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ABSTRACT
Computing the shortest path between a pair of nodes is a funda-

mental graph primitive, which has critical applications in vehicle

routing, finding functional pathways in biological networks, surviv-

able network design, among many others. In this work, we study

shortest-path queries over uncertain networks, i.e., graphs where

every edge is associated with a probability of existence. We show

that, for a given path, it is #P-hard to compute the probability of it

being the shortest path, and we also derive other interesting prop-

erties highlighting the complexity of computing the Most Probable

Shortest Paths (MPSPs). We thus devise sampling-based efficient

algorithms, with end-to-end accuracy guarantees, to compute the

MPSP. As a concrete application, we show how to compute a novel

concept of betweenness centrality in an uncertain graph using

MPSPs. Our thorough experimental results and rich real-world

case studies on sensor networks and brain networks validate the

effectiveness, efficiency, scalability, and usefulness of our solution.
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1 INTRODUCTION
Uncertain networks, i.e., graphs where each edge is associated with

a probability of existence, have received a great deal of attention

thanks to their expressivity and applicability in many real world

contexts. Researchers have studied 𝑘-nearest neighbor queries [39,

52], reachability queries [31], clustering [23], sampling [48], net-

work design [30], and embedding [24], just to mention a few. Un-

certainty in a network might arise due to noisy measurements [2],

edge imputation using inference and prediction models [1, 40], and

explicit manipulation of edges, e.g., for privacy purposes [7].

Shortest-path queries [8, 17, 27] are one of the fundamental

graph primitives with a plethora of applications, e.g., traffic routing,
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Path 𝑃 Length 𝑃𝑟 (Sh𝑡𝑠 (𝑃))
𝑃1 : (𝑠,𝑤, 𝑡) 2 0.0025

𝑃2 : (𝑠, 𝑥, 𝑡) 4 0.0224

𝑃3 : (𝑠,𝑦, 𝑡) 6 0.0609

𝑃4 : (𝑠, 𝑧, 𝑡) 8 0.8250

Figure 1: Example of paths in an uncertain graph: 𝑃𝑟 (Sh𝑡𝑠 (𝑃 )) de-
notes the probability that path 𝑃 is the shortest path from 𝑠 to 𝑡 .

finding functional pathways in biological networks. A critical appli-

cation of shortest paths is the computation of betweenness centrality
[10, 19, 43, 54], a measure of importance of a node based on its

effectiveness in connecting pairs of other nodes via shortest paths.

In this paper, we first study the fundamental problem of com-

puting shortest-path queries in uncertain networks, then we build

over it a measure of betweeness centrality. The notion of shortest

path in an uncertain graph should consider not only the length of

a path but also the probability of existence of all edges on the path.

Specifically, given an uncertain graph G, a source node 𝑠 , and a tar-

get node 𝑡 , our goal is to find the path 𝑃 from 𝑠 to 𝑡 with the highest

probability of being the shortest path (SP), i.e., the probability with

which 𝑃 exists and no path shorter than 𝑃 exists. We refer to such

a path as the Most Probable Shortest Path (MPSP) from 𝑠 to 𝑡 .

Example 1. Each edge in the uncertain graph in Figure 1 is anno-
tated with its length and its probability of existence. For the source
𝑠 and target 𝑡 , although the path 𝑃1 = (𝑠,𝑤, 𝑡) is the shortest (when
not considering probabilities), the one having the highest probability
of being the shortest path, i.e., theMPSP from 𝑠 to 𝑡 , is 𝑃4 = (𝑠, 𝑧, 𝑡),
which is also the longest path (when not considering probabilities).

ComputingMPSPs is useful inmany applications. Road networks

are modeled as uncertain graphs because of unexpected traffic jams

[25], where a vehicle driver may find the MPSP to the nearest

gas station or restaurant. MPSPs are also useful in routing over

wireless sensor networks, where links between sensor nodes have

a probability of failure. Many applications not only require the

shortest route, but also one with a high precision [22, 33], such

as being the shortest with a high probability. Brain networks are

often represented as weighted uncertain graphs, where nodes are

the brain regions of interest (ROIs), edges indicate potential co-

activation between ROIs, edge distance represents physical distance

between ROIs, and edge probability indicates the strength of the

co-activation signal [15]. Finding MPSPs between different ROIs

of the brain could differentiate healthy brains from those with

diseases, such as autism [16, 20]. In our experiments, we present
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two concrete use cases of MPSPs on sensor networks (§ 5.7) and

brain networks (§ 5.8).

1.1 Related Work
Several variants of shortest-path queries over uncertain graphs

have been studied in the literature. Work in [12, 13, 62] investigates

threshold-based shortest-path queries in uncertain graphs, i.e., the

problem of finding all paths having shortest-path probability larger

than a predefined threshold. In particular, [12, 13] consider a differ-

ent uncertain graph model with correlation. The work closest to

ours is probably [63], which considers MPSP queries as we do, but

it does not provide any hardness result or any accuracy guarantee.

In [63], similar to [13, 62], a filtering-and-verification framework

is used, which enumerates paths between the two given nodes in

increasing order of length, without considering edges’ probabili-

ties, till a termination criterion is achieved. Among the candidate

paths generated, a sampling method is applied (e.g., the Luby-Karp

algorithm [28]) to approximately measure each candidate path’s

probability of being the shortest path. However, it may happen that

theMPSP (the path we are looking for) is not one of the shortest few

paths when one does not consider probabilities (as in Example 1). In

this case, a filtering-and-verification approach would have to enu-

merate a large number of paths before including the real MPSP in

the candidate set. Thus we ask the question: can we quickly include
the MPSP in the candidate set, without requiring to enumerate all
paths shorter than theMPSP? To address this, we combine Monte

Carlo (MC) sampling with Dijkstra’s algorithm (referred to as Dijk-

stra+MC) from the source node. That is, when a node is reached via

Dijkstra’s algorithm, its outgoing edges are sampled according to

their probabilities, and only the sampled edges are considered for

choosing the next node. As formally proved in § 3.3, our method

will need only a small number (≈ 20) of Dijkstra+MC runs to in-

clude the MPSP in the candidate set with a high probability. We

demonstrate this with an example.

Example 2. In Figure 1, there are four paths from 𝑠 to 𝑡 . The path
𝑃4 (the longest path) is the MPSP. The probabilities of the edges in 𝑃4
are much larger than those of the edges in the other paths. Hence, a
run of Dijkstra+MC on this graph produces the path 𝑃4 with a higher
probability, since the other edges are highly unlikely to be sampled.
Thus, we need only a small number of such runs (maybe 1 or 2) to
include 𝑃4 in the candidate set. On the other hand, the method in [63]
requires all the three remaining paths to be enumerated before 𝑃4,
which is clearly more time-consuming.

The idea of Dijkstra+MC (or BFS+MC in an uncertain graph

that does not consider edge lengths) has been extensively used in

probabilistic reachability queries [26, 31, 33] and to build reverse-

reachable sketches for the influence maximization problem [9, 57].

The work in [12], discussed before, also employs a form of Dijk-

stra+MC, followed by the Horvitz-Thompson (HT) unequal proba-

bility estimator, to compute the probability of being the shortest

path heuristically, without any accuracy guarantee. While we em-

ploy Dijkstra+MC for effective and faster candidate generation,

we then apply the Luby-Karp sampling to find the MPSP in this

candidate set. Unlike [12], we provide end-to-end accuracy guaran-

tees of our method, and we also experimentally demonstrate the

superiority of our approach over [12].

1.2 Contributions and Roadmap
We formally define the concept of the Most Probable Shortest Path

(MPSP) in an uncertain graph (§ 2), prove that our problem is

#P-hard, and also derive other interesting properties highlighting

the complexity of computingMPSPs (§ 2.1). We discuss an earlier

baseline solution [63], together with its shortcomings (§ 2.2). In § 3,

we propose our sampling based efficient algorithms, with end-to-

end accuracy guarantees, to compute theMPSP.

We then focus on three important generalizations of our problem:

first we study top-𝑘 MPSP queries for 𝑘 > 1 (§ 3.2); followed by

single-source and single-targetMPSP queries (§ 3.4); thenMPSPs

over uncertain multi-graphs (§ 3.5). The last one provides a general

data model, since it allows one to model the uncertainty as a prob-

ability distribution of the length of an edge: for instance, in road

networks, it canmodel the probability distribution of travel times on

specific road segments. Furthermore, we studyMPSP-Betweenness-

Centrality and develop efficient sampling strategies to compute the

top-𝑘 central nodes, with theoretical quality guarantees (§ 4).

Finally, we conduct thorough experiments (§ 5) showing scalabil-

ity over large-scale datasets and performance improvements against

state-of-the-art methods [12, 63]. We also develop interesting case

studies with sensor (§ 5.7) and brain (§ 5.8) networks.

2 PRELIMINARIES
Let G = (𝑉 , 𝐸,𝑊 , 𝑝) be a probabilistic (or uncertain) directed graph,
where𝑊 : 𝐸 → R≥0 defines non-negative edge length, and 𝑝 :

𝐸 → (0, 1] is a function that assigns a probability of existence

to each edge. Following the bulk of the literature on uncertain

graphs [5, 26, 34, 35, 52, 59, 62, 63], we adopt the well-established

possible world semantics and assume that edge probabilities are

independent of each other: the uncertain graph G is interpreted

as a probability distribution over the 2
|𝐸 |

deterministic graphs

(possible worlds) 𝐺 = (𝑉 , 𝐸𝐺 ,𝑊 ) ⊑ G obtained by sampling each

edge 𝑒 ∈ 𝐸 independently at random with probability 𝑝 (𝑒). That is,
the probability of observing the possible world 𝐺 = (𝑉 , 𝐸𝐺 ,𝑊 ) is:

𝑃𝑟 (𝐺) =
∏︂
𝑒∈𝐸𝐺

𝑝 (𝑒)
∏︂

𝑒∈𝐸\𝐸𝐺
(1 − 𝑝 (𝑒)) (1)

Given a pair of distinct nodes (𝑠, 𝑡) ∈ 𝑉 ×𝑉 , a (simple) path 𝑃 from 𝑠

to 𝑡 is an ordered sequence of edges denoted by 𝑃 = (𝑒1, 𝑒2, . . . , 𝑒𝑛),
such that 𝑒𝑖 = (𝑢𝑖 , 𝑢𝑖+1) ∈ 𝐸 for all 𝑖 ∈ {1, 2, . . . , 𝑛}, 𝑢1 = 𝑠 , 𝑢𝑛+1 = 𝑡

and 𝑢𝑖 ≠ 𝑢 𝑗 for 𝑖 ≠ 𝑗 . For this path, the nodes 𝑠 and 𝑡 are called

the source and target nodes respectively, while the remaining ones

constitute the set 𝐼𝑛𝑡 (𝑃) of internal nodes. The length of the path 𝑃 is

the sum of lengths of its edges:𝑊 (𝑃) = ∑︁𝑛
𝑖=1𝑊 (𝑒𝑖 ). A shortest path

from 𝑠 to 𝑡 in a deterministic graph 𝐺 is one having the minimum

length, and we denote by 𝑆𝑃 (𝐺, 𝑠, 𝑡) the set of all such paths.

In an uncertain graph G, let P(G, 𝑠, 𝑡) denote the set of all paths
from 𝑠 to 𝑡 . Given a path 𝑃 , the event that 𝑃 exists (resp. does not ex-

ist) is denoted by X(𝑃) (resp. X(𝑃)), and 𝑃𝑟
(︁
X(𝑃)

)︁
=

∏︁𝑛
𝑖=1 𝑝 (𝑒𝑖 ) =

1 − 𝑃𝑟
(︁
X(𝑃)

)︁
. We also denote by Sh𝑡𝑠 (𝑃) the event that 𝑃 happens

to be a shortest path from 𝑠 to 𝑡 , whose probability is:

𝑃𝑟 (Sh𝑡𝑠 (𝑃)) =
∑︂
𝐺⊑G

𝑃𝑟 (𝐺) × 1[𝑃 ∈ 𝑆𝑃 (𝐺, 𝑠, 𝑡)] (2)

where 1[.] is the indicator function.
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The main problem studied in this paper is as follows.

Problem 1 (Most Probable Shortest Path (MPSP)). Given
an uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝) and two nodes 𝑠, 𝑡 ∈ 𝑉 , find the
Most Probable Shortest Path (MPSP) from 𝑠 to 𝑡 . Formally:

𝑀𝑃𝑆𝑃 (G, 𝑠, 𝑡 ) = argmax

𝑃∈P(G,𝑠,𝑡 )
𝑃𝑟 (Sh𝑡𝑠 (𝑃 )) (3)

2.1 Hardness of the Problem
One factor that makes Problem 1 challenging is that even computing

the probability of being the shortest path between two given nodes,

for a given path, is hard.

Theorem 1. Given an uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝) and a
path 𝑃 ∈ P(G, 𝑠, 𝑡), the problem of computing the probability of 𝑃
being a shortest path from 𝑠 to 𝑡 in G is #P-hard.

Proof. We prove the #P-hardness by polynomial-time reduction

from the 𝑠-𝑡 connectedness problem, which is known to be #P-hard
[59]. Given a certain (deterministic) graph 𝐺 = (𝑉 , 𝐸), and two

nodes 𝑠 and 𝑡 , the goal of the 𝑠-𝑡 connectedness problem is to find

the number of subgraphs of 𝐺 in which there is a path from 𝑠 to 𝑡 .

Consider an arbitrary instance of the 𝑠-𝑡 connectedness problem

with inputs 𝐺 = (𝑉1, 𝐸1) and two nodes 𝑠, 𝑡 ∈ 𝑉1. Let 𝑛 = |𝑉1 |.
The deterministic graph 𝐺 is converted to an uncertain graph G =

(𝑉1 ∪𝑉2, 𝐸1 ∪𝐸2,𝑊 , 𝑝), where𝑉2 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} is a set of 𝑛 new

nodes and 𝐸2 = {(𝑠, 𝑣1), (𝑣1, 𝑣2), (𝑣2, 𝑣3), . . . , (𝑣𝑛−1, 𝑣𝑛), (𝑣𝑛, 𝑡)}. In
other words, 𝐺 is augmented with a new path 𝑃 from 𝑠 to 𝑡 . The

functions𝑊 and 𝑝 are defined ∀𝑒 ∈ 𝐸1 ∪ 𝐸2 as𝑊 (𝑒) = 1 and

𝑝 (𝑒) =
{︄
1

2
if 𝑒 ∈ 𝐸1

1 if 𝑒 ∈ 𝐸2
We make three observations. (𝑖) Every possible world 𝐺 ′ ⊑ G
for which 𝑃𝑟 (𝐺 ′) > 0 contains the path 𝑃 and satisfies 𝑃𝑟 (𝐺 ′) =(︁
1

2

)︁ |𝐸1 |
. (𝑖𝑖) There is a bijection between the set of subgraphs of

𝐺 and the set of possible worlds of G with non-zero probability.

A subgraph 𝐺 ′′ = (𝑉 ′′, 𝐸 ′′) of 𝐺 can be mapped to the possible

world 𝐺 ′ = (𝑉 ′′ ∪ 𝑉2, 𝐸 ′′ ∪ 𝐸2,𝑊 ) of G. This mapping is clearly

one-to-one, since𝑉 ′′∩𝑉2 = 𝜙 and 𝐸 ′′∩𝐸2 = 𝜙 by definition. To see

why it is onto, note that any possible world of G, that exists with
positive probability, must contain all edges in 𝐸2, since 𝑝 (𝑒) = 1

∀𝑒 ∈ 𝐸2. Hence, given a possible world𝐺 ′ = (𝑉 ′, 𝐸 ′,𝑊 ) of G, there
exists a subgraph𝐺 ′′ = (𝑉 ′ \𝑉2, 𝐸 ′ \𝐸2,𝑊 ) which is the pre-image

of𝐺 ′ under the mapping. (𝑖𝑖𝑖) For a subgraph𝐺 ′′ = (𝑉 ′′, 𝐸 ′′) of𝐺
and its corresponding possible world 𝐺 ′ = (𝑉 ′′ ∪𝑉2, 𝐸 ′′ ∪ 𝐸2,𝑊 )
of G, 𝑃 is the shortest path from 𝑠 to 𝑡 in 𝐺 ′ if and only if 𝑠 and 𝑡

are disconnected in 𝐺 ′′. The ‘if’ part is trivial. The ‘only if’ part
follows since𝑊 (𝑃) = 𝑛 + 1 and𝑊 (𝑃 ′) ≤ 𝑛 − 1, where 𝑃 ′ denotes
any path from 𝑠 to 𝑡 in 𝐺 ′′.

Putting together the above observations, we obtain the following:

𝑃𝑟 (Sh𝑡𝑠 (𝑃)) =
∑︂

𝐺′⊑G
𝑃𝑟 (𝐺 ′) × 1[𝑃 ∈ 𝑆𝑃 (𝐺 ′, 𝑠, 𝑡)]

= 1 −
∑︂

𝐺′⊑G
𝑃𝑟 (𝐺 ′) × 1[𝑃 ∉ 𝑆𝑃 (𝐺 ′, 𝑠, 𝑡)]

= 1 −
(︃
1

2

)︃ |𝐸1 | ∑︂
𝐺′⊑G :𝑃𝑟 (𝐺′)>0

1[𝑃 ∉ 𝑆𝑃 (𝐺 ′, 𝑠, 𝑡)]

𝑠 𝑡

𝑤

𝑢 𝑣
10, 0.1

2, 0.9 10, 0.9

4, 0.9

3, 0.4

5, 0.6

Path P W(P) 𝑃𝑟 (Sh𝑡𝑠 (𝑃))
(𝑠,𝑢,𝑤, 𝑡) 18 0.024

(𝑠,𝑢, 𝑣,𝑤, 𝑡) 21 0.029

(𝑠,𝑢, 𝑣, 𝑡) 22 0.035

Figure 2: An example to demonstrate properties of MPSP

From observation (𝑖𝑖𝑖), the summation term in the last line is ex-

actly the number of subgraphs of 𝐺 in which the nodes 𝑠 and 𝑡

are connected. Thus, a solution to our problem on G provides a

solution to the 𝑠-𝑡 connectedness problem on 𝐺 . This reduction

involves O(𝑛) node and edge additions to𝐺 , and hence takes time

polynomial in the size of 𝐺 . □

In addition to #P-hardness, there are some other properties of

MPSPs that make our problem hard.Many of the classical properties
of shortest paths over deterministic graphs no longer hold forMPSPs in
uncertain graphs. For instance, the concatenation of twoMPSPs, and

a subpath of anMPSP, are not necessarilyMPSPs. We demonstrate

these properties next, using the uncertain graph G in Figure 2.

In the following, we denote byM(G, 𝑠, 𝑡) the set of MPSPs from

𝑠 to 𝑡 , and byM(G) the set of allMPSPs between all pairs of nodes,

i.e,.M(G) = ⋃︁
(𝑠,𝑡 ) ∈𝑉×𝑉 M(G, 𝑠, 𝑡).

Observation 1. Given an uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝), an
MPSP 𝑃 ∈ M(G) and a subpath𝑄 of 𝑃 , it is possible that𝑄 ∉ M(G).

Consider the path (𝑠,𝑢, 𝑣, 𝑡) ∈ M(G, 𝑠, 𝑡) and its subpath (𝑣, 𝑡).
The probabilities of being a shortest path from 𝑣 to 𝑡 turn out to be

𝑃𝑟 (Sh𝑡𝑣 (𝑣, 𝑡)) = 0.414 and 𝑃𝑟 (Sh𝑡𝑣 (𝑣,𝑤, 𝑡)) = 0.540, so that (𝑣, 𝑡) is
not even the MPSP from 𝑣 to 𝑡 . The observation follows.

Given two paths 𝑃 = (𝑒1, . . . , (𝑢, 𝑣)) and𝑄 = ((𝑣,𝑤), . . . , 𝑒𝑛), the
concatenation of 𝑃 and𝑄 , denoted by 𝑃 ·𝑄 , is defined as the sequence

𝑃 · 𝑄 = (𝑒1, . . . , (𝑢, 𝑣), (𝑣,𝑤), . . . , 𝑒𝑛). Note that the concatenation
of two paths 𝑃 and 𝑄 is defined only when the target node of 𝑃 is

the same as the source node of 𝑄 . The next observation states that

the concatenation of twoMPSPs is not necessarily anMPSP.

Observation 2. Given an uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝) and
twoMPSPs 𝑃,𝑄 ∈ M(G), such that the target node of 𝑃 is the same
as the source node of 𝑄 , it is possible that 𝑃 ·𝑄 ∉ M(G).

Notice that since 𝑃 = (𝑠,𝑢, 𝑣) is the only path from 𝑠 to 𝑣 , it is

clear thatM(G, 𝑠, 𝑣) = {(𝑠,𝑢, 𝑣)}. Also, as shown in Observation

1, 𝑄 = (𝑣,𝑤, 𝑡) ∈ M(G, 𝑣, 𝑡). However, 𝑃 ·𝑄 = (𝑠,𝑢, 𝑣,𝑤, 𝑡) = 𝑃2 ∉

M(G, 𝑠, 𝑡), and hence 𝑃 ·𝑄 ∉ M(G).

2.2 Baseline: Filtering-and-Verification
In our experiments (§5) we use as a baseline the filtering-and-

verification approach of [63]. This method consists of two steps:

generating a set of candidate paths containing theMPSP, and using

Luby-Karp sampling to find theMPSP in this set.

For step 1, given a source 𝑠 and a target 𝑡 , Yen’s algorithm [61] is

used to progressively generate 𝑠-𝑡 paths 𝑃1, 𝑃2, 𝑃3, . . . in ascending

order of lengths. For any 𝑖 , using paths 𝑃1, . . . , 𝑃𝑖 , a lower bound

𝐿𝐵(𝑃𝑖 ) and an upper bound𝑈𝐵(𝑃𝑖 ) on the probability that the path

𝑃𝑖 is the SP is computed. The upper bound is monotonically decreas-

ing in 𝑖 , and hence, if 𝑈𝐵(𝑃𝑖 ) < 𝜖 for some 𝜖 > 0, 𝑈𝐵(𝑃 𝑗 ) < 𝜖 for

all 𝑗 > 𝑖 . For including theMPSP in the candidate set, the algorithm
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continues to generate paths until 𝑈𝐵(𝑃𝑖+1) < max𝑗 ∈[1,𝑖 ] {𝐿𝐵(𝑃 𝑗 )}
for some 𝑖 . This gives the candidate set {𝑃1, . . . , 𝑃𝑖 }.

Step 2 consists of running the Luby-Karp algorithm [28] to ap-

proximate the probability that each path in the candidate set is the

MPSP. It returns the path with the highest such probability.

Two major shortcomings have an influence on the performance

of this method. First, the number of candidates generated can be

very large, even exponential in the input size. For both lower bounds

𝐿𝐵 given in [63], it holds that 𝐿𝐵(𝑃 𝑗 ) ≤ 𝑃𝑟 (X(𝑃 𝑗 )). The upper

bound on the probability of path 𝑃𝑖 being the SP is computed as

𝑈𝐵(𝑃𝑖 ) = 1 − ∑︁𝑖−1
𝑗=1 𝐿𝐵(𝑃 𝑗 ). If the probability of existence of the

MPSP is low, then those of the other shorter paths would generally

be low. Hence, the upper bound will decrease very slowly, and it

can take a lot of time before the candidate generation terminates.

The second shortcoming is the computational cost of candidate

generation. Assume that we generate 𝑘 paths before the candidate

generation terminates. This step has time complexity O(𝑘 |𝑉 | ( |𝐸 | +
|𝑉 | log |𝑉 |)). As mentioned in the first shortcoming, the number

of candidates 𝑘 can become very large, and even if it is small, we

have the |𝑉 | |𝐸 | factor. Empirically (§5) we find that the candidate

generation does not finish in one hour for our synthetic datasets.

3 PROPOSED SOLUTION
We propose a two-phase algorithm to approximate theMPSP be-

tween two nodes in an uncertain graph. In the first phase we

compute paths that are candidates for being the MPSP (via Dijk-

stra+MC), and in the second phase we approximate the probability

of each candidate path being the shortest path (via Luby-Karp algo-

rithm). Our method is described in § 3.1 and theoretical guarantees

on the quality of the returned path are provided in § 3.3.

Dijkstra+MC is simple, yet effective and efficient for candidate

generation as we argued in Example 2 (§ 1.1). Our novel algorithmic

contributions include pairing up Dijkstra+MC with the Luby-Karp

algorithm for ultimately finding the MPSP approximately, with

accuracy guarantees. Empirical results show that our algorithm has

better accuracy and scalability over the baseline [63] (§2.2), and

over more advanced sampling approaches, e.g., Horvitz-Thompson

unequal probability estimator (we demonstrate it in §5.4). Among

other novel algorithmic contributions, we extend our method to

find the top-𝑘 MPSPs for 𝑘 > 1 (§ 3.2), single-source and single-

targetMPSP queries (§ 3.4), and to compute theMPSPs in uncertain

multi-graphs (§ 3.5). Our final technical contribution is to define

a novel MPSP-Betweenness-Centrality as a concrete application

(§ 4); we then develop efficient sampling strategies to compute the

top-𝑘 central nodes, with theoretical quality guarantees.

3.1 Two-Phase Algorithm
In Algorithm 1 we describe our two-phase approach.

Phase 1:Dijkstra+MC.Given an uncertain graphG = (𝑉 , 𝐸,𝑊 , 𝑝)
and two nodes (𝑠, 𝑡) ∈ 𝑉 ×𝑉 , the first phase involves computing

paths that are candidates for being the MPSP from 𝑠 to 𝑡 . This is

done by performing𝑚 independent runs of Dijkstra’s algorithm

on G, where𝑚 is a hyperparameter (lines 2 to 7 of Algorithm 1).

Dijkstra’s algorithm on an uncertain graph is similar to the classic

algorithm on deterministic graphs, except that when the algorithm

Algorithm 1 Approximating theMPSP from 𝑠 to 𝑡

Input: Uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝) , source 𝑠 , target 𝑡 , positive integers𝑚 and 𝑁
Output: An (approximate)MPSP from 𝑠 to 𝑡
1: 𝐶𝑃 ← 𝜙
2: for 𝑖 = 1 to𝑚 do
3: 𝑃 ← Alg. 2 (G, 𝑠, 𝑡 )
4: if 𝑃 ≠ 𝑃𝜙 then
5: 𝐶𝑃 ← 𝐶𝑃 ∪ {𝑃 }
6: end if
7: end for
8: 𝐿𝑃 ← All paths in𝐶𝑃 in increasing order of length

9: for 𝑖 = 1 to |𝐿𝑃 | do
10: ˆ︁p(𝐿𝑃 [𝑖 ]) ← Alg. 3 (G, 𝑠 , 𝑡 , 𝐿𝑃 [𝑖 ], {𝐿𝑃 [1], . . ., 𝐿𝑃 [𝑖 − 1] }, 𝑁 )

11: end for
12: return argmax𝑃∈𝐿𝑃 [ˆ︁p(𝑃 ) ]
Algorithm 2 Candidate Generation with Dijkstra+MC

Input: Uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝) , source 𝑠 , target 𝑡
Output: A path from 𝑠 to 𝑡
1: 𝑢 ← 𝑠 , 𝑣𝑖𝑠 ← {𝑠 }, P[𝑣 ] ← 𝑃𝜙 ∀𝑣 ∈ 𝑉
2: repeat
3: for all 𝑒 = (𝑢, 𝑣) ∈ 𝐸 s.t. 𝑣 ∉ 𝑣𝑖𝑠 do
4: if𝑊 (P[𝑣 ]) >𝑊 (P[𝑢 ]) +𝑊 (𝑒) then
5: With probability 𝑝 (𝑒) , P[𝑣 ] ← P[𝑢 ] · (𝑒)
6: end if
7: end for
8: 𝑢 ← argmin𝑣∈𝑉 \𝑣𝑖𝑠𝑊 (P[𝑣 ])
9: 𝑣𝑖𝑠 ← 𝑣𝑖𝑠 ∪ {𝑢 }
10: until𝑢 = 𝑡 or P[𝑢 ] = 𝑃𝜙
11: return P[𝑡 ]

Algorithm 3 Estimate 𝑃𝑟 (Sh𝑡𝑠 (𝑃)) for a path 𝑃 from 𝑠 to 𝑡

Input: Uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝) , source 𝑠 , target 𝑡 , 𝑠-𝑡 paths 𝑃 and {𝑃1, . . . , 𝑃𝑛 }
shorter than 𝑃 , positive integer 𝑁

Output: An estimate of 𝑃𝑟 (Sh𝑡𝑠 (𝑃 ))
1: 𝐶 ← 0, 𝑆 ← ∑︁𝑛

𝑖=1
𝑃𝑟

(︁
X(𝑃𝑖 \ 𝑃 )

)︁
2: for 𝑟 = 1 to 𝑁 do

3: Sample 𝑖 ∈ [1, 𝑛] with probability

𝑃𝑟
(︁
X(𝑃𝑖 \𝑃 )

)︁
𝑆

4: Sample𝐺 = (𝑉 , 𝐸𝐺 ,𝑊 ) ⊑ G such that (𝑃𝑖 \ 𝑃 ) ⊆ 𝐸𝐺
5: if ∀( 𝑗 < 𝑖) [ (𝑃 𝑗 \ 𝑃 ) ⊈ 𝐸𝐺 ] then
6: 𝐶 ← 𝐶 + 1
7: end if
8: end for
9: ˆ︁𝑝 ← 𝐶

𝑁
× 𝑆

10: return (1 − ˆ︁𝑝) × 𝑃𝑟 (︁X(𝑃 ) )︁
reaches a node in the uncertain graph, its outgoing edges are sam-

pled according to their respective probabilities (Algorithm 2). At

any stage, only the sampled edges are considered for choosing the

next node. This is equivalent to running Dijkstra’s algorithm on

a possible world 𝐺 ⊑ G. If 𝑡 is reachable from 𝑠 in the sampled

possible world 𝐺 , then Dijkstra’s algorithm on 𝐺 results in an 𝑠-𝑡

path which is added to the set of candidate paths denoted by 𝐶𝑃 .

Otherwise, if 𝑡 is not reachable, then an empty path (denoted by 𝑃𝜙
in Algorithms 1 and 2) is returned.

Phase 2: Probability Approximation. In the second phase, the

Luby-Karp algorithm (Algorithm 3) is employed to compute an

approximation of the probability of each candidate path being the

shortest 𝑠-𝑡 path in G. Intuitively, given a path 𝑃 and some other

shorter paths from 𝑠 to 𝑡 , along with a hyperparameter 𝑁 , the

algorithm first estimates the probability ˆ︁𝑝 of existence of any of

the paths shorter than 𝑃 by generating 𝑁 suitable possible worlds

via Monte Carlo sampling, and then it returns the value (1 − ˆ︁𝑝) ×
𝑃𝑟

(︁
X(𝑃)

)︁
as an estimate of 𝑃𝑟 (Sh𝑡𝑠 (𝑃)).

Notice that in order to approximate the probability of a path

𝑃 being the shortest path in G, the Luby-Karp algorithm, as de-

scribed in [63], requires as input all the paths that are shorter than
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𝑃 . Although the set of candidate paths computed after𝑚 runs of Al-

gorithm 2 does not necessarily include all such paths, we shall show

in § 3.3 that we can still provide good approximation guarantees.

Time Complexity. In Phase 1, we perform𝑚 Dijkstra’s runs on

the uncertain graph G, which has time complexity O
(︁
𝑚( |𝐸 | +

|𝑉 | log |𝑉 |)
)︁
. However, due to sampling of edges, Dijkstra is run on

a smaller graph than the original uncertain graph, thus practically

it is even more efficient. In Phase 2, first we need to sort (at most)𝑚

distinct candidate paths. This step requires O(𝑚 log𝑚) time. Then,

we run Algorithm 3 for each candidate path, which has time com-

plexity O(𝑁 |𝐸 |), 𝑁 being the number of Monte Carlo (MC)-runs

in the Luby-Karp algorithm. Therefore, the overall time complexity

of our method is: O (𝑚 (𝑁 |𝐸 | + |𝑉 | log |𝑉 | + log𝑚)).
Space Complexity. Both Dijkstra+MC and Luby-Karp have lower

memory footprints, and do not have much additional overhead

other than storing the graph, which is O(|𝐸 |+ |𝑉 |) via adjacency list.
Additionally, Dijkstra+MC generates at most𝑚 candidate paths,

which require at most O(𝑚 |𝐸 |) storage, but practically it is less

since a path generally has fewer than |𝐸 | edges. Thus, the space
complexity of our method is: O(𝑚 |𝐸 | + |𝑉 |).

3.2 Extension to Top-𝑘 MPSPs
The method presented in §3.1 can be easily extended to compute the

top-𝑘 MPSPs where𝑘 > 1. We notice that if the number of candidate

paths is smaller than or equal to 𝑘 , we return all the candidate paths.

Otherwise, we modify Algorithm 1 so that it stores every candidate

path 𝑃 and the estimate of 𝑃𝑟 (Sh𝑡𝑠 (𝑃)) in decreasing order of the

probabilities, and then it returns the top-𝑘 elements.

We provide theoretical guarantees that with a high probability,
the true top-𝑘 shortest paths are the ones returned by our algorithm.

3.3 Accuracy Guarantees
As a first step, notice that an 𝑠-𝑡 path 𝑃 is returned after one run of

Algorithm 2 if and only if Algorithm 2 samples a possible world of

G in which 𝑃 is a shortest path from 𝑠 to 𝑡 . Thus, the probability of

the former is equal to that of the latter, which, by definition, is equal

to 𝑃𝑟 (Sh𝑡𝑠 (𝑃)). Extending this to𝑚 runs of Algorithm 2, denoting

by𝐶𝑃 the set of all (candidate) paths returned, for any given path 𝑃 ,

we have 𝑃𝑟 (𝑃 ∈ 𝐶𝑃) = 1−
(︁
1 − 𝑃𝑟 (Sh𝑡𝑠 (𝑃))

)︁𝑚
. Further extending to

𝑘 paths, the probability of any given set {𝑃1, . . . , 𝑃𝑘 } of 𝑘 𝑠-𝑡 paths

being included in 𝐶𝑃 is, by the inclusion-exclusion principle:

𝑃𝑟 ( {𝑃1, . . . , 𝑃𝑘 } ⊆ 𝐶𝑃 ) = 𝑃𝑟

(︄
𝑘⋀︂
𝑖=1

𝑃𝑖 ∈ 𝐶𝑃
)︄
= 1 − 𝑃𝑟

(︄
𝑘⋁︂
𝑖=1

𝑃𝑖 ∉ 𝐶𝑃

)︄
=

𝑘∑︂
𝑖=0

(−1)𝑖
∑︂

𝑆⊆{𝑃1,...,𝑃𝑘 } : |𝑆 |=𝑖

(︄
1 −

∑︂
𝑃∈𝑆

𝑃𝑟 (Sh𝑡𝑠 (𝑃 ))
)︄𝑚 (4)

A key observation is that, for an MPSP 𝑃∗, 𝑃𝑟 (𝑃∗ ∈ 𝐶𝑃) is very
high for a reasonably large value of 𝑃𝑟 (Sh𝑡𝑠 (𝑃∗)), even for small

𝑚. For example, consider the MPSP 𝑃4 in the graph in Figure 1

for which 𝑃𝑟 (Sh𝑡𝑠 (𝑃4)) = 0.825. Setting 𝑚 = 20 yields 𝑃𝑟 (𝑃4 ∈
𝐶𝑃) > 0.999. Also, in our experiments, the path 𝑃 returned by our

method for most of the synthetic networks and the road networks

for the smaller hop queries satisfies 𝑃𝑟 (Sh𝑡𝑠 (𝑃∗)) > 0.06, and hence

𝑃𝑟 (𝑃∗ ∈ 𝐶𝑃) > 0.7 with𝑚 = 20.

Before proceeding, we define some useful notations that we will

use throughout the remainder of the section. Given an uncertain

graph G = (𝑉 , 𝐸,𝑊 , 𝑝), a source node 𝑠 , a target node 𝑡 , a set of 𝑠-𝑡
paths 𝐶𝑃 , and any path 𝑃 ∈ 𝐶𝑃 , we use the following notation:
• A(𝑃) : Set of all paths in G that are shorter than 𝑃 .

• C(𝑃) : Set of all paths in 𝐶𝑃 shorter than 𝑃 , i.e., 𝐶𝑃 ∩ A(𝑃).
• M(𝑃) = A(𝑃) \ C(𝑃).
• pne

(︁
𝑃,C(𝑃)

)︁
: Probability that 𝑃 exists and no path in C(𝑃)

exists, i.e., 𝑃𝑟
(︁
X(𝑃)

)︁ [︁
1 − 𝑃𝑟

(︁ ⋃︁
𝑄 ∈C(𝑃 ) X(𝑄 \ 𝑃)

)︁ ]︁
where

𝑄 \ 𝑃 is the set of all edges in 𝑄 that are not in 𝑃 . Clearly,

pne
(︁
𝑃,A(𝑃)

)︁
= 𝑃𝑟 (Sh𝑡𝑠 (𝑃)).

• pm
(︁
𝑃,C(𝑃)

)︁
: Sum (over all paths𝑄 shorter than 𝑃 and miss-

ing from𝐶𝑃 ) of the probability that𝑄 is the shortest 𝑠-𝑡 path

and that 𝑃 exists, i.e.,

∑︁
𝑄 ∈M(𝑃 ) 𝑃𝑟 (Sh𝑡𝑠 (𝑄) ∧ X(𝑃)).

• ˆ︁p(︁
𝑃,C(𝑃)

)︁
: Output of Alg. 3 (G, 𝑠 , 𝑡 , 𝑃 , C(𝑃), 𝑁 ).

Even if the true top-𝑘 MPSPs are included in𝐶𝑃 , the probability

of them being the paths finally returned depends on the quality of

the approximation computed in Algorithm 3 for every single path

in 𝐶𝑃 . Fortunately, there is a guarantee on this quality [29, 63].

Theorem 2 ([29, 63]). Given an uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝),
a source node 𝑠 and a target node 𝑡 , a set of 𝑠-𝑡 paths 𝐶𝑃 , and a path
𝑃 ∈ 𝐶𝑃 , ˆ︁p(︁

𝑃,C(𝑃)
)︁
is an accurate estimate of pne

(︁
𝑃,C(𝑃)

)︁
with a

high probability. More formally, for all 𝜖 ∈ [0, 2],

𝑃𝑟

(︂ |︁|︁ˆ︁p(︁
𝑃,C(𝑃 )

)︁
− pne

(︁
𝑃,C(𝑃 )

)︁ |︁|︁ ≥ 𝜖

)︂
≤ 2 exp

(︃
− 𝑁𝜖2

4 |C(𝑃 ) |

)︃
(5)

However, as mentioned in § 3.1, the quality of approximating

𝑃𝑟 (Sh𝑡𝑠 (𝑃)) could be hampered because the set 𝐶𝑃 computed after

𝑚 runs of Algorithm 2 may not include all paths shorter than the

path in question. We shall show that, even then, the approximation

made byAlgorithm 3 is very accurate with a high probability. To this

end, we first provide a lower and an upper bound on the difference

in the SP probability resulting from missing out some shorter paths.

Theorem 3. Given an uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝), a source
node 𝑠 , and a target node 𝑡 , let 𝐶𝑃 denote a set of paths from 𝑠 to 𝑡 .
Consider a path 𝑃 ∈ 𝐶𝑃 . Then

0 ≤ pne
(︁
𝑃,C(𝑃 )

)︁
− 𝑃𝑟 (Sh𝑡𝑠 (𝑃 )) ≤ pm

(︁
𝑃,C(𝑃 )

)︁
(6)

Proof. We have, by definition, the following:

pne
(︁
𝑃,C(𝑃 )

)︁
= 𝑃𝑟

(︁
X(𝑃 )

)︁ ⎡⎢⎢⎢⎢⎣1 − 𝑃𝑟 ⎛⎜⎝
⋃︂

𝑄∈C(𝑃 )
X(𝑄 \ 𝑃 )⎞⎟⎠

⎤⎥⎥⎥⎥⎦
𝑃𝑟 (Sh𝑡𝑠 (𝑃 )) = 𝑃𝑟

(︁
X(𝑃 )

)︁ ⎡⎢⎢⎢⎢⎣1 − 𝑃𝑟 ⎛⎜⎝
⋃︂

𝑄∈A(𝑃 )
X(𝑄 \ 𝑃 )⎞⎟⎠

⎤⎥⎥⎥⎥⎦
Let us define:

𝐷𝐴 = 𝑃𝑟
⎛⎜⎝

⋃︂
𝑄∈A(𝑃 )

X(𝑄 \ 𝑃 )⎞⎟⎠ , 𝐷𝐶 = 𝑃𝑟
⎛⎜⎝

⋃︂
𝑄∈C(𝑃 )

X(𝑄 \ 𝑃 )⎞⎟⎠
This means that

pne
(︁
𝑃,C(𝑃 )

)︁
− 𝑃𝑟 (Sh𝑡𝑠 (𝑃 ))

= 𝑃𝑟
(︁
X(𝑃 )

)︁ ⎡⎢⎢⎢⎢⎣𝑃𝑟 ⎛⎜⎝
⋃︂

𝑄∈A(𝑃 )
X(𝑄 \ 𝑃 )⎞⎟⎠ − 𝑃𝑟 ⎛⎜⎝

⋃︂
𝑄∈C(𝑃 )

X(𝑄 \ 𝑃 )⎞⎟⎠
⎤⎥⎥⎥⎥⎦

= 𝑃𝑟
(︁
X(𝑃 )

)︁
×

(︁
𝐷𝐴 −𝐷𝐶

)︁
(7)

By definition, C(𝑃) ⊆ A(𝑃). Thus it holds that 𝐷𝐴 − 𝐷𝐶 ≥ 0.

Now, observe that any path𝑄 ∈ A(𝑃) is shorter than 𝑃 . Since A(𝑃)
contains all paths in G that are shorter than 𝑃 , the set of all paths
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in A(𝑃) shorter than𝑄 is exactly equal to that of all paths in G that

are shorter than 𝑄 , which is, by definition, equal to A(𝑄). Hence,

𝐷𝐴 = 𝑃𝑟
⎛⎜⎝

⋃︂
𝑄∈A(𝑃 )

X(𝑄 \ 𝑃 )⎞⎟⎠
=

∑︂
𝑄∈A(𝑃 )

⎡⎢⎢⎢⎢⎣𝑃𝑟
(︁
X(𝑄 \ 𝑃 )

)︁ ⎧⎪⎪⎨⎪⎪⎩1 − 𝑃𝑟 ⎛⎜⎝
⋃︂

𝑅∈A(𝑄 )
X

(︁
(𝑅 \ 𝑃 ) \𝑄

)︁⎞⎟⎠
⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎦ (8)

By a similar reasoning, the set of all paths in C(𝑃) shorter than 𝑄
is exactly equal to C(𝑄). Hence,

𝐷𝐶 = 𝑃𝑟
⎛⎜⎝

⋃︂
𝑄∈C(𝑃 )

X(𝑄 \ 𝑃 )⎞⎟⎠
=

∑︂
𝑄∈C(𝑃 )

⎡⎢⎢⎢⎢⎣𝑃𝑟
(︁
X(𝑄 \ 𝑃 )

)︁ ⎧⎪⎪⎨⎪⎪⎩1 − 𝑃𝑟 ⎛⎜⎝
⋃︂

𝑅∈C(𝑄 )
X

(︁
(𝑅 \ 𝑃 ) \𝑄

)︁⎞⎟⎠
⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎦

≥
∑︂

𝑄∈C(𝑃 )

⎡⎢⎢⎢⎢⎣𝑃𝑟
(︁
X(𝑄 \ 𝑃 )

)︁ ⎧⎪⎪⎨⎪⎪⎩1 − 𝑃𝑟 ⎛⎜⎝
⋃︂

𝑅∈A(𝑄 )
X

(︁
(𝑅 \ 𝑃 ) \𝑄

)︁⎞⎟⎠
⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎦ (9)

where (9) follows because C(𝑄) ⊆ A(𝑄) by definition.

Note that (8) and (9) are summations of the same term across all

paths 𝑄 in A(𝑃) and C(𝑃) respectively. Since C(𝑃) ⊆ A(𝑃) and
A(𝑃) \ C(𝑃) = M(𝑃) by definition,

𝐷𝐴 −𝐷𝐶 ≤
∑︂

𝑄∈M(𝑃 )

⎡⎢⎢⎢⎢⎣𝑃𝑟
(︁
X(𝑄 \ 𝑃 )

)︁ ⎧⎪⎪⎨⎪⎪⎩1 − 𝑃𝑟 ⎛⎜⎝
⋃︂

𝑅∈A(𝑄 )
X

(︁
(𝑅 \ 𝑃 ) \𝑄

)︁⎞⎟⎠
⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎦

(10)

Plugging (10) into (7), and using 𝐷𝐴 − 𝐷𝐶 ≥ 0, we have

0 ≤ pne
(︁
𝑃,C(𝑃 )

)︁
− 𝑃𝑟 (Sh𝑡𝑠 (𝑃 )) = 𝑃𝑟

(︁
X(𝑃 )

)︁
×

(︁
𝐷𝐴 −𝐷𝐶

)︁
≤ 𝑃𝑟

(︁
X(𝑃 )

)︁ ∑︂
𝑄∈M(𝑃 )

⎡⎢⎢⎢⎢⎣𝑃𝑟
(︁
X(𝑄 \ 𝑃 )

)︁ ⎧⎪⎪⎨⎪⎪⎩1 − 𝑃𝑟 ⎛⎜⎝
⋃︂

𝑅∈A(𝑄 )
X

(︁
(𝑅 \ 𝑃 ) \𝑄

)︁⎞⎟⎠
⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎦

=
∑︂

𝑄∈M(𝑃 )
𝑃𝑟 (Sh𝑡𝑠 (𝑄) ∧𝑋 (𝑃 )) = pm

(︁
𝑃,C(𝑃 )

)︁
(by definition)

This completes the proof. □

Note that from (4), we can say that for every 𝑠-𝑡 path missing

from 𝐶𝑃 (not returned in any run of Algorithm 2), it is highly

likely that the probability of that path being a shortest 𝑠-𝑡 path

is extremely small. Thus, for any 𝑠-𝑡 path 𝑃 ∈ 𝐶𝑃 , the sum of the

shortest-path probabilities of all paths shorter than 𝑃 and missing

from 𝐶𝑃 is also very small, and hence pm
(︁
𝑃,C(𝑃)

)︁
, which also

includes the condition that 𝑃 exists, is even smaller.

Using Theorems 2 and 3, we can provide a quality guarantee for

Algorithm 3 on a single path even with some shorter paths missing.

Theorem 4. Consider an uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝), a
source node 𝑠 and a target node 𝑡 , a set 𝐶𝑃 of 𝑠-𝑡 paths and a path
𝑃 ∈ 𝐶𝑃 . Then,ˆ︁p(︁

𝑃,C(𝑃)
)︁
is an accurate estimate of 𝑃𝑟 (Sh𝑡𝑠 (𝑃)) with

a high probability. Formally, assuming pm
(︁
𝑃,C(𝑃)

)︁
∈ [0, 1], for all

𝜖 ∈ [0, 1], the following holds.

𝑃𝑟

(︂ˆ︁p(︁
𝑃,C(𝑃 )

)︁
− 𝑃𝑟 (Sh𝑡𝑠 (𝑃 )) − pm

(︁
𝑃,C(𝑃 )

)︁
≥ 𝜖

)︂
≤ exp

(︃
− 𝑁𝜖2

4 |C(𝑃 ) |

)︃
(11)

𝑃𝑟

(︂ˆ︁p(︁
𝑃,C(𝑃 )

)︁
− 𝑃𝑟 (Sh𝑡𝑠 (𝑃 )) ≤ −𝜖

)︂
≤ exp

(︃
− 𝑁𝜖2

4 |C(𝑃 ) |

)︃
(12)

Proof. Note that pm
(︁
𝑃,C(𝑃)

)︁
− pne

(︁
𝑃,C(𝑃)

)︁
+ Pr(Sh𝑡𝑠 (𝑃)) ∈

[0, 1] from Theorem 3. Thus 𝜖 + pm
(︁
𝑃,C(𝑃)

)︁
− pne

(︁
𝑃,C(𝑃)

)︁
+

𝑃𝑟 (Sh𝑡𝑠 (𝑃)) ∈ [0, 2]. Applying Theorem 2,

𝑃𝑟

(︂ˆ︁p(︁
𝑃,C(𝑃 )

)︁
− 𝑃𝑟 (Sh𝑡𝑠 (𝑃 )) − pm

(︁
𝑃,C(𝑃 )

)︁
≥ 𝜖

)︂
= 𝑃𝑟

(︂ˆ︁p(︁
𝑃,C(𝑃 )

)︁
− pne

(︁
𝑃,C(𝑃 )

)︁
≥ 𝜖 + pm

(︁
𝑃,C(𝑃 )

)︁
− pne

(︁
𝑃,C(𝑃 )

)︁
+ 𝑃𝑟 (Sh𝑡𝑠 (𝑃 ))

)︂
≤ exp

⎛⎜⎜⎝−
𝑁

(︂
𝜖 + pm

(︁
𝑃,C(𝑃 )

)︁
− pne

(︁
𝑃,C(𝑃 )

)︁
+ 𝑃𝑟 (Sh𝑡𝑠 (𝑃 ))

)︂
2

4 |C(𝑃 ) |
⎞⎟⎟⎠

≤ exp

(︃
− 𝑁𝜖2

4 |C(𝑃 ) |

)︃
Similarly, pne

(︁
𝑃,C(𝑃)

)︁
− 𝑃𝑟 (Sh𝑡𝑠 (𝑃)) ∈ [0, 1]. Theorem 2 gives

𝑃𝑟

(︃ˆ︁p(︁
𝑃,C(𝑃 )

)︁
− 𝑃𝑟 (Sh𝑡𝑠 (𝑃 )) ≤ −𝜖

)︃
= 𝑃𝑟

(︂ˆ︁p(︁
𝑃,C(𝑃 )

)︁
− pne

(︁
𝑃,C(𝑃 )

)︁
≤ −𝜖 − pne

(︁
𝑃,C(𝑃 )

)︁
+ 𝑃𝑟 (Sh𝑡𝑠 (𝑃 ))

)︂
≤ exp

⎛⎜⎜⎝−
𝑁

(︂
𝜖 + pne

(︁
𝑃,C(𝑃 )

)︁
− 𝑃𝑟 (Sh𝑡𝑠 (𝑃 ))

)︂
2

4 |C(𝑃 ) |
⎞⎟⎟⎠ ≤ exp

(︃
− 𝑁𝜖2

4 |C(𝑃 ) |

)︃
Hence, the theorem. □

Wenowprove the accuracy guarantee of our top-𝑘MPSPmethod.

Theorem 5. Given an uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝), a source
node 𝑠 , a target node 𝑡 , and an integer 𝑘 , let 𝑃1, . . . , 𝑃𝑘+1 denote the
true top 𝑘 +1MPSPs (in order) from 𝑠 to 𝑡 . Then, 𝑃1, . . . , 𝑃𝑘 are indeed
the paths returned by our method with a high probability. Formally,
define:𝑚𝑖𝑑 = 1

2
[𝑃𝑟 (Sh𝑡𝑠 (𝑃𝑘 ))+𝑃𝑟 (Sh𝑡𝑠 (𝑃𝑘+1))+pm (𝑃𝑘+1,C(𝑃𝑘+1))],

a set of 𝑠-𝑡 candidate paths 𝐶𝑃 , and for all 𝑃 ∈ 𝐶𝑃 ,

𝑑𝑃 =

{︄
𝑃𝑟 (Sh𝑡𝑠 (𝑃 )) −𝑚𝑖𝑑 if 𝑃 ∈ {𝑃1, . . . , 𝑃𝑘 }
𝑚𝑖𝑑 − 𝑃𝑟 (Sh𝑡𝑠 (𝑃 )) − pm (𝑃,C(𝑃 )) otherwise

and assume that 𝑑𝑃 ∈ [0, 1]. This assumption is reasonable since, as
noted earlier, pm (𝑃,C(𝑃)) is very small. Then the probability that
𝑃1, . . . , 𝑃𝑘 are the paths returned is at least

𝑃𝑟 ( {𝑃1, . . . , 𝑃𝑘 } ⊆ 𝐶𝑃 )
∏︂

𝑃∈𝐶𝑃

[︄
1 − exp

(︄
−

𝑁𝑑2

𝑃

4 |C(𝑃 ) |

)︄]︄
Proof. The random variables ˆ︁p(𝑃,C(𝑃)) for all 𝑃 ∈ 𝐶𝑃 are

independent, since the Monte Carlo rounds of Algorithm 3 on input

path 𝑃 do not depend on each other. Hence, the probability that

𝑃1, . . . , 𝑃𝑘 are the paths returned is at least

𝑃𝑟 ( {𝑃1, . . . , 𝑃𝑘 } ⊆ 𝐶𝑃 ) ×
∏︂

𝑃∈{𝑃1,...,𝑃𝑘 }
𝑃𝑟

(︂ˆ︁p(︁
𝑃,C(𝑃 )

)︁
>𝑚𝑖𝑑

)︂
×

∏︂
𝑃∈𝐶𝑃\{𝑃1,...,𝑃𝑘 }

𝑃𝑟

(︂ˆ︁p(︁
𝑃,C(𝑃 )

)︁
<𝑚𝑖𝑑

)︂
= 𝑃𝑟 ( {𝑃1, . . . , 𝑃𝑘 } ⊆ 𝐶𝑃 )

×
∏︂

𝑃∈{𝑃1,...,𝑃𝑘 }

[︂
1 − 𝑃𝑟

(︂ˆ︁p(︁
𝑃,C(𝑃 )

)︁
− 𝑃𝑟 (Sh𝑡𝑠 (𝑃 )) ≤ −𝑑𝑃

)︂]︂
×

∏︂
𝑃∈𝐶𝑃\{𝑃1,...,𝑃𝑘 }

[︂
1 − 𝑃𝑟

(︂ˆ︁p(︁
𝑃,C(𝑃 )

)︁
− 𝑃𝑟 (Sh𝑡𝑠 (𝑃 )) − pm

(︁
𝑃,C(𝑃 )

)︁
≥ 𝑑𝑃

)︂]︂
≥ 𝑃𝑟 ( {𝑃1, . . . , 𝑃𝑘 } ⊆ 𝐶𝑃 )

∏︂
𝑃∈𝐶𝑃

[︄
1 − exp

(︄
−

𝑁𝑑2

𝑃

4 |C(𝑃 ) |

)︄]︄
□

1193



3.4 Single-Source and Single-TargetMPSPs
Our approach for generating theMPSP from a single source to a

single target can be easily extended to computeMPSPs from a single

source to all other nodes in the graph. Phase 1 continues running

Dijkstra+MC on the entire graph until all edges are sampled, or no

new target nodes can be reached. Phase 2 runs separately for each

individual target (i.e., each source-target pair). A similar strategy

can be applied for computing MPSPs to a single target from all

other nodes: we need to use the same method on the graph with

the edges reversed. Since Phase 1 is not run separately for each

source-target pair, this helps in reducing the running time of this

phase from |𝑉 | times that of a single source-target pair to a smaller

value. This is demonstrated empirically in § 5.6.

3.5 Extension to Uncertain Multi-Graphs
An uncertain multi-graph is a quadruple (𝑉 , 𝐸,𝑊 , 𝑝), where 𝑉 is a

set of nodes and 𝐸 ⊆ 𝑉 ×𝑉 × R≥0 × (0, 1] is a set of directed edges

with lengths (𝑊 ) and probabilities of existence (𝑝), such that every

pair of nodes can be connected by zero, one, or more edges, called

parallel edges, with a distinct combination of length and probability

of existence. This more general data model can be used, e.g., to

incorporate a probability distribution of travel times on a segment

of a road network, depending on the traffic conditions.

Given a pair of nodes (𝑠, 𝑡) ∈ 𝑉 × 𝑉 , a (simple) path in an un-

certain multi-graph is an ordered sequence of edges (𝑒1, 𝑒2, . . . , 𝑒𝑛)
where 𝑒𝑖 = (𝑢𝑖 , 𝑢𝑖+1,𝑤𝑖 , 𝑝𝑖 ) ∈ 𝐸, 𝑢1 = 𝑠 , 𝑢𝑛+1 = 𝑡 and 𝑢𝑖 ≠ 𝑢 𝑗 for

𝑖 ≠ 𝑗 . Our algorithm, described in § 3.1, can be easily adapted to

find MPSPs in uncertain multi-graphs. The main difference lies in

the generation of the candidate paths. In Phase 1, when we reach a

node in the uncertain graph, its outgoing edges are sampled with

their respective probabilities, and only one sampled edge from the

current node to each adjacent node (having the minimum length

among all sampled edges from the current node to that adjacent

node) is considered for updating the paths in line 5 of Algorithm 2.

4 MPSP-BETWEENNESS CENTRALITY
We next define MPSP-Betweenness Centrality in uncertain graphs.

In a deterministic directed graph 𝐺 = (𝑉 , 𝐸,𝑊 ), the betweenness
centrality of a node 𝑣 ∈ 𝑉 is defined as

𝑏𝐺 (𝑣) =
1

|𝑉 | ( |𝑉 | − 1)
∑︂

(𝑠,𝑡 ) ∈𝑉×𝑉
𝑠≠𝑣≠𝑡,𝜎 (𝑠,𝑡 )≠0

𝜎 (𝑠, 𝑡 |𝑣)
𝜎 (𝑠, 𝑡) (13)

𝜎 (𝑠, 𝑡) denotes the number of shortest paths from 𝑠 to 𝑡 , and 𝜎 (𝑠, 𝑡 |𝑣)
the number of such paths 𝑃 that contain 𝑣 as an internal node.

In our work, we naturally extend this definition to betweenness

centrality in an uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝) for most probable

shortest paths by replacing 𝜎 (𝑠, 𝑡) with |M(G, 𝑠, 𝑡) | and 𝜎 (𝑠, 𝑡 |𝑣)
with |M(G, 𝑠, 𝑡 |𝑣) |, whereM(G, 𝑠, 𝑡 |𝑣) consists of the paths 𝑃 ∈
M(G, 𝑠, 𝑡) that have 𝑣 as an internal node.

Definition 1 (MPSP-Betweenness Centrality). In an uncer-
tain graph G = (𝑉 , 𝐸,𝑊 , 𝑝), we define the betweenness centrality of
a node 𝑣 ∈ 𝑉 based on most probable shortest paths as

𝑏G (𝑣) =
1

|𝑉 | ( |𝑉 | − 1)
∑︂

(𝑠,𝑡 ) ∈𝑉×𝑉
𝑠≠𝑣≠𝑡,M(G,𝑠,𝑡 )≠∅

|M(G, 𝑠, 𝑡 |𝑣) |
|M(G, 𝑠, 𝑡) | (14)

A different definition of betweenness centrality for uncertain

graphs is given in [49, 60] and it is referred to as expected between-
ness centrality. The expected betweenness of a node is the weighted
average of its betweenness over all possible worlds.

E𝐺∼G [𝑏𝐺 (𝑣)] =
∑︂
𝐺⊑G

𝑃𝑟 (𝐺) × 𝑏𝐺 (𝑣) (15)

Either of these notions can be meaningful, depending on the

application. For instance, the notion of expected centrality is worth

studying when the application concerns broadcasting of a message

from one node to another, in which the message can be propa-

gated over different possible paths. On the other hand, the notion

of MPSP-Betweenness Centrality gives a more accurate picture

when the application concerns routing or route recommendation,

in which the path(s) need to be fixed beforehand and we can only

use a single path to go from the origin to the destination.

Another notion of betweenness centrality is based on possible
shortest paths [60] and it is called PSP-Betweenness Centrality.

In our experiments in § 5.9, we see that these different notions

of betweenness yield slightly different rankings when ordering the

nodes based on their betweenness values. Moreover, exploiting the

results in § 4.1, we are able to compute the MPSP-Betweenness

Centrality much faster than the expected and PSP-betweenness.

4.1 Efficient 𝑠-𝑡 Pair Sampling
The naive method of computing theMPSP-Betweenness Centrality

of a node by considering all the 𝑠-𝑡 pairs and then computing the

MPSPs is infeasible for large uncertain graphs. Moreover, design-

ing an efficient algorithm for this task is challenging in our setting.

As observed in § 2.1, in uncertain graphs, a sub-path of anMPSP

is not necessarily an MPSP. Therefore, we cannot decompose a

shortest path into two smaller shortest sub-paths or concatenate

two shortest sub-paths to get a larger shortest path. For these rea-

sons, we can neither apply optimization techniques such as those

exploited in Brandes’ algorithm [10], nor apply techniques based

on node sampling where a small set of nodes is sampled and their

contributions to the betweenness centralities are accumulated to

estimate the betweenness of other nodes [4, 11, 21].

Therefore, we design a novel algorithm based on efficient 𝑠-

𝑡 path sampling instead of node sampling. In the following, for

simplicity we assume that there is only oneMPSP for every pair of

nodes. Thanks to this assumption, choosing an MPSP uniformly at

random is equivalent to finding the uniqueMPSP between them

using Algorithm 1. However, if there are multiple MPSPs for a pair

of nodes, we can identify all of them using our top-𝑘 approach in

§ 3.2, and then select one among them uniformly at random.

Our proposed method, whose pseudocode is shown in Algorithm

4, samples 𝑟 𝑠-𝑡 pairs, for each of which it computes theMPSP 𝑃 and

then increments the betweenness centrality of every internal node

of 𝑃 by
1

𝑟 . The main question that now arises is: How many samples
are needed to produce a very accurate estimate of the betweenness
centrality of every node with a high probability? In the remainder

of this section, we provide an answer to this question. Specifically,

given 𝜖, 𝛿 > 0, we find a lower bound on the number of samples 𝑟

so that, with probability at least 1 − 𝛿 , the difference between the

approximate and the exact centrality of every node is at most 𝜖 .
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Algorithm 4 ApproximatingMPSP-Betweenness-Centrality

Input: Uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝) , number of samples 𝑟 , positive integers𝑚 and 𝑁 .

Output: ˆ︂𝑏G : 𝑉 → R.
1:

ˆ︂𝑏G (𝑣) ← 0 ∀𝑣 ∈ 𝑉 .

2: for 𝑖 = 1 to 𝑟 do
3: Sample distinct nodes 𝑠 and 𝑡
4: 𝑃 ← Alg. 1 (G, 𝑠 , 𝑡 ,𝑚, 𝑁 )

5: for all 𝑣 ∈ 𝐼𝑛𝑡 (𝑃 ) do
6:

ˆ︂𝑏G (𝑣) ← ˆ︂𝑏G (𝑣) + 1

𝑟
7: end for
8: end for
9: return ˆ︂𝑏G
Following the ideas in [43, Proof of Lemma 1], we can obtain the

following lower bound on the required number of samples (proof

omitted owing to space limits).

Theorem 6. Given an uncertain graph G = (𝑉 , 𝐸,𝑊 , 𝑝) and
𝜖, 𝛿 > 0, assuming that Algorithm 1 returns the correct MPSP and
that there is a unique MPSP between every pair of nodes, the output
of Algorithm 4 when using 𝑟 ≥ 1

2𝜖2
ln

2 |𝑉 |
𝛿

samples satisfies

Pr

(︂|︁|︁|︁ˆ︂𝑏G (𝑣) − 𝑏G (𝑣)|︁|︁|︁ < 𝜖 ∀𝑣 ∈ 𝑉
)︂
> 1 − 𝛿

Computational Complexity. The space and time complexities

of Algorithm 4 are dominated by those of Algorithm 1 (line 4 of

Algorithm 4). Hence, it follows from § 3.1 that the complexities are:

O(𝑚 |𝐸 | + |𝑉 |) and O(𝑟𝑚( |𝐸 | + |𝑉 | log |𝑉 | + log𝑚)), respectively.
Parallel Implementation. In Algorithm 4, the computations per-

formed on the 𝑟 sampled 𝑠-𝑡 pairs are independent of each other.

Hence, these computations can be implemented in parallel, e.g., via

multiple threads. We experimentally demonstrate the effect of the

number of threads on the running time of our algorithm in § 5.9.

5 EXPERIMENTAL RESULTS
We assess the efficiency and effectiveness of our proposal, and

compare it against previous work [12, 63] on synthetic (§ 5.2) and

road networks (§ 5.3). We also analyze the effect of each phase

of our method on the performance (§ 5.4), parameter sensitivity

(§ 5.5), and single-source and single-target queries (§ 5.6). Finally,

we present use cases on sensor (§ 5.7) and brain networks (§ 5.8),

and application to network centrality (§ 5.9).

5.1 Experimental Setup
Experiments are conducted on a single core (except when test-

ing our parallel implementation) of a server with a 3.7 GHz Xeon

processor and 256 GB RAM. Our C++ code is available in [55].

Queries. For each uncertain graph, we generate four categories of

source-target pairs as queries. The first three categories constitute

randomly chosen node pairs that are 2, 4, and 6 hops away. The

last category comprises pairs of randomly chosen connected nodes.

The result for each category is an average over 100 𝑠-𝑡 pairs.

Parameters. • # Dijkstra+MC-runs in Phase 1 (𝑚): A small𝑚

is sufficient for our purpose (§ 3.3). We vary𝑚 ∈ {5, 10, 20, 50, 100},
with the default value 20. • # MC-samples in Phase 2 (𝑁 ): We

vary 𝑁 ∈ {101, 102, 103, 104, 105}, with the default value 10
3
. •

Top-𝑘 MPSPs: We vary 𝑘 ∈ {1, 5, 10}, with the default value 1.

Methods Compared. We employ the filtering-and-verification

based method [63] as the baseline (§ 2.2). Furthermore, in §5.4

we compare against [12] that used Dijkstra+MC (first phase of

our method) to compute the probability of being the shortest path

heuristically, without any accuracy guarantee.

5.2 Results on Synthetic Networks
We generate synthetic, uncertain (directed) graphs according to two

classic models. (𝑖) The Erdos-Renyi (ER) model [18] generates a ran-

dom graph with |𝑉 | nodes and |𝐸 | directed edges chosen uniformly

at random from |𝑉 | ( |𝑉 | −1) possible edges; (𝑖𝑖) The Barabasi-Albert
(BA) model [6] generates a graph with |𝑉 | nodes and |𝐸 | edges sat-
isfying a power law (in)degree distribution. Starting with a single

node and no edge, a new node is added in every time step along

with |𝐸 |/|𝑉 | edges directed from the new node to an existing node,

such that the probability of choosing an existing node 𝑖 (as target),

with its current in-degree 𝑑𝑖 , is proportional to 𝑑𝑖 .

For both models, we vary |𝑉 | in {0.01M, 0.1M, 1M, 5M, 10M}, and

for every value of |𝑉 |, we vary the value of |𝐸 |/|𝑉 | in {2, 6, 10}. In

each synthetic graph, the probability of every edge is a uniform

random real number in the interval (0, 1], and the length of every

edge is a uniform random integer in the interval (0, 1000].
Figure 3 reports the comparison of quality (expressed as the

probability of the returned path being a shortest path) against the

baseline method [63]. Given that the candidate generation phase

(§ 2.2) of [63] does not finish in one hour over our synthetic datasets,

to make the comparison feasible, we place an upper limit on the

candidate generation time of [63]. Notice that increasing this time

limit leads to more candidate paths, hence the possibility of higher-

quality returned paths is also increased. However, once anMPSP is

included in the candidate set, increasing the time threshold further

would not lead to better-quality solutions.

Following this observation, if𝑇 denotes the candidate generation

time of our method for a given query, we compare the effectiveness

of our algorithm against three variants of the baseline, when we

terminate the baseline’s candidate generation at time 𝑐𝑇 , with 𝑐 ∈
{0.1, 1, 2}. We denote these three sets of baselines as𝐵𝐿0.1,𝐵𝐿1,𝐵𝐿2,

as shown in Figure 3. Intuitively, 𝐵𝐿2 could result in higher-quality

returned paths compared to those via 𝐵𝐿0.1 and 𝐵𝐿1, however at

the cost of higher running time, i.e., about 2 times higher running

time than 𝐵𝐿1 and 20 times more than 𝐵𝐿0.1. 𝐵𝐿2 is also about 2

times more time consuming than ours.

Quality results in Figure 3 show that in most of the cases our
method outperforms all variants of the baseline. For 6-hop and ran-

dom queries over larger ER graphs, the SP probability returned

by our solution is up to one order of magnitude better than those

returned by the baselines (Figures 3 (c, d)).

We show the efficiency of our method in Figure 4 for different

query categories. Since the time limit of the baseline is set by us, we

do not compare its running time with that of ours. We observe that

our running times are less sensitive to different query categories.

However, the running times on ER graphs are some orders of mag-

nitude larger than those on BA graphs. This can be explained based

on how these graphs are constructed: each node in BA graphs has

out-degree at most 10. On the other hand, in ER graphs, there are

several nodes with out-degrees more than 15∼20. This implies that

Dijkstra’s algorithm visits higher out-degree nodes a lot more in

ER graphs, requiring longer running times.

1195



0.01M 0.1M 1M 5M 10M

10
−3

10
−1

10
1

|𝑉 |

S
P
p
r
o
b
a
b
i
l
i
t
y
o
f
r
e
t
u
r
n
e
d
p
a
t
h Ours

BL0.1

BL1

BL2

(a) 2-hop queries, ER graphs

0.01M 0.1M 1M 5M 10M

10
−4

10
−3

10
−2

10
−1

10
0

10
1

|𝑉 |

S
P
p
r
o
b
a
b
i
l
i
t
y
o
f
r
e
t
u
r
n
e
d
p
a
t
h Ours

BL0.1

BL1

BL2

(b) 4-hop queries, ER graphs

0.01M 0.1M 1M 5M 10M

10
−4

10
−3

10
−2

10
−1

10
0

|𝑉 |

S
P
p
r
o
b
a
b
i
l
i
t
y
o
f
r
e
t
u
r
n
e
d
p
a
t
h Ours

BL0.1

BL1

BL2

(c) 6-hop queries, ER graphs

0.01M 0.1M 1M 5M 10M

10
−4

10
−3

10
−2

10
−1

|𝑉 |

S
P
p
r
o
b
a
b
i
l
i
t
y
o
f
r
e
t
u
r
n
e
d
p
a
t
h Ours

BL0.1

BL1

BL2

(d) Random queries, ER graphs

0.01M 0.1M 1M 5M 10M

0

0.1

0.2

0.3

|𝑉 |

S
P
p
r
o
b
a
b
i
l
i
t
y
o
f
r
e
t
u
r
n
e
d
p
a
t
h

Ours

BL0.1

BL1

BL2

(e) 2-hop queries, BA graphs

0.01M 0.1M 1M 5M 10M

0

0.05

0.1

|𝑉 |

S
P
p
r
o
b
a
b
i
l
i
t
y
o
f
r
e
t
u
r
n
e
d
p
a
t
h Ours

BL0.1

BL1

BL2

(f) 4-hop queries, BA graphs

0.01M 0.1M 1M 5M 10M

0

0.02

0.04

0.06

0.08

|𝑉 |

S
P
p
r
o
b
a
b
i
l
i
t
y
o
f
r
e
t
u
r
n
e
d
p
a
t
h Ours

BL0.1

BL1

BL2

(g) 6-hop queries, BA graphs

0.01M 0.1M 1M 5M 10M

0

0.05

0.1

|𝑉 |

S
P
p
r
o
b
a
b
i
l
i
t
y
o
f
r
e
t
u
r
n
e
d
p
a
t
h Ours

BL0.1

BL1

BL2

(h) Random queries, BA graphs

Figure 3: Comparison of quality (probability 𝑃𝑟 (Sh𝑡𝑠 (𝑃 )) of the returned path 𝑃 being a shortest path) on synthetic graphs with |𝐸 |/ |𝑉 | = 10.
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Figure 4: Running time on synthetic graphs with |𝐸 |/ |𝑉 | = 10.

5.3 Results on Road Networks
We construct uncertain (directed) graphs from four real-world road

networks obtained via OpenStreetMap [47], along with recorded

taxi trajectory data for each network (see the table in Figure 5). The

nodes denote locations, while the edges denote road segments. The

length of an edge is measured as its spatial length. We map-match
every trajectory to the corresponding map using the open-source

software OSRM [41], thus obtaining the road segments involved in

each trajectory along with the speed on each segment. However,

there are road segments in each network which are not traversed

by any trajectory. We synthetically assign a speed to each such

segment following [14], by sampling from a normal distribution

with mean equal to the speed limit on that segment and standard

deviation equal to a quarter of the mean. Since commuters are

more likely to prefer those roads on which they can travel at a

higher speed, we assign the probability of an edge (road segment)

proportional to its average speed across all trajectories. The number

of nodes, edges, and distribution of the edge probabilities in the

resultant graphs are shown in Figure 5.

In our experiments on road networks, varying time thresholds

for the baseline does not result in any quality difference. This is

because the road networks are sparse, and theMPSP is often the

shortest path in the certain (deterministic) version of the network.

Hence, we terminate the baseline’s candidate generation as soon as

only the first 𝑠-𝑡 path is obtained, which is essentially the shortest

𝑠-𝑡 path considering the deterministic version of the network. We

refer to this variant of the baseline as BL-1st-Path.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Edge Probability

C
D
F

Rome

Porto

SanFrancisco

Brno

City |𝑉 | |𝐸 | Trajectory

Brno 1.9M 4.0M [53]

Porto 1.8M 3.7M [45]

Rome 4.0M 8.0M [3]

SF 3.0M 6.2M [50]

Figure 5: Properties of road networks: SF denotes San Francisco.

Figures 6 (b, d, f) compare the quality of our method against the

baseline. Both methods return similar results in terms of quality. As

stated earlier, the returned path (by both methods) for almost every

query is also the shortest path in the certain version of the graph.

Notice that the entries in the 6-hop query category are vacant for

the Porto and Rome road networks. This implies that, for these

graphs, running Dijkstra+MC for queries in the 6-hop category

resulted in an empty path. This can be attributed to the fact that the

edge probabilities of these graphs are smaller compared to those

of the other graphs, which is evident from Figure 5. In general,

due to the sparseness of road networks and relatively smaller edge

probabilities,MPSP queries are moremeaningful here for nearby 𝑠-𝑡

pairs (e.g., find theMPSP to the nearest gas station or restaurant).
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Figure 6: Results on road networks

On the other hand, our method takes up to 2∼3 orders of magni-
tude less time than the baseline, as shown in Figures 6 (a, c, e). This is

because the baseline approach essentially uses Dijkstra’s algorithm

on the certain version of the graph to retrieve the shortest path,

which has to visit every node closer to the source than the target. In

contrast, Dijkstra+MC in our candidate generation may end up not

visiting many nodes since the corresponding edges are not sampled.

5.4 Effect of Each Phase on the Performance
Our method (§3.1) consists of two phases: Dijkstra+MC for efficient

candidate path generation (Phase 1), followed by the Luby-Karp

algorithm to select theMPSP among them (Phase 2). We analyze

the benefits of both phases by comparing the two-phased method

against a method based only on Phase 1, followed by a selection

by majority, i.e., the path that has been sampled most times by

Dijkstra+MC is returned as the candidate MPSP.

Table 1 shows that the two-phased method never produces worse-
quality results, and can return betterMPSPs for up to 59% of the queries.
To understand this result, assume that there are two 𝑠-𝑡 paths 𝑃1
and 𝑃2 such that the SP probability of 𝑃1 is slightly higher than that

of 𝑃2. Then, it could happen that 𝑃2 is sampled a larger number of

times (i.e., with a higher frequency) than 𝑃1, due to randomness

of the Dijkstra+MC sampling. Then, according to majority, the

estimate for 𝑃2 is higher than that of 𝑃1. However, the Luby-Karp

algorithm in our second phase does not care about the sampling

Table 1: Percentage of queries for which our method finds better
MPSPs compared to (a) only Phase 1 of our method (Dijkstra+MC)
followed by selection via majority, and (b) Phase 1 of our method
followed by HT-estimator. ER graph with |𝑉 | = 10

4, |𝐸 | = 10
5.

Query type

% of queries our method finds betterMPSPs

vs. Phase 1 + Majority vs. Phase 1 + HT-estimator

2-hop 36% 12%

4-hop 59% 5%

Random 11% 6%

frequency at all; it only needs to know if 𝑃1 and 𝑃2 are present

in the sampled candidate set (at least once), thereby reporting the

correct MPSP. These results demonstrate the usefulness of Phase 2.

We also compare with the case in which Phase 1 is augmented

with an unequal probability estimator, e.g., Horvitz-Thompson (HT)

inspired by [12]. Recall (§ 1.1) that [12] deals with a different prob-

lem (i.e., threshold-based shortest-path queries) and adopts a differ-

ent uncertain data model. However, their heuristic approach can

be adapted for our purposes. Although the HT-estimator is useful

in reducing the variance of Dijkstra+MC sampling, the Luby-Karp

algorithm in our second phase still outperforms it, for the reason

stated above. In particular, our method never produces worse results
and it produces better MPSPs for up to 12% of the queries.

5.5 Parameter Sensitivity Analysis
Impact of𝑚 and 𝑁 . We vary the number𝑚 ∈ {5, 10, 20, 50, 100}
of Dijkstra+MC runs (Phase 1), and the number of MC samples

𝑁 ∈ {101, 102, 103, 104, 105} for the Luby-Karp algorithm (Phase 2).

The results are shown in Figure 7. Owing to space constraints, we

only show the results of 4-hop queries on the ER graph with |𝑉 | =
10

4
and |𝐸 | = 10

5
. For Dijkstra+MC, we observe that increasing𝑚

till its default value (𝑚 = 20) steadily increases the SP probabilities

of returned paths. This indicates that we need about𝑚 = 20 runs

of Dijkstra+MC to include theMPSP in the candidate set. For the

Luby-Karp algorithm, on the other hand, increasing𝑁 till its default

value (𝑁 = 10
3
) shows fluctuation of the SP probabilities returned,

implying that the sampling method has not converged yet. The

returned SP probabilities stabilize around these default parameter

values. We further notice that increasing these parameter values

beyond their default values of𝑚 = 20 (resp. 𝑁 = 10
3
) returns SP

probabilities of paths (resp. Luby-Karp estimates) having nearly the

same value, but the running time is significantly increased. This

justifies the selection of our default parameter values.

Top-𝑘 MPSPs. We find the top-𝑘 MPSPs with 𝑘 ∈ {1, 5, 10}. The
results for 𝑘 = 1 have already been shown in Figures 3 and 4. For

𝑘 ∈ {5, 10}, the running times are nearly the same as with 𝑘 = 1;

thus, we only show the SP probability of our solution (averaged

over the 𝑘 paths returned for each query) in Figure 8. Notice that

our algorithm returns better top-𝑘 paths compared to the baseline.

5.6 Single-Source and Single-Target Queries
Figure 9 (left) shows running times of single-source multi-target

queries (§ 3.4) on ER graphs. The y-axis is logarithmic and the query

answering time is the aggregated time required for both phases 1

and 2. Notice that the running time of Phase 2 is much higher than

that of Phase 1. Moreover, the running time of Phase 1 is increased
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Figure 9: Running time of single-source (left) and single-target
(right) queries; ER graphs with |𝐸 |/ |𝑉 | = 10

by a small factor with increase in the number of nodes, because

Dijkstra is not run separately for individual target nodes. Our Phase

1 is several orders of magnitude faster than Phase 1-Naive, which is

running Phase 1 separately for each target. Figure 9 (right) shows

similar improved efficiency for multi-source single-target queries.

5.7 Case Studies: Sensor Network
Intel Lab Data [42] is a collection of sensor communication data with

54 sensors deployed in the Intel Berkeley Research Lab between

February 28 and April 5, 2004. The probabilities on (directed) edges

denote the percentages of messages from a sender successfully

reached to a receiver. The edge length is the spatial distance (in

metres) between the co-ordinates of the two sensors.

We show MPSPs from node 48 to 22 in Figure 10. We observe

that the MPSP is the sixth shortest path in the certain version of

the graph. The first few shortest paths have smaller probabilities of

existence, showcasing the usefulness of MPSPs in uncertain graphs.

Figure 10: Case studies on sensor network. Paths from node 48
to node 22 in the sensor network. The node sequences of the
top 6 shortest paths (in ascending order of length) are (48, 1, 22) ,
(48, 2, 1, 22) , (48, 7, 6, 22) , (48, 7, 6, 21, 22) , (48, 2, 21, 22) , (48, 20, 22) . The
6
𝑡ℎ shortest path, shown in red, is the MPSP.

Figure 11:MPSPs for TD group (left) andASDgroup (right) of brain
networks. Each of 4MPSPs is represented by edges of same colour.

Figure 12:MPSPs for TD group (left) andASDgroup (right) of brain
networks. Each of 2MPSPs is represented by edges of same colour.

5.8 Case Studies: Brain Networks
A brain network can be defined as a weighted uncertain graph,

where nodes are brain regions of interest (ROIs), (bi-directed) edges

indicate co-activation between ROIs, edge distance represents phys-

ical distance between ROIs, and edge probability indicates the

strength of the co-activation signal (i.e., the pairwise Pearson cor-

relation between the time series of each pair of ROIs). We use

a publicly available dataset from the Autism Brain Imaging Data

Exchange (ABIDE) project [15]. The dataset contains data of 52 Typi-
cally Developed (TD) children and 49 children suffering from Autism
SpectrumDisorder (ASD) whose age is at most 9 years [36, 37, 44, 58]:

each subject corresponds to a graph over 116 nodes (ROIs).
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G𝐴𝑆𝐷 and G𝑇𝐷 are weighted uncertain graphs, defined over the

same set of nodes as the original graphs, while the weight and

probability of each edge are the averages of the respective values

of the same edge across all graphs in the ASD and TD groups.

In Figures 11 and 12, we show the MPSPs for 6 𝑠-𝑡 pairs of

both G𝑇𝐷 (left) and G𝐴𝑆𝐷 (right). Consider the pink path in Fig-

ure 11 from the inferior frontal gyrus, opercular part (IFGoperc.L) to
the cerebellum (CRBL1). The MPSP in G𝑇𝐷 is a path with 2 hops

over a longer distance, compared to that in G𝐴𝑆𝐷 with 6 shorter

hops. This is consistent with the results of different works in neu-

roscience [16, 46] indicating that ASD is characterized by under-

connectivity between distant brain regions and overconnectivity

between closer ones. Moreover, children with ASD have brains

that are overly connected compared to typically developed chil-

dren [20, 32, 56]. In addition, the hemispheres in ASD group are

more symmetrical than those of the TD group [51]. We highlight

this in Figure 12: the MPSPs in the left and right cerebral hemi-

spheres of the brain are indeed more similar and symmetrical in

children with autism, while in the TD group the paths can cross

the hemispheres and also span the same regions. Our consistent

findings underline the importance of MPSPs in uncertain graphs.

5.9 Application: Network Centrality
We compare the top-𝑘 most central nodes according to four central-

ity computationmethods (introduced in § 4): (1)MPSP-Betweenness

Centrality with sampled 𝑠-𝑡 pairs, (2) MPSP-Betweenness Central-

ity with all 𝑠-𝑡 pairs, (3) expected betweenness centrality [49, 60]

(by sampling possible worlds and using [54] for every sampled

world) , and (4) PSP-Betweenness Centrality [60].

We first run these methods on six different brain graphs (ran-

domly selected from 52 TD brains), each with 116 nodes. Following

[54], we set 𝜖 = 0.05 and 𝛿 = 0.1 for all the methods when required.

For every method, we compute the betweenness centrality of all

nodes and rank them in descending order of centrality. Given a

value of 𝑘 ∈ {10, 20, 50}, for each of the

(︁
4

2

)︁
= 6 possible pairs of

methods, we compare the similarity of the sets of top-𝑘 nodes re-

turned by both methods using the overlap coefficient. The overlap

coefficient of two sets 𝐴 and 𝐵, each of size 𝑘 , is defined as
|𝐴∩𝐵 |
𝑘

.

We report these results averaged over six graphs in Figure 13(a).

For every value of 𝑘 , methods 1 and 2 (both of which deal with

MPSP-Betweenness-Centrality) produce very similar results show-

ing that our sampling based method yields good approximation. The
overlap with other methods is a bit lower indicating that there is a

slight difference in the top-𝑘 nodes produced by each method.

Next, to assess the efficiency and scalability of our method, we

compute the centrality ranking for the six brain graphs (|𝑉 | = 116),

a Twitter graph (|𝑉 | = 6.3M, |𝐸 | = 11.1M), and the ER graphs with

|𝑉 | ∈ {0.01𝑀, 0.1𝑀, 1𝑀} and |𝐸 | = 10|𝑉 |. Twitter [38] is a social
network where users post new tweets or retweet those of other

users. This data is used to construct a directed graph in which nodes

are users and edges are retweets. Each edge has weight one, and

the probability is given by 1 − exp (−𝑡/𝜇), where 𝑡 is the number

of retweets between the corresponding users. We set 𝜇 = 10.

The sequential running times are shown in Figure 13(b). A miss-

ing bar means that the run did not terminate within a day. It turns

out that only our method (1) terminates within a reasonable time for
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(b) Running time (sequential)

(c) Parallelization: Our method (method 1)’s running time
# Threads Twitter ER, |𝑉 | = 10M, |𝐸 | = 100M

1 6 520.65 sec > 2 days

10 930.98 sec > 2 days

20 795.91 sec 125 603.60 sec

40 666.76 sec 61 668.80 sec

Figure 13: Centrality results; 4 methods are described in § 5.9

all graphs. Notice that even for the 1𝑀 node graph, our method

finishes within 17 hours. Although the Twitter graph (6.3M nodes)

is larger than the ER graph with 1M nodes, the running time on

Twitter is less than that on ER, because the former is more sparse.

Finally, we run the parallel implementation of our method, i.e.,

method 1, on our two largest graphs: Twitter (|𝑉 | = 6.3M, |𝐸 | =
11.1M) and the ER graph with |𝑉 | = 10M and |𝐸 | = 100M. All 40

cores of the server are used and up to 40 threads are employed for

parallelization via POSIX threads. Figure 13(c) shows that increasing

the number of threads leads to shorter running times. With 40
threads, centrality computation on Twitter (|𝑉 | = 6.3M, |𝐸 | = 11.1M)
requires only 11 minutes, and on ER (|𝑉 | = 10M, |𝐸 | = 100M), it
finishes in 18 hours. These results demonstrate good parallelizability
and scalability of our algorithm over large graphs.

6 CONCLUSIONS
In this paper, we investigated the problem of finding the Most

Probable Shortest Path (MPSP) between two nodes in an uncertain

graph. We proved that the problem is #P-hard, and also derived

some other properties of MPSPs that make our problem challeng-

ing. Our proposed solution proceeds in two phases: efficient and

effective sampling of some candidate paths using Dijkstra+MC,

followed by approximating the SP probability of each candidate

path using the Luby-Karp algorithm. We provided theoretical qual-

ity guarantees of our algorithm, as well as extended it to find the

top-𝑘 MPSPs. We also illustrated an application of our algorithm by

defining and efficiently computing a new concept of betweenness

centrality in an uncertain graph. The experimental results validate

the effectiveness, efficiency, and scalability of our methods, and rich

real-world case studies demonstrate the usefulness of our problem.
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