is called a max live path (there can be
multiple max live paths). Such a path means that 𝑣𝑖 is influenced
by 𝑐 𝑗 in possible world 𝑋 . Continuing the example of Figure 1 for
AtIic, among the seven paths, only the 𝑐2-path 𝑣2 → 𝑣4 is not max
live (Figure 1c). Assuming that 𝑆1 = {𝑣1} and 𝑆2 = {𝑣2}, 𝑣4 becomes
aware of both 𝑐1 and 𝑐2, but it is influenced by 𝑐1, with which it has
higher similarity (𝑤4,1 = 0.5 > 𝑤4,2 = 0.4).

Let 𝐼𝑋
𝑗
(S) be the set of users influenced by some seed of 𝑆 𝑗 in

possible world𝑋 . We define as 𝜎𝑋
𝑗
(S) the sum of weights of users in

𝐼𝑋
𝑗
(S): 𝜎𝑋

𝑗
(S) = ∑︁

𝑣𝑖 ∈𝐼𝑋𝑗 (S)
𝑤𝑖, 𝑗 . The total similarity in 𝑋 is 𝜎𝑋 (S) =∑︁

𝑐 𝑗 ∈𝐶
𝜎𝑋
𝑗
(S). By summing over all possible worlds, we obtain:𝜎 (S) =∑︁

∀world 𝑋
𝑃𝑟 (𝑋 ) · 𝜎𝑋 (S) = ∑︁

∀world 𝑋
𝑃𝑟 (𝑋 ) · ∑︁

𝑐 𝑗 ∈𝐶

∑︁
𝑣𝑖 ∈𝐼𝑋𝑗 (S)

𝑤𝑖, 𝑗 . Our

aim is to maximize this expected value (see also Equation (1)).

3.2 Properties

In both AtIic and AtIlt, a user 𝑣𝑖 is influenced by a product 𝑐 𝑗
in a possible world 𝑋 , if and only if there is a max live 𝑐 𝑗 -path in
𝑋 from a user in the seed set 𝑆 𝑗 to 𝑣𝑖 . Observe that adding a new
node 𝑣 in 𝑆 𝑗 can only influence 𝑣𝑖 towards 𝑐 𝑗 , but not towards other
products. For instance, if before the addition 𝑣𝑖 was influenced by
𝑐 𝑗 ′ (𝑐 𝑗 ′ ≠ 𝑐 𝑗 ), 𝑣𝑖 may remain at 𝑐 𝑗 ′ or may switch to 𝑐 𝑗 , but it
cannot switch to another product 𝑐𝑘 (𝑐𝑘 ≠ 𝑐 𝑗 ′, 𝑐𝑘 ≠ 𝑐 𝑗 ) because the
inclusion of 𝑣 in 𝑆 𝑗 only generates new 𝑐 𝑗 -paths that do not alter
the influence spread of other products. Lemma 1 proves that 𝜎 (·) is
monotone, while Lemma 2 shows submobularity.

Lemma 1. (Monotonicity) Let S = {𝑆1, . . . , 𝑆 𝑗 , . . . , 𝑆 |𝐶 |} and S′ =
{𝑆1, . . . , 𝑆 𝑗 ∪ {𝑣}, . . . , 𝑆 |𝐶 |} be two seed sets. Then, 𝜎 (S′) ≥ 𝜎 (S).

Proof. The additional seed 𝑣 in 𝑆 𝑗 can only influence users
towards 𝑐 𝑗 , but not other products. Let 𝑉1 be the set of users that
are influenced by 𝑣 and were not influenced by S in possible world
𝑋 (i.e., ∀𝑣𝑖 ∈ 𝑉1,∀𝑐 𝑗 ∈ 𝐶 : 𝑣𝑖 ∉ 𝐼𝑋𝑗 (S)). These users increase 𝜎

𝑋
𝑗
(S′),

and consequently 𝜎𝑋 (S′) by Δ1 =
∑︁

𝑣𝑖 ∈𝑉1

𝑤𝑖, 𝑗 ≥ 0, with respect to

𝜎𝑋 (S). In addition, let𝑉2 be the set of users that were influenced by
some product 𝑐 𝑗 ′ in S (𝑐 𝑗 ′ ≠ 𝑐 𝑗 ), and the addition of 𝑣 changes their
influence to 𝑐 𝑗 . A user 𝑣𝑖 switches to 𝑐 𝑗 from its current product
𝑐 𝑗 ′ , if and only if 𝑤𝑖, 𝑗 ≥ 𝑤𝑖, 𝑗 ′ . Accordingly, users in 𝑉2 increase
𝜎𝑋 (S′) by Δ2 =

∑︁
𝑣𝑖 ∈𝑉2

(𝑤𝑖, 𝑗 − 𝑤𝑖, 𝑗 ′) ≥ 0. Since no other products

are affected, 𝑉1 and 𝑉2 cover all cases of influence updates in S′.
Therefore: 𝜎𝑋 (S′) = 𝜎𝑋 (S) + Δ1 + Δ2 ≥ 𝜎𝑋 (S). If we take the
weighted sum over all possible worlds (we weigh each world 𝑋
by its probability 𝑃𝑟 (𝑋 )), it holds that 𝜎 (S′) ≥ 𝜎 (S), i.e., the total
similarity cannot decrease by adding a user in a seed set. □

Lemma 2. (Submodularity) Let S = {𝑆1, . . . , 𝑆 𝑗 , . . . , 𝑆 |𝐶 |} and S′ =
{𝑆 ′1, . . . , 𝑆

′
𝑗
, . . . , 𝑆 ′|𝐶 |} be two seed sets such that 𝑆 𝑗 ⊆ 𝑆 ′𝑗 ,∀ 1 ≤ 𝑗 ≤

|𝐶 |. The marginal gain of adding a user 𝑣 to a seed set 𝑆 ′
𝑗
in S′ is

at most as large as adding the same user to the corresponding seed

set 𝑆 𝑗 in S; i.e 𝜎 (𝑆 ′1, . . . , 𝑆
′
𝑗
∪ {𝑣}, . . . , 𝑆 ′|𝐶 |) −𝜎 (S

′) ≤ 𝜎 (𝑆1, . . . , 𝑆 𝑗 ∪
{𝑣}, . . . , 𝑆 |𝐶 |) − 𝜎 (S), where 𝑣 ∈ 𝑉 − 𝑆 ′𝑗 .

Proof. A positive marginal gain occurs when the additional
seed 𝑣 causes some user to switch to 𝑐 𝑗 . We will show that any
such switch in S′ must also occur in S. Assume, by contradic-
tion, that adding 𝑣 to 𝑆 ′

𝑗
in a possible world 𝑋 causes a user 𝑣𝑖

to switch to 𝑐 𝑗 , but adding 𝑣 to 𝑆 𝑗 does not. This can only happen
if 𝑣 generates a max live 𝑐 𝑗 -path from a user 𝑣 ′ in the seed set 𝑆 ′

𝑗

to 𝑣𝑖 . There are two cases: (i) 𝑣 is the initial user in the 𝑐 𝑗 -path
(𝑣 → 𝑣 ′ → 𝑣𝑖 ), or (ii) 𝑣 is an intermediate user (𝑣 ′ → 𝑣 → 𝑣𝑖 ). In
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the first case, 𝑣 ′ would influence 𝑣𝑖 before the inclusion of 𝑣 in 𝑆 ′
𝑗
,

and 𝑣 has no effect and zero gain. Case (ii) implies that there is
max live 𝑐 𝑗 -path 𝑣 → 𝑣𝑖 ; accordingly, adding 𝑣 to 𝑆 𝑗 would result
in the same max live 𝑐 𝑗 -path 𝑣 → 𝑣𝑖 and thus affect 𝑣𝑖 , generat-
ing the same marginal gain as in 𝑆 ′

𝑗
. Both cases contradict the as-

sumptions, implying that 𝜎𝑋 (𝑆 ′1, . . . , 𝑆
′
𝑗
∪{𝑣}, . . . , 𝑆 ′|𝐶 |) −𝜎

𝑋 (S′) ≤
𝜎𝑋 (𝑆1, . . . , 𝑆 𝑗 ∪ {𝑣}, . . . , 𝑆 |𝐶 |) − 𝜎𝑋 (S). By taking a weighted sum
over all possible worlds as in Lemma 1, we conclude that the func-
tion 𝜎 (·) is submodular. □

3.3 Baseline Algorithm

Given the independent awareness processes, we can design a naïve
algorithm for the CWim problem as follows. Each product 𝑐 𝑗 se-
lects the top-𝑘 𝑗 seeds, where 𝑘 𝑗 is its budget, without taking into
account the other awareness and influence processes. Essentially,
each product seed set is chosen, as if there were no other products.
Even though this baseline is reasonable, it does not enjoy quality
guarantees. To see why, consider the simple example of a graph
consisting of 𝑘 disconnected (isolated) nodes, and 𝑘 products of
unit budget such that𝑤𝑖, 𝑗 = 𝑤𝑖 ,∀𝑗 , i.e., all products have the same
weight𝑤𝑖 for any given node 𝑣𝑖 . Furthermore, assume without loss
of generality that𝑤1 ≥ · · · ≥ 𝑤𝑘 . The optimal solution occurs when
each product has a distinct node as its seed, with total similarity∑︁
𝑤𝑖 . On the other hand, the baseline algorithm will assign node 𝑣1

as the seed for all 𝑘 products, with total similarity𝑤1. Depending
on the values of𝑤1, . . . ,𝑤𝑘 , the ratio between the optimal solution
and the naïve one can thus become arbitrarily close to 𝑘 . In the
following, we propose a game-theoretic algorithm, which utilizes
monotonicity and submodularity to achieve a fixed approximation
ratio that is independent of the number of competitors.

4 GAME-THEORETIC FRAMEWORK

We apply a game-theoretic approach to CWim because, as discussed
in Section 4.2, a single round of best-response dynamics reaches a
solution with high quality. A game in strategic form is the ordered
triple G = (𝐶, (S𝑗 ) 𝑗 ∈{1,..., |𝐶 | }, (𝜎 𝑗 ) 𝑗 ∈{1,..., |𝐶 | }), where:
• 𝐶 = {𝑐1, . . . , 𝑐 |𝐶 |} is the finite set of players.
• S𝑗 is a finite non-empty strategy set available to player 𝑐 𝑗 .
We denote the strategic space, i.e., the set of all vectors of
pure strategies as S = ×𝑗 ∈{1,..., |𝐶 | }S𝑗 = S1 × · · · × S |𝐶 | . A
strategy vector S ∈ S has the form S = (𝑆1, . . . , 𝑆 |𝐶 |), where
𝑆 𝑗 ∈ S𝑗 ∀𝑗 ∈ {1, . . . , |𝐶 |}.
• 𝜎 𝑗 : S → R is the individual utility of 𝑐 𝑗 , i.e., a function
associating each vector of strategies 𝑆 ∈ S with a utility for
player 𝑐 𝑗 .

In best response dynamics, each player selects the strategy that
maximizes its individual utility, given the current strategies of the
other players. A round of best responses consists of all players
choosing strategies sequentially exactly once. A game converges
to a pure Nash Equilibrium (NE), when no player can increase its
utility by playing deterministic best response4. The social welfare5

4It is possible to define Nash equilibria in mixed (probabilistic) strategies but we focus
exclusively on pure Nash equilibria, as is common in the literature of competitive
diffusion [1, 4, 15, 22, 39].
5The terms social welfare, collective influence and total influence refer to the same
concept.

𝜎 : S → R represents the total utility for any strategy vector. The
social optimum is the solution with the highest social welfare. The
price of anarchy is the ratio between the social welfare of the social
optimum and that of the worst possible NE; i.e., it is an upper bound
on the number of times that the discovered solution (when best
response dynamics converge) is worse than the optimal one.

Given S = {𝑆1, . . . , 𝑆 |𝐶 |}, S ⊕ 𝑆 ′𝑗 is the vector obtained if player
𝑐 𝑗 switches strategy from 𝑆 𝑗 to 𝑆 ′𝑗 , i.e., S ⊕ 𝑆

′
𝑗
= {𝑆1, . . . , 𝑆 𝑗−1,

𝑆 ′
𝑗
, 𝑆 𝑗+1, . . . , 𝑆 |𝐶 |}. The union of S and S′ is defined as S ∪ S′ =
{𝑆1∪𝑆 ′1, . . . , 𝑆 |𝐶 | ∪𝑆

′
|𝐶 |}, i.e., the strategy vector where the strategy

of each player is the union of its strategies in S and S′. S ∪ 𝑇𝑗
represents the strategy vector where only 𝑐 𝑗 changes strategy from
𝑆 𝑗 to 𝑆 𝑗 ∪ 𝑇𝑗 . We denote by ∅𝑗 the null strategy for player 𝑐 𝑗 ;
S ⊕ ∅𝑗 implies that 𝑐 𝑗 drops out of the game. It trivially holds that
(S ⊕ ∅𝑗 ) ∪ 𝑆 𝑗 = S. The quantity 𝛽 𝑗 (S) = 𝜎 (S) − 𝜎 (S ⊕ ∅𝑗 ) denotes
the benefit to the social welfare due to the participation of player 𝑐 𝑗
in the strategy vector S. An interesting class concerns utility games
[31, 41]:

Definition 1. (Utility game) A game G with social welfare func-

tion 𝜎 is a utility game if the following three conditions hold:

(1) The social welfare function 𝜎 (·) is submodular.

(2) The sum of individual utility functions does not exceed the

social welfare, i.e,

∑︁
𝑗 ∈{1,..., |𝐶 | }

𝜎 𝑗 (S) ≤ 𝜎 (S).

(3) The individual utility of each player 𝑐 𝑗 is at least its benefit to

the social welfare, i.e., 𝜎 𝑗 (S) ≥ 𝛽 𝑗 (S),∀𝑗 ∈ {1, . . . , |𝐶 |}.

Basic games constitute a sub-class of utility games.

Definition 2. (Basic utility game) A utility game is basic, if it

additionally satisfies the two conditions:

(1) The social welfare function 𝜎 (·) is monotone.

(2) Condition 3 in Definition 1 is satisfiedwith equality, i.e.,𝜎 𝑗 (S) =
𝛽 𝑗 (S),∀𝑗 ∈ {1, . . . , |𝐶 |}. We refer to this condition as the ba-

sicness property.

Monotone utility games do not always accept a NE, but when
they do the price of anarchy is at most 2 [41]; i.e., the social welfare of
the equilibrium is at least half of the optimal. On the other hand, in
basic utility games, a NE always exists and best response dynamics
is guaranteed to converge to a NE in a finite number of rounds.
Moreover, starting from empty strategies, a single round of best
responses yields a solution with social welfare at least half the social
optimum [17, 31], i.e., it matches the theoretical bound of 2 for the
price of anarchy. The fact that we have quality guarantees after a
round, without reaching a NE (which may take numerous rounds),
renders basic utility games very attractive in computational terms,
especially when each best response is costly. Next we elaborate on
the connection between CWim and (basic) utility games.

4.1 Utility Game for CWim

We introduce the game GCW for CWim and apply best response
dynamics, where each product 𝑐 𝑗 ∈ 𝐶 constitutes a player. A seed
set 𝑆 𝑗 ( |𝑆 𝑗 | = 𝑘 𝑗 ) corresponds to a strategy of 𝑐 𝑗 . The individual
utility of 𝑆 𝑗 for 𝑐 𝑗 is 𝜎 𝑗 (S) = E

[︂ ∑︁
𝑣𝑖 ∈𝐼𝑋𝑗 (S)

𝑤𝑖, 𝑗

]︂
. The goal of every

player is to maximize its individual utility, i.e., the expected total
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weight of the users it influences, given the seed sets of the products.
The social welfare 𝜎 (S) is the total weight from all influenced users

𝜎 (S) =
|𝐶 |∑︁
𝑗=1

𝜎 𝑗 (S), i.e., the objective function of CWim.

Theorem 1. GCW is a monotone utility game.

Proof. According to Lemma 1 the social welfare function 𝜎 (·)
is monotone. Regarding the three conditions of Definition 1:

1. By Lemma 2, the social welfare function 𝜎 (·) is submodular.

2. The social welfare in GCW is defined as 𝜎 (S) =
|𝐶 |∑︁
𝑗=1

𝜎 𝑗 (S).

Thus, Condition 2 of Definition 1 holds as equality.
3. In any possible world 𝑋 , a new product 𝑐 𝑗 may influence

two types of users: (i) 𝑉1 is the set of users that are not aware of
(and, thus, they were not influenced by) any other product, and
(ii) 𝑉2 is the set of users that were influenced by some product
𝑐 𝑗 ′ with weight 𝑤𝑖, 𝑗 ′ < 𝑤𝑖, 𝑗 . Users in 𝑉1 increase the individual
utility of 𝑐 𝑗 and the social welfare by the same value

∑︁
𝑣𝑖 ∈𝑉1

𝑤𝑖, 𝑗 .

Users in𝑉2, however, add
∑︁

𝑣𝑖 ∈𝑉2

𝑤𝑖, 𝑗 to 𝜎𝑋𝑗 (S) and only
∑︁

𝑣𝑖 ∈𝑉2

(𝑤𝑖, 𝑗 −

𝑤𝑖, 𝑗 ′) to 𝜎𝑋 (S). Thus, 𝜎𝑋𝑗 (S) =
∑︁

𝑣𝑖 ∈𝑉1

𝑤𝑖, 𝑗 +
∑︁

𝑣𝑖 ∈𝑉2

𝑤𝑖, 𝑗 ≥
∑︁

𝑣𝑖 ∈𝑉1

𝑤𝑖, 𝑗 +∑︁
𝑣𝑖 ∈𝑉2

(𝑤𝑖, 𝑗 −𝑤𝑖, 𝑗 ′) = 𝛽𝑋𝑗 (S). Condition 3 of Definition 1 then holds

by taking the weighted sum over all possible worlds. □

We define as 𝜇𝑇𝑗
(S) = 𝜎 (S∪𝑇𝑗 ) − 𝜎 (S) the marginal gain to the

social welfare when the set of nodes𝑇𝑗 is added to the seed set 𝑆 𝑗 of
𝑐 𝑗 , or equivalently, when 𝑐 𝑗 changes strategy from 𝑆 𝑗 to 𝑆 𝑗 ∪𝑇𝑗 . The
benefit constitutes a special case6 of the marginal gain where 𝑆 𝑗 is
empty: 𝛽 𝑗 (S) = 𝜇𝑆 𝑗

(S⊕ ∅𝑗 ). We refer to the divergence 𝛿 𝑗 (S) as the
difference between the individual utility of 𝑐 𝑗 and the benefit of 𝑐 𝑗
to the social welfare: 𝛿 𝑗 (S) = 𝜎 𝑗 (S) − 𝛽 𝑗 (S) = 𝜎 𝑗 (S) − 𝜇𝑆 𝑗

(S ⊕ ∅𝑗 ).
As shown in the proof of Theorem 1, in any possible world 𝑋 ,
𝛿 𝑗 (S) =

∑︁
𝑣𝑖 ∈𝑉2

𝑤𝑖, 𝑗 ′ , where𝑉2 is the set of nodes influenced by other

products 𝑐 𝑗 ′ in possible world 𝑋 before the participation of 𝑐 𝑗 in
the game. Due to the existence of such nodes, 𝛿 𝑗 (S) ≥ 0 and GCW

is not a basic game.
Next, we argue that the best response of player 𝑐 𝑗 corresponds to

a weighted influence maximization problem. Recall that during its
best response, the goal of 𝑐 𝑗 is to find the seed set 𝑆 𝑗 that maximizes
the expected value of the total weight of influenced nodes. Due to
the interactions though, we must consider the effect of the other
players. Concretely, 𝑐 𝑗 influences node 𝑣𝑖 if two conditions hold:
(i) 𝑣𝑖 becomes 𝑐 𝑗 -aware, and (ii) 𝑣𝑖 is not already aware of another
product 𝑐 𝑗 ′ with higher or equal similarity. Condition (i) is similar to
traditional IM. To account for condition (ii), we modify the weight
𝑤𝑖, 𝑗 by multiplying it by the probability that 𝑣𝑖 is unaware of some
other product 𝑐 𝑗 ′ with 𝑗 ′ < 𝑗 and 𝑤𝑖, 𝑗 ′ ≥ 𝑤𝑖, 𝑗 . Its weight thus
becomes 𝑤𝑖, 𝑗 · 𝐴𝑃 (𝑣𝑖 ), where 𝐴𝑃 (𝑣𝑖 ) denotes the probability of
condition (ii). At the end, player 𝑐 𝑗 aims at maximizing the quantity:

E

[︄ ∑︂
𝑣𝑖 ∈𝐴𝑋

𝑗
(𝑆 𝑗 )

𝑤𝑖, 𝑗 · 𝐴𝑃 (𝑣𝑖 )
]︄
. (2)

6In the rest of the paper, we express the benefit in terms of the more general concept
of marginal gain.

The terms𝐴𝑃 (𝑣𝑖 ) are scaling constants that do not depend on 𝑆 𝑗 . (2)
is a standard single-product IM formulation where the awareness
probabilities from 𝑣 to 𝑣𝑖 are 𝐴𝑃 (𝑣, 𝑣𝑖 , 𝑐 𝑗 ) while the weights 𝑤𝑖, 𝑗

are changed to𝑤𝑖, 𝑗 · 𝐴𝑃 (𝑣𝑖 ). This can be solved using Gim, RIS or
D-SSA, so that each best response is within (1− 1

𝑒 ) of the optimum7.
If we reach a stable state, that state corresponds to a (1 − 1

𝑒 )-NE.
Our next result establishes that the price of anarchy at any such

(1 − 1
𝑒 )-Nash equilibrium is only slightly higher than 2.5. But first,

we introduce Lemma 3 which describes the property of diminishing
marginal gains.

Lemma 3. For the social welfare function 𝜎 of the GCW game, we

have:

𝜇𝑇𝑗
(S) ≥ 𝜇𝑇𝑗

(S′),
where S = {𝑆1, . . . , 𝑆 |𝐶 |}, S′ = {𝑆 ′1, . . . , 𝑆

′
|𝐶 |} are two strategy vectors

with 𝑆 𝑗 ⊆ 𝑆 ′𝑗 ∀𝑗 ∈ {1, . . . , |𝐶 |}, and 𝑇𝑗 ⊆ 𝑉 is any set of nodes.

Proof. Assume 𝑇𝑗 consists of a a single node 𝑣 . We distinguish
between three cases. (i) If 𝑣 ∈ 𝑉 − 𝑆 ′

𝑗
(hence, 𝑣 ∈ 𝑉 − 𝑆 𝑗 ), then

the inequality in the Lemma follows directly by the submodular-
ity property. (ii) If 𝑣 ∈ 𝑆 𝑗 (hence, 𝑣 ∈ 𝑆 ′𝑗 ), then the inequality
holds trivially as 𝜇𝑇𝑗

(S) = 𝜇𝑇𝑗
(S′) = 0. Finally, (iii) if 𝑣 ∉ 𝑆 𝑗 but

𝑣 ∈ 𝑆 ′
𝑗
, then 𝜇𝑇𝑗

(S) ≥ 0 by monotonicity, whereas 𝜇𝑇𝑗
(S′) = 0.

Thus, 𝜇𝑇𝑗
(S) ≥ 𝜇𝑇𝑗

(S′). If𝑇𝑗 contains multiple nodes, we add them
sequentially, and apply the above argument in each step. □

Theorem 2. In GCW, the price of anarchy of a pure (1 − 1
𝑒 )-Nash

equilibrium is upper bounded by 1 + 1
1− 1

𝑒

≈ 2.582.

Proof. Let S∗ be a pure (1 − 1
𝑒 )-Nash equilibrium, and O =

{𝑂1, . . . ,𝑂 |𝐶 |} the set of strategies at the social optimum. Due to
monotonicity, it holds that 𝜎 (O) ≤ 𝜎 (S∗ ∪ O). Let O𝑗 denote
the strategies selected by the first 𝑗 players in the social opti-
mum O, with players 𝑐 𝑗+1, . . . , 𝑐 |𝐶 | playing the empty strategy. We
then have O0 = {∅1, . . . , ∅ |𝐶 |},O1 = {𝑂1, ∅2, . . . , ∅ |𝐶 |}, . . . ,O |𝐶 | =
{𝑂1, . . . ,𝑂 |𝐶 |}.
We next write:

𝜎 (O) − 𝜎 (S∗) ≤ 𝜎 (S∗ ∪ O) − 𝜎 (S∗) =

=

|𝐶 |∑︂
𝑗=1
[𝜎 (S∗ ∪ O𝑗 ) − 𝜎 (S∗ ∪ O𝑗−1)] =

|𝐶 |∑︂
𝑗=1

𝜇𝑂 𝑗
(S∗ ∪ O𝑗−1)

By Lemma 3 we have:

𝜇𝑂 𝑗
(S∗ ∪ O𝑗−1) ≤ 𝜇𝑂 𝑗

(S∗ ⊕ ∅𝑗 ),

for any player 𝑐 𝑗 . By Property 3 of Definition 1 for utility games
we have:

𝜇𝑂 𝑗
(S∗ ⊕ ∅𝑗 ) ≤ 𝜎 𝑗 (S∗ ⊕ 𝑂 𝑗 ) .

Furthermore, given S∗ is an (1− 1
𝑒 )-Nash equilibrium we have that:

(1 − 1
𝑒
) · 𝜎 𝑗 (S∗ ⊕ 𝑂 𝑗 ) ≤ 𝜎 𝑗 (S∗) .

7In reality, the algorithms return a (1− 1
𝑒
−𝜀)-approximate solution, but for simplicity

we ignore 𝜀 in the bounds by setting it to 0.
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Combining the above:

𝜎 (O) − 𝜎 (S∗) ≤ 1
1 − 1

𝑒

·
|𝐶 |∑︂
𝑗=1

𝜎 𝑗 (S∗).

Given that
|𝐶 |∑︁
𝑗=1

𝜎 𝑗 (S∗) = 𝜎 (S∗), we finally obtain:

𝜎 (O) ≤
(︂
1 + 1

1 − 1
𝑒

)︂
· 𝜎 (S∗) ≈ 2.582 · 𝜎 (S∗) .

□

The above bound suggests that if we reach an approximate NE,
then we can be sure that this point is close to the social optimum.
Given GCW is not a basic game, the existence of a NE is not guaran-
teed and we may not converge to a NE. In general, under standard
competitive diffusion models a NE only exists for graphs with spe-
cific structure [1, 4, 15, 22, 39]. In fact, even deciding whether a
NE exists is an NP-hard problem in many competitive models [14].
Nevertheless, as we show next, due to the game structure, a single
round of best response strategies can result in a strategy vector
with a social welfare that is close to the social optimum. Further-
more, since our objective is the social welfare, it is not important for
our work whether we reach a NE or not. Interestingly, our model
exhibits both submodularity and monotonicity, which is not true
for general competitive diffusion models [6].

4.2 Single-Round Error Bound

Our methodology is inspired by a fundamental result in basic utility
games, which states that a single full round of exact best responses
can produce a solution with provably high social welfare [17, 31].
Although GCW is not a basic game, and players can only play ap-
proximate best response strategies, we will show that a single round
of best responses can produce a strategy vector whose deviation
from the optimal solution is bounded.

Theorem 3. In GCW, assuming the players start with empty strate-

gies, the social value at the end of a full round of best responses is at

least
𝑒−1
2𝑒−1 ≈ 0.387 of the optimal social value, minus a term that de-

pends on the extent to which the game violates the basicness property.

Proof. Without loss of generality, we assume the players play
best response strategies in the order 𝑐1, . . . , 𝑐 |𝐶 | . Let O = {𝑂1, . . . ,
𝑂 |𝐶 |} the set of strategies at the social optimum. Let ∅ = {∅1, . . . ,
∅ |𝐶 |} and S = {𝑆1, . . . , 𝑆 |𝐶 |} be the initial and final states in the
full round, respectively. Furthermore, we denote by S𝑗 the set of
strategies for the |𝐶 | products after the first 𝑗 best responses, i.e.,
S𝑗 = {𝑆1, . . . , 𝑆 𝑗 , ∅𝑗 , . . . , ∅ |𝐶 |}. Obviously, S0 = ∅ and S |𝐶 | = 𝑆 . We
also define O𝑗 as in Theorem 2. Each player selects its seed set
using (1 − 1

𝑒 )-approximate best-response with respect to the seed
sets of previous players. Repeating over all players we have:

|𝐶 |∑︂
𝑗=1

𝜎 𝑗 (S𝑗 ) ≥ (1 −
1
𝑒
) ·
|𝐶 |∑︂
𝑗=1

𝜎 𝑗 (S𝑗 ⊕ 𝑂 𝑗 )

= (1 − 1
𝑒
) ·
|𝐶 |∑︂
𝑗=1

𝜎 𝑗 (S𝑗−1 ⊕ 𝑂 𝑗 ). (3)

The divergence 𝛿 𝑗 (S𝑗−1 ⊕ 𝑂 𝑗 ) ≥ 0 corresponds to the extent to
which the best response of player 𝑐 𝑗 violates the basicness property
at strategy vector S𝑗−1 ⊕𝑂 𝑗 , i.e., 𝛿 𝑗 (S𝑗−1 ⊕𝑂 𝑗 ) = 𝜎 𝑗 (S𝑗−1 ⊕𝑂 𝑗 ) −
𝜇𝑂 𝑗
(S𝑗−1 ⊕ ∅𝑗 ). By summing over all players:

|𝐶 |∑︂
𝑗=1

𝜎 𝑗 (S𝑗−1 ⊕ 𝑂 𝑗 ) =
|𝐶 |∑︂
𝑗=1
[𝜇𝑂 𝑗
(S𝑗−1 ⊕ ∅𝑗 ) + 𝛿 𝑗 (S𝑗−1 ⊕ 𝑂 𝑗 )] . (4)

By combining (3) and (4) we obtain:
|𝐶 |∑︂
𝑗=1

𝜎 𝑗 (S𝑗 ) ≥ (1 −
1
𝑒
) ·
|𝐶 |∑︂
𝑗=1
[𝜇𝑂 𝑗
(S𝑗−1 ⊕ ∅𝑗 ) + 𝛿 𝑗 (S𝑗−1 ⊕ 𝑂 𝑗 )]

= (1 − 1
𝑒
) ·
|𝐶 |∑︂
𝑗=1
[𝜇𝑂 𝑗
(S𝑗−1) + 𝛿 𝑗 (S𝑗−1 ⊕ 𝑂 𝑗 )] . (5)

By Lemma 3 we have:

(1 − 1
𝑒
) ·
|𝐶 |∑︂
𝑗=1
[𝜇𝑂 𝑗
(S𝑗−1) + 𝛿 𝑗 (S𝑗−1 ⊕ 𝑂 𝑗 )] ≥

(1 − 1
𝑒
) ·

(︂ |𝐶 |∑︂
𝑗=1

𝜇𝑂 𝑗
(S ∪ O𝑗−1) + 𝛿 𝑗 (S𝑗−1 ⊕ 𝑂 𝑗 )

)︂
. (6)

We define the non-negative two-variate function Δ(S,O) ≥ 0 as
the total divergence of all players:

Δ(S,O) =
|𝐶 |∑︂
𝑗=1

𝛿 𝑗 (S𝑗−1 ⊕ 𝑂 𝑗 ) . (7)

Using (6) and (7), and substituting the terms 𝜇𝑂 𝑗
(S ∪ O𝑗−1) in (6)

by the definition of the marginal gain, we can rewrite (5) as:
|𝐶 |∑︂
𝑗=1

𝜎 𝑗 (S𝑗 ) ≥ (1 −
1
𝑒
) · (𝜎 (S ∪ O) − 𝜎 (S) + Δ(S,O)) . (8)

Furthermore, similar to above we can rewrite the term
|𝐶 |∑︁
𝑗=1

𝜎 𝑗 (S𝑗 )

as follows (the term Δ(S, S) in (9) is defined as in Equation (7) if
we replace the strategy vector O by S):
|𝐶 |∑︂
𝑗=1

𝜎 𝑗 (S𝑗 ) =
|𝐶 |∑︂
𝑗=1
[𝜇𝑆 𝑗
(S𝑗−1 ⊕ ∅𝑗 ) + 𝛿 𝑗 (S𝑗 )] = 𝜎 (S) + Δ(S, S). (9)

By combining (8) and (9):

𝜎 (S) =
|𝐶 |∑︂
𝑗=1

𝜎 𝑗 (S𝑗 ) − Δ(S, S)

≥ (1 − 1
𝑒
) · (𝜎 (O) − 𝜎 (S) + Δ(S,O)) − Δ(S, S),

or equivalently:

𝜎 (S) ≥ 𝑒 − 1
2𝑒 − 1 · 𝜎 (O) −

𝑒 · Δ(S, S) − (𝑒 − 1) · Δ(S,O)
2𝑒 − 1

≥ 𝑒 − 1
2𝑒 − 1 · 𝜎 (O) −

𝑒

2𝑒 − 1 · Δ(S, S).

Hence, the social value at the end of a full round of best responses
𝜎 (S) is at least 𝑒−1

2𝑒−1 ≈ 0.387 of the optimal social value 𝜎 (O), minus
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a term containing Δ(S, S) that depends on the extent to which the
game violates the basicness property. □

The term 𝑒
2𝑒−1 · Δ(S, S) impacts the quality of the bound: the

lower the term, the better the bound. In this direction, we define
the following ratio (assuming 𝜎 (S) ≠ 0):

𝜌 (S) = Δ(S, S)
𝜎 (S) ≥ 0.

Ideally, the term 𝜌 (S) is 0, when the game is basic.

Corollary 1. The bound of Theorem 3 can be rewritten equiva-

lently as:

𝜎 (S) ≥ 𝑒 − 1
2𝑒 − 1 + 𝑒 · 𝜌 (S) · 𝜎 (O) .

Proof. The proof follows directly from Theorem 3 and the defi-
nition of 𝜌 (S). □

We refer to 𝑏 = 𝑒−1
2𝑒−1+𝑒 ·𝜌 (S) as the approximation lower bound

of GCW. If basicness holds, the best-response framework achieves
a constant-ratio lower bound of 𝑏∗ = (𝑒 − 1)/(2𝑒 − 1) ≈ 0.387. On
the other hand, lacking basicness implies that 𝜌 (S) > 0, which
decreases the quality of the lower bound. Our extensive experi-
mental evaluation on various data sets in Section 6.3 shows that
𝑏 is in practice at least 0.2 and can even reach values close to 𝑏∗.
The lower bound ignores the positive contribution from the term
𝑒−1
2𝑒−1 · Δ(S,O); so the actual approximation quality can be higher.
Although approximation bounds for basic utility games have been
investigated before [17, 31], this is the first work to derive a lower
bound on the approximation quality in the absence of basicness.

5 GAME-THEORETIC ALGORITHM

Based on the previous discussion, GCW involves a single round of
best responses, where each competitor 𝑐 𝑗 selects the seed set 𝑆 𝑗 that
maximizes its individual utility, using some polynomial algorithm.
The complication lies in the fact that 𝑆 𝑗 must take into account
the current seed sets of the other products. Algorithm 1 shows a
concrete instantiation of GCW based on Reverse Reachable (RR)
sets. Initially, each player/product 𝑐 𝑗 is assigned an empty seed set
(Line 2).GCW proceeds in one full round of best responses assuming
that players play in some random order 𝑐1, . . . , 𝑐 |𝐶 | . Recall from
Theorem 3 that S𝑗 = {𝑆1, . . . , 𝑆 𝑗 , ∅𝑗+1, . . . , ∅ |𝐶 |}, 0 ≤ 𝑗 ≤ |𝐶 |, is the
strategy vector after the first 𝑗 best responses. Competitor 𝑐 𝑗 selects
a strategy 𝑆 𝑗 to maximize its individual utility, given S𝑗−1 (Lines
3-6). For this purpose, given the current seed sets {𝑆1, . . . , 𝑆 𝑗−1},
we create a number of RR sets for 𝑐 𝑗 (Line 4). Next, by applying an
approximate algorithm [40] for the maximum coverage problem, it
finds the 𝑘 𝑗 users that cover the largest number of RR sets (Line 5).

Recall from Section 2.1 that for single-product weighted IM,
𝐹𝑅 (𝑆) ·𝑊 is an unbiased estimator of the influence E

[︂ ∑︁
𝑣𝑖 ∈𝐼𝑋 (𝑆)

𝑤𝑖

]︂
,

where 𝐹𝑅 (𝑆) is the fraction of RR sets covered by 𝑆 , and𝑊 is the
sum of user weights [29]. For CWim, the existence of products ne-
cessitates an unbiased estimator for the influence E

[︂ ∑︁
𝑣𝑖 ∈𝐼𝑋𝑗 (S𝑗 )

𝑤𝑖, 𝑗

]︂
for 𝑐 𝑗 that takes into account the current seed sets of the previous
products 𝑐1, . . . , 𝑐 𝑗−1. Consider product 𝑐 𝑗 ′, 𝑗 ′ < 𝑗,with𝑤𝑖, 𝑗 ′ ≥ 𝑤𝑖, 𝑗 .
If user 𝑣𝑖 becomes 𝑐 𝑗 -aware while it is already aware of 𝑐 𝑗 ′ , 𝑣𝑖 will

Algorithm 1 : GCW (graph𝐺 , budget array 𝑘 (1x|𝐶 |), weight array
𝑤 ( |𝑉 |x|𝐶 |))
1: for each product 𝑐 𝑗
2: assign an empty seed set 𝑆 𝑗
3: for 𝑐 𝑗 := 𝑐1 to 𝑐 |𝐶 |
4: create RR sets for 𝑐 𝑗 given the current seed sets {𝑆1, . . . 𝑆 𝑗−1}

of products 𝑐1, . . . , 𝑐 𝑗−1
5: Find the seed set 𝑆∗

𝑗
of𝑘 𝑗 users that covers the largest number

of RR sets
6: Set 𝑆 𝑗 ← 𝑆∗

𝑗

7: Output S = {𝑆1, .., 𝑆 𝑗 , .., 𝑆 |𝐶 |}

remain influenced by 𝑐 𝑗 ′ rather than 𝑐 𝑗 . Intuitively, creating an RR
set for 𝑣𝑖 is not beneficial for computing a good seed set 𝑆 𝑗 for 𝑐 𝑗
because 𝑣𝑖 does not contribute to 𝐼𝑋𝑗 (S

𝑗 ).
Let𝐴𝑃 (𝑣𝑖 , 𝑐 𝑗 ′ |𝑆 𝑗 ′) be the probability that 𝑣𝑖 is aware of 𝑐 𝑗 ′ , given

strategy 𝑆 𝑗 ′ . We define as

𝐴𝑃 (𝑣𝑖 |S𝑗−1) =
∏︂

𝑗 ′< 𝑗 |𝑤𝑖,𝑗′ ≥𝑤𝑖,𝑗

(1 −𝐴𝑃 (𝑣𝑖 , 𝑐 𝑗 ′ |𝑆 𝑗 ′)), (10)

the probability that, immediately before the creation of seed set 𝑆 𝑗 ,
𝑣𝑖 is unaware of any product 𝑐 𝑗 ′ , with 𝑗 ′ < 𝑗 and𝑤𝑖, 𝑗 ′ ≥ 𝑤𝑖, 𝑗 . The
probability that 𝑐 𝑗 influences user 𝑣𝑖 given S𝑗 is then:

𝐼𝑃 (𝑣𝑖 , 𝑐 𝑗 |S𝑗 ) = 𝐴𝑃 (𝑣𝑖 |S𝑗−1) · 𝐴𝑃 (𝑣𝑖 , 𝑐 𝑗 |𝑆 𝑗 ), (11)

i.e., 𝑣𝑖 must be 𝑐 𝑗 -aware, but unaware of any product with higher
similarity. Note that in each best response 𝑗 we only need to com-
pute and store 𝐴𝑃 (𝑣𝑖 , 𝑐 𝑗 |𝑆 𝑗 ) for each 𝑣𝑖 ∈ 𝑉 . We can then triv-
ially compute (10) by using the stored awareness probabilities
𝐴𝑃 (𝑣𝑖 , 𝑐 𝑗 ′ |𝑆 𝑗 ′), 1 ≤ 𝑗 ′ < 𝑗 from the previous best responses.

In order to create the RR sets for 𝑐 𝑗 , we sample user 𝑣𝑖 with proba-
bility 𝑤𝑖,𝑗

𝑊𝑗
·𝐴𝑃 (𝑣𝑖 |S𝑗−1), where𝑊𝑗 =

∑︁
𝑣𝑖 ∈𝑉

𝑤𝑖, 𝑗 ·𝐴𝑃 (𝑣𝑖 |S𝑗−1) is a nor-

malization constant. Let 𝐹𝑅,𝑗 (S𝑗 ) be the fraction of RR sets created
for product 𝑐 𝑗 that are covered by 𝑆 𝑗 , given S𝑗 . Proposition 1 proves
that 𝐹𝑅,𝑗 (S𝑗 ) ·𝑊𝑗 is an unbiased estimator of E

[︂ ∑︁
𝑣𝑖 ∈𝐼𝑋𝑗 (S𝑗 )

𝑤𝑖, 𝑗

]︂
.

Therefore, the seed set 𝑆∗
𝑗
of cardinality 𝑘 𝑗 with the maximum

𝐹𝑅,𝑗 (S𝑗−1 ∪ 𝑆∗𝑗 ) becomes the current seed set of 𝑐 𝑗 .

Proposition 1. During the best response of product 𝑐 𝑗 , 𝐹𝑅,𝑗 (S𝑗 ) ·
𝑊𝑗 is an unbiased estimator of E

[︂ ∑︁
𝑣𝑖 ∈𝐼𝑋𝑗 (S𝑗 )

𝑤𝑖, 𝑗

]︂
.

Proof. It holds that the expected value of the total similarity
for product 𝑐 𝑗 equals:

E
[︂ ∑︂
𝑣𝑖 ∈𝐼𝑋𝑗 (S𝑗 )

𝑤𝑖, 𝑗

]︂
=

∑︂
𝑣𝑖 ∈𝑉

𝐼𝑃 (𝑣𝑖 , 𝑐 𝑗 |S𝑗 ) ·𝑤𝑖, 𝑗
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For product 𝑐 𝑗 ∈ 𝐶 , we sample a user 𝑣𝑖 with probability 𝑤𝑖,𝑗

𝑊𝑗
·

𝐴𝑃 (𝑣𝑖 |S𝑗−1) and create a set 𝑅𝑅𝑖, 𝑗 . It follows that:

E[𝐹𝑅,𝑗 (S𝑗 )] =
∑︂
𝑣𝑖 ∈𝑉

𝑤𝑖, 𝑗

𝑊𝑗
· 𝐴𝑃 (𝑣𝑖 |S𝑗−1) · 𝑃𝑟 (𝑅𝑅𝑖, 𝑗 ∩ 𝑆 𝑗 ≠ ∅)

=
∑︂
𝑣𝑖 ∈𝑉

𝑤𝑖, 𝑗

𝑊𝑗
· 𝐴𝑃 (𝑣𝑖 |S𝑗−1) · 𝐴𝑃 (𝑣𝑖 , 𝑐 𝑗 |𝑆 𝑗 )

=
∑︂
𝑣𝑖 ∈𝑉

𝑤𝑖, 𝑗

𝑊𝑗
· 𝐼𝑃 (𝑣𝑖 , 𝑐 𝑗 |S𝑗 ) =

E
[︂ ∑︁
𝑣𝑖 ∈𝐼𝑋𝑗 (S𝑗 )

𝑤𝑖, 𝑗

]︂
𝑊𝑗

.

The proof uses Equation (11) and the fact that 𝑃𝑟 (𝑅𝑅𝑖, 𝑗 ∩ 𝑆 𝑗 ≠ ∅) =
𝐴𝑃 (𝑣𝑖 , 𝑐 𝑗 |𝑆 𝑗 ) [29]. □

Next, we discuss the time and space complexity of GCW, as-
suming the same budget 𝑘 for each player. A full round consists
of |𝐶 | best responses. Best response 𝑗 must first construct the RR
sets in order to generate a seed set of size 𝑘 . There are efficient
quasi-linear methods for that in terms of |𝑉 |, |𝐸 |; e.g., [37] provides
a 𝑂 ((𝑙 + 𝑘) ( |𝑉 | + |𝐸 |) log |𝑉 |/𝜖2) algorithm in expectation, where
𝑙, 𝜖 are related to the quality of the approximation. The next step
is the computation of the awareness probability 𝐴𝑃 (𝑣𝑖 , 𝑐 𝑗 |𝑆 𝑗 ) for
all nodes 𝑣𝑖 ∈ 𝑉 , which is used by best response 𝑗 + 1 to obtain
𝐴𝑃 (𝑣𝑖 |S𝑗−1) via (10). This is achieved by𝑀 = 1𝐾 MC simulations,
each applying BFS, for a total cost of 𝑂 (𝑀 ( |𝑉 | + |𝐸 |)), which is
dominated by the cost of the first step. Considering that |𝐸 | ≥ |𝑉 |
and a fixed approximation quality as input, by summing up over
the |𝐶 | best responses, we obtain an asymptotic time complexity
of 𝑂

(︂
|𝐶 |𝑘 |𝐸 | log |𝑉 |

)︂
. For the space complexity, note that the ex-

pected total size of the RR sets constructed for each best response
is 𝑂 (𝑘 |𝐸 | log |𝑉 |); see, e.g., [37]. Since we do not need to store the
RRs of previous competitors, the total space for RR sets is also
𝑂 (𝑘 |𝐸 | log |𝑉 |). The MC simulations for a best response use𝑂 ( |𝑉 |)
space, since we just need to know howmany times a given node was
influenced in the𝑀 simulations. This is dominated by the matrix of
size |𝑉 | |𝐶 | that stores the awareness probabilities. To summarize,
the expected total space complexity is 𝑂 (𝑘 |𝐸 | log |𝑉 | + |𝑉 | |𝐶 |).

Finally, we discuss some general aspects of our scheme. First,
Theorem 3 is valid for any competitor ordering. We apply a ran-
dom ordering because it converges fast to solutions of high quality.
Alternative schemes such as selecting the player that increases the
social welfare by the largest amount are quadratic in the number
of competitors, as opposed to the linear complexity of random
order. Second, the game is inherently sequential, since the best
response of the current competitor depends on the completion of
those of previous players. Nevertheless, there are parallelization
opportunities within each best response. Both Monte Carlo simula-
tions and the computation of RRs can benefit from parallel threads,
each performing an independent simulation in the graph. Third,
GCW assumes fixed budgets for each product. This is realistic, as
it captures the situation that an advertiser has a limited budget
distributed to various products according to their marketing impor-
tance. Moreover, it enables an efficient single-round method, where
each competitor selects a seed set of predefined size. The case of a
total budget that we must be split on-the-fly among the |𝐶 | products
is more challenging and expensive. Furthermore, a single budget

may allocate very few or zero seeds to some products, resulting
in unbalanced or unfair allocations. An interesting direction for
future work is to explore efficient algorithms for the AtI model
with fairness guarantees given a constraint on the total budget.

6 EXPERIMENTAL EVALUATION

Section 6.1 presents the experimental settings and the implemen-
tation details of the evaluated methods. Section 6.2 compares the
effectiveness and efficiency of GCW against the baseline algorithm.
Section 6.3 investigates the approximation bound and convergence
of GCW.

6.1 Experimental Settings

To the best of our knowledge, there do not exist data sets that con-
tain real influence probabilities, together with information about
competing products and similarities of those products to users. To
overcome this challenge, we simulate two scenarios over geosocial
and social networks, by computing incomplete information in a re-
alistic manner. As a result, we obtain six different settings, covering
distinct applications, graph sizes and structures, and similarity mea-
sures. For the geosocial scenario, we use Gowalla8 or Foursquare.
Gowalla contains 12, 748 users, connected through 96, 836 edges,
who checked-in at Austin and Dallas during a weekend in February
2009. Foursquare [28] contains 2,127,093 users over the world in
September 2013. The number of edges is 17,280,702. Isolated nodes
(without adjacent edges) were removed. Since the networks do
not contain edge probabilities, in order to generate them, we first
applied two clustering algorithms: DGCD [42] and 𝑘-means. For
DGCD9, we set the algorithm parameters to 𝛾 = 300, 𝜖 = 0.45, and
𝜇 = 3 for both data sets; the number of generated clusters is 701 in
Gowalla, and 47903 in Foursquare. For 𝑘-means, where the number
of clusters is an input parameter, we select a relatively small number
of clusters, 32 in Gowalla and 128 in Foursquare, to diversify our
settings. Then, we fix the probabilities of all edges between clus-
ters to 0.001. For the intra-cluster edges we follow [10, 11, 29, 38],
and set 𝑝 (𝑣,𝑢) = 1

𝑖𝑛-𝑑𝑒𝑔𝑟𝑒𝑒 (𝑢)
10. For LT, the thresholds are ran-

domly selected in the range [0,1]. This methodology avoids the
issue of diminishing returns, i.e., when a small seed set suffices to
reach most of the users on the graph. The competing products are
events. Specifically, for Gowalla, we collected 128 social events from
Eventbrite11 at Austin and Dallas during the same period as the
check-ins. Foursquare already contains 1,143,092 events. We set the
similarity𝑤𝑖, 𝑗 between each user 𝑣𝑖 and event 𝑐 𝑗 as𝑤𝑖, 𝑗 = 1− 𝑑𝑖,𝑗

𝑑𝑚𝑎𝑥
,

where 𝑑𝑖, 𝑗 is the Euclidean distance between 𝑣𝑖 and 𝑐 𝑗 and 𝑑𝑚𝑎𝑥 is
the maximum Euclidean distance between all users and events. Con-
sequently, a user is influenced by the event closest to his location,
among those that he became aware of.

For the social scenario, we use two social networks: Flixster
(flixster.com) and Last FM (lastfm.com). Flixster has 96,369 and Last
FM 1,318 users, who rate movies or like songs, respectively. The
number of edges is 377,868 in Flixster (10,852 in Last FM), and the

8https://snap.stanford.edu
9DGCD is a geosocial clustering algorithm that groups users based on their social
connectivity and location.
10The average in-degree of Gowalla is 7.59 and that of Foursquare is 8.12.
11https://www.eventbrite.com
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number of ratings is 8,196,078 (1,208,640 in Last FM). Since neither
network contains edge probabilities, they were learned according
to [18]. The competing products are the movies (Flixster) and songs
(Last FM), where the similarity between each user and movie/song
is the normalized rating. If there is no record for some (user,movie)
or (user,song), we generate the rating using SVD, a collaborative
filtering algorithm based on probabilistic matrix factorization [32].

Since there is no previous work on CWim, we compare GCW
against the Naïve baseline (NA), discussed in Section 3.3. NA is also
based on Reverse Reachable sets, but each seed set is generated in-
dependently of other products, while GCW performs a single round
of best response dynamics, where a seed set takes into account
the previous ones. In order to create the RR sets in GCW and NA,
we apply the D-SSA algorithm [34], with parameters 𝜖 = 0.01 and
𝛿 = 0.01, where 𝜖 refers to the error, and 𝛿 to the probabilistic guar-
antee. After computing a seed set, we estimate the social welfare
(i.e., total similarity/influence 𝜎 (S)), by performing 5KMonte Carlo
simulations. Each simulation propagates awareness according to
the model used, AtIic or AtIlt. The total similarity is computed
based on the largest weight between each user and the competitors
that he becomes aware of. We report the average 𝜎 (S) over all the
simulations. This similarity evaluation is identical for both GCW
and NA, and does not constitute part of their running time.

All algorithms are implemented in C++ and evaluated on two
parameters: the number of competitors |𝐶 | and the budget𝑘 (i.e., the
seed set size) of each competitor. The value of |𝐶 | ranges between 4
and 64, and that of 𝑘 between 1 and 50. When we fix the number of
competitors or the budget, we set |𝐶 | = 16 and 𝑘 = 10, respectively.
For the geosocial scenario, we select |𝐶 | random events among those
available for each data set. For the social scanario, the competitors
are chosen randomly among the 128 movies or songs with the
largest number of ratings. The experiments are conducted on a
Linux Ubuntu 20.04.1 server with AMD Ryzen Threadripper 3960X
24-Core Processor @ 3.8GHz and 64 GB main memory.

6.2 Comparison with Baseline

Figures 2 - 7 show the gain of GCW over NA as a function of the
number of competing products for AtIic or AtIlt in all data sets
(𝑘 = 10). Specifically, the gain corresponds to the increase of the
total similarity/influence 𝜎 (S). The gain grows with |𝐶 |, and in
some cases it exceeds 40% for |𝐶 | = 64. This happens because a
large number of seed nodes leads to extensive overlap among the
seed sets generated by NA. GCWavoids this problem because, when
choosing a seed set 𝑆 𝑗 for 𝑐 𝑗 , it does not consider users who are
likely to be aware of a more similar product 𝑐 𝑗 ′ as these users would
not be beneficial for 𝑐 𝑗 . With the exception of Flixster, the gains
are similar for AtIic and AtIlt. Note that each diagram illustrates
the mean and standard deviation (vertical lines) of 100 experiments
in Gowalla, Flixster, Last FM and 10 in Foursquare (due to its larger
size). The gain exhibits rather small standard deviation, despite the
fact that the set of competitors is different for each of the averaged
experiments.

Figures 8 and 9 illustrate the gain versus the seed set size for
Gowalla (𝑘-means) and Last-FM for |𝐶 | = 16. Similar to the case of
|𝐶 |, the gain, in general, increases with 𝑘 because large seed sets
exhibit more overlap for NA, while they present better optimization

Figure 2: Percentage gain of

GCW over NA as a function

of |𝐶 | (Gowalla, 𝑘-means)

Figure 3: Percentage gain of

GCW over NA as a function

of |𝐶 | (Gowalla, DGCD)

Figure 4: Percentage gain of

GCW over NA as a function

of |𝐶 | (Foursquare, 𝑘-means)

Figure 5: Percentage gain of

GCW over NA as a function

of |𝐶 | (Foursquare, DGCD)

Figure 6: Percentage gain of

GCW over NA as a function

of |𝐶 | (Flixster)

Figure 7: Percentage gain of

GCW over NA as a function

of |𝐶 | (Last FM)

opportunities for GCW. For instance, in the geosocial scenario, two
events that are close (in terms of Euclidean distance) compete for
users in their vicinity. The number of users who become aware of
the events grows with the seed set size, increasing the overlap and
the competition between the events. The diagrams for the other
data sets are similar and omitted due to limited space.

Figure 8: Percentage gain of

GCW over NA as a function

of 𝑘 (Gowalla, 𝑘-means)

Figure 9: Percentage gain of

GCW over NA as a function

of 𝑘 (Last FM)
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The bars in Figures 10 and 11 correspond to the normalized run-
ning time of GCW (i.e., time of GCW divided by time of NA) versus
the number of competing products and the budget, respectively, in
Gowalla. For large values of |𝐶 | and 𝑘 , GCW is slower than NA due
to the Monte Carlo simulations that each competitor performs at
the end of its best response in order to estimate the awareness prob-
abilities. However, for small values, GCW outperforms NA because
the most costly part is the computation of RR sets. GCW guides the
node selection for RR set generation, by excluding users likely to
be influenced by other competitors, while NA picks random nodes.
Consequently, GCW requires a smaller number of RR sets to meet
the quality guarantees of the underlying D-SSA, employed by both
NA and GCW. The diagrams also include the absolute values of
the running time in seconds for GCW (as numbers above the bars).
Interestingly, the absolute time drops as 𝑘 increases. This is due to
the D-SSA algorithm [34] used by both GCW and NA to generate
the RR sets. As shown in [34], and more clearly in a revised version
[24], D-SSA needs to form more RR sets for small values of 𝑘 .

Figure 10: Running time

of GCW over NA vs. |𝐶 |
(Gowalla, 𝑘-means)

Figure 11: Running time of

GCWover NA vs. 𝑘 (Gowalla,

𝑘-means)

6.3 Lower Bound and Convergence

The next set of experiments examines the quality of the approxi-
mation lower bound 𝑏, from Theorem 3, after a single round, when
competitors start with empty strategies and select seed sets in a
random order. Figures 12 - 13 show the average value of 𝑏, versus
the number of competitors |𝐶 |, for Gowalla and Last FM, respec-
tively (𝑘 = 10). In all cases 𝑏 is at least 0.2, and sometimes its value
approaches the optimal 𝑏∗ ≈ 0.387 for basic games. Accordingly,
even though GCW is not a basic game, in practice its lower bound
is not far of that for basic games.

Figure 12: Lower bound 𝑏 vs.

|𝐶 | (Gowalla, 𝑘-means)

Figure 13: Lower bound 𝑏 vs.

|𝐶 | (Last FM)

The observed values of 𝑏 indicate that GCW can reach a solution
with good quality guarantees within a single round. The last set of

experiments investigates the behavior of best response dynamics
with multiple rounds. Figures 14 and 15 show the total gain over NA
versus the number of rounds in Gowalla and Last FM, respectively
(|𝐶 | = 16 and 𝑘 = 10). There is some small improvement at round
2, and to a lesser degree at round 3, after which the gain remains
stable. As expected, very few rounds of best responses suffice for
convergence. Since each round performs roughly the same amount
of computations, the running time is proportional to the number
of rounds.

Figure 14: Gain over NA vs.

rounds (Gowalla, 𝑘-means)

Figure 15: Gain over NA vs.

rounds (Last FM)

Summarizing the evaluation, GCW significantly extends the
total influence compared to the baseline algorithm, especially in
the presence of numerous competing products with big budgets.
Moreover, a single round of best responses suffices to reach high
quality solutions, enabling the application of GCW to large graphs.

7 CONCLUSION

In collective influence maximization, the owner of multiple com-
peting products wishes to select a seed set for each product, so
that the total influence is maximized. We propose an Awareness-to-
Influence (AtI) diffusion model that separates the awareness and
influence processes. To compute the seed sets, we introduce GCW,
a monotone utility game with bounded price of anarchy. Based on
that, we show that a single round of best-response dynamics can
produce solutions with quality guarantees. An extensive experi-
mental evaluation demonstrates the effectiveness and efficiency of
the proposed methods. Our model assumes independent awareness
phases for the various products. Product interactions occur only
during the influence phase, when users adopt the product of highest
similarity among those that they became aware of. This assumption
enables monotonicity, sumodularity and the monotone utility game
property. Future work can investigate models with dependencies
in the awareness phase. Alternative models may also involve dif-
ferent types of influence. For instance, we may allow users to be
influenced simultaneously by multiple products to capture appli-
cations with non-exclusive influence requirements; e.g., when a
user can buy several advertised products. Another direction is to
replace the fixed budgets per product with a total budget that must
be split fairly among all products. Finally, it would be interesting
to compare GCW to other paradigms (e.g., local search, dynamic
programming) in terms of quality or efficiency.
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