
The Smallest Extraction Problem
Valerio Cetorelli
Università Roma Tre

Rome, Italy
valerio.cetorelli@uniroma3.it

Paolo Atzeni
Università Roma Tre

Rome, Italy
paolo.atzeni@uniroma3.it

Valter Crescenzi
Università Roma Tre

Rome, Italy
valter.crescenzi@uniroma3.it

Franco Milicchio
Università Roma Tre

Rome, Italy
franco.milicchio@uniroma3.it

ABSTRACT
We introduce landmark grammars, a new family of context-free
grammars aimed at describing the HTML source code of pages pub-
lished by large and templated websites and therefore at effectively
tackling Web data extraction problems. Indeed, they address the
inherent ambiguity of HTML, one of the main challenges of Web
data extraction, which, despite over twenty years of research, has
been largely neglected by the approaches presented in literature.

We then formalize the Smallest Extraction Problem (SEP), an
optimization problem for finding the grammar of a family that best
describes a set of pages and contextually extract their data.

Finally, we present an unsupervised learning algorithm to induce
a landmark grammar from a set of pages sharing a common HTML
template, and we present an automatic Web data extraction system.
The experiments on consolidated benchmarks show that the ap-
proach can substantially contribute to improve the state-of-the-art.

PVLDB Reference Format:
Valerio Cetorelli, Paolo Atzeni, Valter Crescenzi, and Franco Milicchio. The
Smallest Extraction Problem. PVLDB, 14(11): 2445-2458, 2021.
doi:10.14778/3476249.3476293

1 INTRODUCTION
As theWeb is the largest knowledge base ever built by humans,Web
data extraction has gained the attention of researchers for more
than twenty years, with a number of proposals for the develop-
ment of wrappers, that is, software programs that extract data from
websites. Specific vertical solutions for the extraction of data from
the Web are frequently developed and maintained by companies of
every size and sector within the IT industry, and several companies
vertically specialized in data extraction tasks have been founded in
the last years [32, 43, 44, 47]. Despite all these efforts, the effective
extraction of data at Web scale is still a challenging problem far
from being effectively solved, a problem that is getting even more
exacerbated as the amount of information available online keeps
on growing and being updated at an ever increasing pace. More-
over, the scale of the Web, in terms of both volume and variety,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476293

implies the need for finding unsupervised approaches to wrapper
construction, as human intervention would not be feasible.

It is important to observe that the vast majority ofWeb content is
currently organized and exposed in HTML format. Indeed, despite
two decades of promises, it is now apparent and widely accepted
that most websites will never publicly expose their data in regularly
structured formats (e.g., XML and JSON) nor by means of easy-
to-consume processes (e.g., APIs). This is due to several reasons,
including: data are an important asset for competitiveness and
most organizations do not want to share them; second, publishing
data and maintaining the publishing process is costly and most
organizations do not see a tangible return on investment; third,
publishing data can expose to legal issues, such as those related to
the General Data Protection Regulations in Europe.

Such a widespread use of HTML (instead of XML, JSON, or APIs)
makes data extraction difficult. Indeed, the main goal of HTML
is to support the logical presentation of contents rather than the
structuring and organization of data. This is done by means of a
quite small, predefined set of element names for tags, which end
up being only a loose trace of the structure [20]. As a consequence,
the very same HTML tags end up being used over and over again,
with different roles, to mark unrelated pieces of information that
are presented in similar ways.

Most data on the Web are published by templated sites [24, 31],
where scripts execute queries on underlying databases to get the
data and then produce pages by embedding these data into pre-
defined HTML templates. Even though the underlying data are
often organized according to a structured (for example relational)
schema, they end up being available only as HTML pages meant to
be manually browsed and consumed by humans rather than being
electronically processed. The original organization of data is lost in
a sequence of HTML tags that have only a loose, and quite often
misleading, trace of the original structure.

A major challenge that makes Web data extraction hard is that
of HTML ambiguity. Let us comment by means of an example, on
the basis of the pages sketched in Figures 1a and 1b from a fictional
templated website publishing data about movies:1 here the and
 tags are both used as part of the template (the blue colored
occurrences in both pages) and as content (the red occurrence in
the second page). The same observation can be applied to texts, as
well: the Priceword is used both as part of the template, i.e., a label,
to identify the price of a movie (blue occurrences in both pages)

1We omit, for the sake of brevity, <HTML>, <HEAD> or <BODY> as they (should) occur
in every HTML page.

2445

https://doi.org/10.14778/3476249.3476293
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476293

Title
<DIV>Price</DIV>
Descr.
<DIV>The Price of
Everything</DIV>

35.22
A US documentary

(a) Page a

Title
<DIV>Price</DIV>
Descr.
<DIV>Star Wars</DIV>

9.98
The saga directed by
G. Lucas

(b) Page b

Title
Descr.
<DIV>𝐸title</DIV>

𝐸price
𝐸descr

(c) HTML Template

Figure 1: Running Example

and as part of the value of the movie title (red occurrence in the
first page). The limited set of available tags makes the former type
of ambiguity more likely than the latter: HTML is an ambiguous
language that allows distinct occurrences of the same tags and
strings to play completely different roles in different regions of
same page. While very often HTML tags are part of the template
and texts are the actual content, the example shows that significant
exceptions might arise.

The problem is further made more difficult by the fact that the
characteristics of HTML code from templated sites are relatively
local and might greatly change even from region to region of the
same page. One region containing rigidly structured data records
might come close to another one that contain much less regularly
structured fragments of user-generated contents, or HTML snippets
provided by external ads services, or (possibly nested) optional
portions. As not every region of the page has to exhibit the same
level of regularity in its structure, separating well structured regions
from those with many different variants is a challenging task.

In this paper we show that the state-of-the-art in Web data
extraction can be improved by giving specific attention to theHTML
ambiguity problem. At the same time we assume rather simple
structures for the organization of data, that is, we do consider nested
tuples with optional attributes, but without nested lists [2, 14]. In
practise, and thanks to the redundancy of large templated websites,
this is seldom a severe limitation: websites publishing snippets of
data organized into list of records, for example as search result
pages, do repeat the same data organized in flat tuples in detail
pages [29]. This is due to the fact that pages have to be consumed by
humans, and their readability might be compromised by an overly
complex structure.

Conversely, multi-valued attributes are simple list structures
frequently found inWeb pages, e.g., a list of author names separated
by commas. Our approach can already extract the string spanning
the whole list of values, and could be easily extended with a post-
processing step to find the separator and split the values. However,
dealing with lists is beyond the scope of the present paper, in which
we focus on the minimal formalism necessary to present and solve
the HTML ambiguity problem.

2 OVERVIEW
Web wrappers [4, 35] are software programs designed to extract
data from the HTML source of Web pages. Here we give an idea
of how we use formal grammars, a well established formalism in
the foundations of computer science, to specify Web wrappers. We

Title <DIV>

Price

Descr. <DIV>

𝐸title

𝐸price 𝐸descr

(a)

Descr.

Price

Title

𝐸1 𝐸2

𝐸3

<DIV>

𝐸title

𝐸price 𝐸descr

(b)

Figure 2: Landmark-trees for the running example

assume basic knowledge of the terms such as terminal (or token)
and nonterminal in this context.

We use the term Extraction Grammars to refer to formal gram-
mars where some nonterminals, which we call extracting nonter-
minals, play a specific role, to indicate that the strings of tokens
deriving from such nonterminals are the data to be extracted (which
vary for page to page) and not the elements of the template (which
are repeated across pages).

Here we give some intuition on how they are used: Figure 1c
shows an HTML template corresponding to pages such as those in
Figures 1a and 1b with the extracting nonterminals 𝐸title, 𝐸price
and 𝐸descr, each named after the semantics of the extracted data
shown in Table 1.

A major contribution of this paper is the family of Landmark
Grammars, a new family of extraction grammars for modeling
the HTML source code of pages from templated websites. Let us
briefly illustrate them. Figure 2a shows a first example of land-
mark grammar in its compact representation, a ternary tree called
landmark-tree. Each node is either a terminal symbol or an ex-
tracting nonterminal of the landmark grammar. Each edge has an
orientation, used in the figure, based on the role of the child sub-
tree, which can be either left or inner or right with respect to its
parent. The tree need not be complete, as intermediate nodes have
up to three sub-trees, but each of them has its distinct orientation.
For example, is the left child of the node; Title is the
inner child of , and <DIV> is the right child of . There are a
few leaf nodes marked with extracting nonterminals.

The core intuition behind landmark grammars is that the HTML
source code of a collection of templated pages includes at least
one token of the template that appears once and only once in each
page. We call such a token a landmark, as we use it to split the
page in at most three different regions, (i) the tokens before the
landmark occurrence, (ii) those within it, and (iii) those after it.
Landmarks correspond to pieces of the template, and the recursive
split of pages allows us to handle HTML ambiguity, as repeated
occurrences eventually end up in separated regions. Our observa-
tions and experiments over real websites, and a simple probabilistic
analysis, which we summarize in Section 4.1 in a so called Land-
mark Lemma, all confirm that this intuition holds, and allows the
generation of effective Web wrappers.

Let us comment on the various concepts bymeans of our example
in Figure 1. In the two pages (as well as in many other similar pages
obeying to the same HTML template) the token Descr. appears

2446

exactly once and can play the role of landmark (the root of the
landmark-tree in Figure 2b). On the contrary, the token Price cannot
be chosen as a landmark of the whole page because it occurs twice
in the page of Figure 1a: on the left of Descr. as part of the template
as well as on its right as part of the content (as it is part of the
title of the movie). However, it appears exactly once in the region
before the only occurrence of the first landmark Descr. Recursively,
when that landmark Descr. has been already posed, Price can be
chosen as a landmark of its left subregions. This is represented in
Figure 2b where Price is the left child of the root landmark Descr.
An observation to be made is that the recursive construction of
the tree ends for the regions in which no landmark is found: each
region with no landmark gives rise to an extracting nonterminal.

Let us observe that the two alternative landmark-trees shown
in Figure 2 for the pages in Figure 1 contain a different number
of nodes: the tree in Figure 2b contains less nodes than that in
Figure 2a and extracts a larger number of tokens. The two landmark
grammars differ in the granularity of the data they extract. Indeed,
the extraction in Table 2 shows that the nonterminals 𝐸1, 𝐸2 and
𝐸3 in Figure 2b extract tokens that are part of the HTML template.

The example allows us to comment on an interesting formal
problem addressed (and solved) in this paper: given a set of in-
put pages obeying to a shared HTML template (for example those
shown in Figure 1), find, among all possible extraction grammars
(such as those shown in Figure 2), the one minimizing the length
of the extracted strings.

Indeed, the fewer the tokens in the extracted strings, the greater
is the number of tokens in the template. This has two consequences:
more common portions of the template are recognised and the grain
of the extracted data is finer, so improving the chances of giving
them the appropriate semantics.

Finally, landmark grammars exhibit the interesting local parsabil-
ity property, which allows the extraction process to gracefully de-
grade when mismatches between wrapper and pages occur. Parsing
failures are confined as much as possible to allow the extraction of
data from other regions of the page. This property has important
practical consequences, as templated pages might come with many
variations and exceptions that cannot be foreseen or observed when
the corresponding wrapper is generated, for instance because the
training sample used for the inference is too limited or biased.

The rest of this paper is organized as follows: Section 3 formalizes
the Smallest Extraction Problem and presents landmark grammars,
a family of extraction grammars supporting Web data extraction
and exhibiting the local parsability property. Section 4 presents the
problem of finding a landmark grammar matching with an input set
of sample pages. Section 5 presents an optimal algorithm for solving
the Smallest Extraction Problem. Section 6 introduces the dynamic
tokenization technique to deal with HTML ambiguity. Section 7
presents the experimental evaluation of a prototype implementation
of the proposed landmark-grammar inference algorithms. Related
works are discussed in Section 8.

3 PROBLEM DEFINITION AND LANDMARK
GRAMMARS

Following common practice [27], we define a context-free grammar
𝐺 as a 4-tuple ⟨𝑉𝑇 ,𝑉𝑁 , 𝑃, 𝑆⟩, where 𝑉𝑇 is the terminal alphabet,

Table 1: Extraction using the landmark-tree of Figure 2a

Page 𝑬 title 𝑬price 𝑬descr Sum
a The Price of Everything 35.22 A US documentary 8

b Star Wars 9.98
The saga directed by
G. Lucas

11

Table 2: Extraction using the landmark-tree of Figure 2b

Page 𝑬title 𝑬price 𝑬descr 𝑬1 𝑬2 𝑬3 Sum

a The Price of
Everything

35.22 A US documentary <DIV> </DIV> 12

b Star Wars 9.98
The saga directed by
G. Lucas

 <DIV> </DIV> 15

𝑉𝑁 is the nonterminal alphabet, 𝑃 is the production set and 𝑆 the
axiom. A production (also called rule) is denoted by 𝐴→ 𝛼 , where
𝐴 ∈ 𝑉𝑁 and 𝛼 ∈ (𝑉𝑇 ∪𝑉𝑁)∗. In such a production, 𝐴 (which is a
nonterminal) is called the left-hand side (l.h.s.) and 𝛼 (a sequence
of terminal and nonterminal symbols) is the right-hand side (r.h.s.).
The r.h.s. can be empty, in which case it is denoted by 𝜀.

We use𝐴⇒ 𝛼 to denote the transitive closure of the binary rela-
tion associated with the production set; 𝐿(𝐺) denotes the language
associated with a grammar𝐺 , that is, 𝐿(𝐺) = {𝑠 ∈ 𝑉 ∗

𝑇
|𝑆 ⇒ 𝑠} is the

set of strings of terminal symbols that can derived from the axiom
𝑆 of the grammar.

As we said in the Overview section, we use grammars to describe
wrappers extracting data from Web pages. A tokenizer performs a
lexical analysis of the HTML source code, translating a page into a
sequence of tokens (terminals in grammar terminology) from the
alphabet𝑉𝑇 . Namely, the tokenizer creates one token for each word
and discards portions of the input source which are neither tags or
nor texts, such as HTML comments. As for tags, it produces two
distinct tokens for a start tag and its closing counterpart.

Grammars for extractions. We use the term Extraction Grammars
to refer to formal grammars coming with an attached semantics
meant to specify wrappers for extracting data from Web pages.
Some nonterminals of these grammars are specified to be extracting
nonterminals: given a page, a wrapper extracts the strings of tokens
deriving from such nonterminals.

Let us give a brief formalization of the notion. Given a nonter-
minal 𝐸 in a grammar 𝐺 and a page 𝑝 , we use 𝐸 (𝑝) to denote the
sequence of tokens deriving from 𝐸 when parsing 𝑝 with grammar
𝐺 . If E(𝐺) is the set of the extracting nonterminals in 𝐺 , then the
semantics of 𝐺 as an extraction grammar (to which we refer as an
extraction), is the set of productions that derive the strings of tokens
in the page from the extracting nonterminals E(𝐺). In symbols, the
extraction is the set {𝐸 (𝑝) | 𝐸 (𝑝) ∈ 𝑉𝑇 + and 𝐸 ∈ E(𝐺)}.

As we argued in the overview, in the realm of extraction gram-
mars, an interesting goal is that of finding the one that allows for
extraction at the finest grain. Let us now give a formalization of
the problem, where the |.| notation denotes, as usual, the number
of tokens (that is, the length) of a string.

Definition (Smallest Extraction Problem — SEP). Given a set of
pages P and a family of extraction grammars G, find the grammar
𝐺 ∈ G such that 𝐿(𝐺) includes all pages in P and𝐺 minimizes (the
sum of) the sizes of the extracted strings:

2447

𝐺 = argmin𝐺 ∈G
∑
𝑝∈P

∑
𝐸∈E (𝐺) |𝐸 (𝑝) |.

In this paper, we focus on a specific family of extraction gram-
mars that exhibit the local parsability property [53], which allows
the confinement of parsing failures.

3.1 Landmark Grammars
We introduce a family of extraction grammars called Landmark
Grammars, discuss their properties and how they are used to extract
data from pages. Then in Section 4 we will show how grammars of
this family can be generated starting from a set of pages obeying
to the same HTML template.

We make use of a notation to specify the productions composing
a landmark grammar, which, at the same time, associates them
with the paths of the corresponding landmark-tree: Given any node
associated with a path labelled 𝛼 , let 𝛼◁, 𝛼△, and 𝛼▷ denote the
path of its left, inner and right child, respectively. For example, in
Figure 2a the path of landmark is: ◁◁.

A landmark grammar includes the axiom 𝑆 → 𝐴𝜀 , and specifies
as extraction nonterminals all and only those occurring in the r.h.s.
of the unit-rules, i.e., productions in the form 𝐴𝛼 → 𝐸𝛼 . For each
landmark node of the tree having path 𝛼 , a number of productions
are generated into the landmark grammar, as follows.

(a) if the landmark is a non-empty tag,2 then it is associated
with three productions, as follows:
𝐴𝛼 → 𝐴𝛼◁𝑙𝛼𝐴𝛼△𝑙𝛼𝐴𝛼▷ |𝐸𝛼 |𝜀
where 𝑙𝛼 is the (opening) tag of the landmark and 𝑙𝛼 is the
corresponding end tag;

(b) if the landmark is an empty tag (such as
) or a piece of
text, then the productions have the form:
𝐴𝛼 → 𝐴𝛼◁𝑙𝛼𝐴𝛼▷ |𝐸𝛼 |𝜀
where 𝑙𝛼 is again the landmark (with text form in this case);

(c) the productions 𝐸𝛼 → 𝑡𝐸𝛼 |𝑡 , where 𝑡 ∈ 𝑉𝑇 .
It is worth noting that each landmark is therefore associated with
three productions, the first of which splits the page around a land-
mark occurrence whereas the other two are instrumental in extract-
ing data, and handling parsing failures due to missing portions of
the page, respectively.

Example 1. The landmark grammar corresponding to the tree in
Figure 2a contains the following productions:
𝑆 → 𝐴𝜀

𝐴𝜀 → 𝐴◁
𝐴▷ |𝐸𝜀 |𝜖 𝐴◁△ → 𝐴◁△◁Description𝐴◁△▷ |𝐸◁△ |𝜖
𝐴◁ → 𝐴◁◁𝐴◁△𝐴◁▷ |𝐸◁ |𝜖 𝐴◁▷ → 𝐴◁▷◁<DIV>𝐴◁▷△</DIV>𝐴◁▷▷ | . . .
𝐴◁◁ → 𝐴◁◁◁𝐴◁◁△𝐴◁◁▷ |𝐸◁◁ |𝜖 𝐴◁▷△ → 𝐸◁▷△
𝐴◁◁△ → 𝐴◁◁△◁Title𝐴◁◁△▷ |𝐸◁◁△ |𝜖 𝐴▷ → 𝐴▷◁𝐴▷△𝐴▷▷ |𝐸▷ |𝜖
𝐴◁◁▷ → 𝐴◁◁▷◁<DIV>𝐴◁◁▷△</DIV>𝐴◁◁▷▷ | . . . 𝐴▷△ → 𝐸▷△
𝐴◁◁▷△ → 𝐴◁◁▷△◁Price𝐴◁◁▷△▷ | . . . 𝐴▷▷ → 𝐸▷▷

For the sake of brevity, we do not show a few rules of the form
𝐴𝛼 → 𝜀 producing empty strings and rules for the generation and
expansion of nonterminals 𝐸𝛼 (those of the form 𝐸𝛼 → 𝑡𝐸𝛼 |𝑡).

3.2 Local Parsability
We show that landmark grammars exhibit the local parsability
property, which they directly inherit from the family of grammars in
which this property has been originally introduced and developed:
2For the sake of simplicity we ignore all tags’ attributes and their values by considering
all tag tokens made up only by their element name. We defer further discussions on
the inner structure of tag tokens to Section 6.

the operator precedence grammars [21, 52]. This property confines
the effects of parsing failures to a local context. In our case, this
applies to failures due to irregularities and variations in the page.

Local parsability is well exploited, for example, by the parsers
underlying many IDEs. To provide the developers with real-time
feedback even while working on large code bases, modern com-
pilers are driven by the IDE to incrementally isolate and process
only a limited portion of source code, as soon as the developer
finishes typing it. For C-like programming languages, this can be
reduced to parsing and recompiling only the smallest sequence of
instructions contained by the pair of curly brackets surrounding
the latest changes.

Mismatches between an automatically inferred grammar descrip-
tion of the HTML template and a page which is supposed to obey
to that template are frequent and cannot be always avoided, due to
several factors, some of which might be inherently part of the pro-
cess used to collect the training pages: a sample might be not rich
enough to let the inference algorithm observe all the fine-grained
details of a complex template; or the presence of optional portions
in the pages (e.g., ads), with a reserved and fixed room in the page
layout, but without a predetermined structure; or even changes
over time, i.e., new sections of the pages have been added, removed,
or altered w.r.t. the version observed at inference time.

Considering all these challenges, we show that landmark gram-
mars enjoy the parsability, which can confine the effects of these
uncertainties with important practical consequences [52].

Proposition. Landmark languages are a strict subset of operator
precedence languages.

Proof. For a grammar to be an operator precedence grammar,
every production has to be in operator-form, i.e., the r.h.s. cannot
contain two consecutive nonterminals, and cannot be empty. The
productions of landmark grammars are not in the operator-form
because they include productions with an empty r.h.s.. However,
a simple bottom-up substitution allows us to convert any land-
mark grammar into a proper operator grammar. Namely, every
production 𝐴𝛼 → 𝛾𝐴𝛼.𝑥𝜔 (with 𝛾, 𝜔 ∈ (𝑉𝑇 ∪𝑉𝑁)∗) in which 𝐴𝛼.𝑥

occurs in the r.h.s. is replaced by two new productions of the form
𝐴𝛼 → 𝛾𝜔 and 𝐴𝛼 → 𝛾𝐴′𝛼.𝑥𝜔 . 𝐴′𝛼.𝑥 r.h.s. is obtained from 𝐴𝛼 ’s
by replacing every 𝐴 nonterminal with the corresponding 𝐴′. This
procedure removes productions with empty r.h.s. and it does not
lead to any new production having two consecutive nonterminals
in the r.h.s.

The containment is strict because the operator grammars can
be recursive whereas the landmark grammars productions are not,
except for the extracting nonterminals, defined as 𝐸𝛼 → 𝑡𝐸𝛼 |𝑡 . □

We now show that the local parsability can enable the generation
wrappers that locally confine the effects of parsing failures, e.g.,
due to irregularities of any of the kinds mentioned above. To the
best of our knowledge it has never been exploited for this purpose.

Parsing with Error Handling. Let us assume now that a landmark
grammar is available. In Section 4 we illustrate an algorithm for
inferring such a grammar starting from a set of pages sharing a
common HTML template.

The parsing of a page with a landmark grammar can be executed
bymeans of a non-directional parser [27, 52]. The parsing algorithm

2448

Title
<DIV>Price</DIV>
Descr.
<DIV>The Lord Of The
Rings</DIV>

40.00

(a)

Title <DIV>

Price

Descr. <DIV>

The Lord
of The Rings

40.00 $

(b)

Figure 3: Extraction in the running example

performs a top-down visit of the landmark-tree and a contextual
decomposition of the input page into regions, where a region is
a string of contiguous tokens within the page. During such visit,
it considers the productions having in the l.h.s. the landmark in
current tree node.

Given a node with path 𝛼 of the landmark-tree, let the corre-
sponding nonterminal 𝐴𝛼 be associated with a region 𝑟𝛼 (initially
𝐴𝜖 is associated with 𝑟𝜖 spanning the whole input page 𝑝).
The parsing is executed as follows:

(1) apply the production 𝐴𝛼 → 𝐴𝛼◁𝑙𝛼𝐴𝛼△𝑙𝛼𝐴𝛼▷ if 𝑙𝛼 is a tag,
(or 𝐴𝛼 → 𝐴𝛼◁𝑙𝛼𝐴𝛼▷ if it is a text) by searching in 𝑟𝛼 for an
occurrence of the landmark 𝑙𝛼 ;

(a) halt if either none or more than one occurrence are found:
the string of terminal symbols in 𝑟𝛼 are extracted by pars-
ing nonterminal 𝐸𝛼 by applying the production𝐴𝛼 → 𝐸𝛼 ;

(b) otherwise (exactly one occurrence 𝑙 has been found) split
𝑟𝛼 into three sub-regions 𝑟 𝑙𝛼◁, 𝑟 𝑙𝛼△ and 𝑟 𝑙𝛼▷ w.r.t. 𝑙 ; recur-
sively repeat the procedure on each of the sub-regions
of 𝑟𝛼 and the corresponding sub-regions by parsing 𝐴𝛼◁,
𝐴𝛼△ , and 𝐴𝛼▷ over 𝑟 𝑙𝛼◁, 𝑟 𝑙𝛼△ and 𝑟 𝑙𝛼▷, respectively.

Example 2. Figure 3a shows a page obeying to the HTML tem-
plate shown in Figure 1c but missing the movie Description. This
does not prevent the landmark grammar shown in Figure 2a from
extracting other data from the nodes marked with 𝐸title and 𝐸price
as shown in Figure 3b (“X” stands for the missing node 𝐸descr).

3.3 Split Operation
Given a region 𝑟 , and one token 𝑡 occurring exactly once within
it, we can define a three-way split operation of that region into
three contiguous sub-regions based on that unique 𝑡 occurrence:
the region at the left (𝑟𝑡◁), within (𝑟𝑡△ , if 𝑡 is tag), and at the right
(𝑟𝑡▷) of 𝑡 . The split operation is well-defined if and only if exactly
one occurrence of the token 𝑡 can be located in 𝑟 . By extension, we
consider it well-defined also if no occurrence is found: the semantics
is that it just returns the region on which it is applied.

A split operation can be associated with a production of a land-
mark grammar: let 𝐴 be a nonterminal in the l.h.s. of a production
from which the string of tokens in a region 𝑟 derives. It turns out
that the regions deriving from 𝐴◁, 𝐴△ and 𝐴▷ can be seen as re-
sulting from a split operation pivoting on a landmark 𝑙 occurring
exactly once in the region 𝑟 .

Algorithm 1 findTempl: Creating the landmark-tree
1: function findTempl(𝑅) ⊲ Input: a set of regions.
2: 𝑙 ← choose a landmark occurring at most once in every 𝑟 ∈ 𝑅
3: return 𝑙

(findTempl(𝑅𝑙◁) ;findTempl(𝑅𝑙△) ; findTempl(𝑅𝑙▷))
4: end function ⊲ Output: a landmark-tree.

Example 3. If we consider the region 𝑟 spanning the whole page
in Figure 1a, then the following regions are obtained by splitting
on the token
:
𝑟
◁ = Title. . .<DIV>The Price of Everything</DIV> ;
𝑟
△ = 𝜖 ;
𝑟
▷ = 35.22 A US documentary .

Parsing a landmark grammar reduces to recursively applying
split operations that consume and produce page regions. This ob-
servation motivates the following complexity analysis.

Proposition (Split Complexity). The worst-case time complexity
of a split operation over a set of regions containing 𝑛 total tokens
can be implemented in O(𝑛 log𝑛).

Proof. We assume to have built a token-table structure over all
the tokens in the input regions. The token-table is a map associating
each token with the ordered list of all its occurrences over the input
regions, and can be built in O(𝑛). These lists are ordered by the
position of the token occurrences in the page. In order to perform
a split operation on a certain pivoting token, we need to compute
the resulting sub-regions by splitting the token-table in several
smaller tables each associated with the resulting sub-region, so as
to support next split operations. The split positions of the pivoting
token can located in the ordered lists of occurrences associated
with any other tokens (since those lists need to be split, as well) in
O(log𝑛). The number of lists to split in the worst case is O(𝑛). □

4 WRAPPER INFERENCE
In the previous section we have described how we can parse a given
landmark grammar to extract data from a page. In this section we
show how such a grammar can be synthesized.

Given a set of input pages, Algorithm 1 (findTempl) aims at gen-
erating the landmark-tree representation of a landmark grammar
that describes the HTML template underlying every input page.
The produced grammar can be used as the specification of a Web
wrapper aiming at fine-grained data extraction from other pages
with the same template.

Algorithm findTempl builds a landmark-tree representation of
the output grammar starting from its root in a top-down fashion. As
the first invocation triggers the overall inference process, it receives
as input a set of regions, each spanning one full page. The root of
the output landmark tree is then chosen by analyzing the content
of every input region (line 2) looking for tokens occurring at most
once in every input page, if any.

The input parameter (𝑅) of the algorithm is one set of regions,
each from one distinct page of the input set of sample pages. Each
recursive invocation of the algorithm reduces the problem by split-
ting every input region 𝑟 on the landmark occurrences 𝑙 it contains,
if any: the sub-regions 𝑟 𝑙◁, 𝑟 𝑙△, 𝑟 𝑙▷ are computed as detailed in Sec-
tion 3.3. Left, inner, and right sub-regions are then grouped so as

2449

to create three new sets of regions, namely ⟨𝑅𝑙◁, 𝑅𝑙△, 𝑅𝑙▷⟩, on which
the algorithm is recursively invoked (line 3).

The parenthesis notation (r.h.s. of line 3) stands for an operator
𝑙 (·, ·, ·) constructing the ternary landmark-tree rooted in the chosen
landmark 𝑙 , and having three children, which are the roots of the
sub-trees resulting from recursive invocations.

Example 4. Two of the possible landmark-trees inferred for our
running example are depicted in Figure 2. They can be obtained
from the input pages shown in Figures 1a, 1b, and 3a.

Solving the overall inference problem is equivalent to recursively
solving several instances of the Landmark Finding Problem.

Definition (The Landmark Finding Problem — LFP). Given a set
of input regions (one per page) assumed to obey to the same HTML
template, choose which landmark candidate should become the
next landmark of a grammar describing every input region.

Algorithm findTempl uses a nondeterministic operator choose
to solve the inference problem. It considers as a legit landmark
candidate any token occurring at most once per page, that is, any
token unambiguously supporting a split operation over every input
region. Therefore, it ends up considering all the possible ternary
landmark-trees modelling the set of input pages. In the worst-case,
the input contains 𝑛 different tokens, and the number of possi-
ble landmark-tree can become as large as the number of possible
ternary trees with 𝑛 nodes, 𝐶 (3)𝑛 = 1

2𝑛
(3𝑛
𝑛

)
, i.e., the generalized

Fuss-Catalan number [3].

Proposition (findTempl complexity). The worst-case complexity
of enumerating all the landmark-trees for an input made of 𝑛 total
tokens is O(𝐶 (3)𝑛 · 𝑛2 log𝑛).

Proof. It follows from Split Complexity, and from the cost of
building one of the possible 𝐶 (3)𝑛 landmark-trees of 𝑛 nodes by
means of 𝑛 split operations. □

A deterministic solution is presented in Section 5, where we
also explain how to build, among all produced landmark-trees,
the one that solves the SEP if we pose additional restrictions on
the occurrences of each landmark. Next we show, by developing
a simple probabilistic model of modern templated HTML pages,
that the intuitive and effective heuristic of choosing the candidate
landmarks amongst all tokens occurring atmost once per input page
is also well principled. Indeed, that is the property characterizing
the tokens that most likely are part of the template according to
the developed model.

4.1 Landmark Lemma
Pages of modern sites are generated by scripts that query one
or several underlying databases. We assume that no information
is available about those scripts beyond an observed input set of
regions 𝑅 (possibly, whole pages).

A token occurring in the input set of regions can be classified
in two mutually exclusive categories: either it is a template token
or a value token, i.e., either it is produced by the script as part of
the HTML template, or it comes from the contents stored in the
underlying databases. Nevertheless, without a direct access to those
generating scripts, such classification can only be approximated by

developing a probabilistic model based on the evidence collected
while observing the input set of regions 𝑅.

We introduce a discrete probability distribution function 𝑝 (·)
over tokens in the input regions 𝑅 such that 𝑝 (𝑡, 𝑅) is the probability
that all occurrences of 𝑡 in 𝑅 are template tokens, and so 1− 𝑝 (𝑡, 𝑅)
is the probability that at least one of them is a value token.

We develop a workable probabilistic model based on two assump-
tions. The first is the following.

Assumption (Independence of Occurrences — IOA). Given a token
𝑡 , and a set of regions 𝑅, 𝑝 (𝑡, 𝑅) depends only on the nature of the
token 𝑡 (i.e., whether it is a tag or a text) and on the number of its
occurrences in every input region 𝑟 ∈ 𝑅.

The IOA can be rewritten as 𝑝 (𝑡, 𝑅) = 𝑝 (𝑡, 𝑜 (𝑡)) where 𝑜 (·),
called occurrences vector [2], is a function over tokens in 𝑅 that
associates a token with the number of its occurrences in every
input region 𝑟 ∈ 𝑅.

This assumption is not completely valid on realWeb pages as tags
are often organized according to an HTML language specification
that “ties” together certain tags, say, <TR> and <TD> for creating table
rows. We end up neglecting, in our model, how those occurrences
are positioned w.r.t. occurrences of the same token and of other
tokens in the same regions.

The second assumption is that every tag is part of the template
with the same template probability 𝑙, and every text with probability
𝑣 = 1 − 𝑙 or vice versa, i.e., a text is not part of the template with
probability 𝑙 and is template with probability 1 − 𝑙. This allows us
to simplify our probabilistic model into a single-parameter one. In
practice, we can expect the parameter 𝑙 to be small: usually most of
tags are part of the template and most of the texts are values.

We are now ready to state and prove a major property that
justifies the role of landmark grammars as an effective formalism
for describing HTML templates.

Lemma (Landmark Lemma). Given a set of input regions 𝑅, if
template probabilities are either very small (lim

𝑙→0+, i.e., texts) or
very large (lim

𝑙→1−, i.e., tags), then the occurrences vector that
maximizes the probability of a token 𝑡 being a landmark is the
binary vector, for which the token does not occur more than once
in any input region.

Proof. The probability of a token 𝑡 being part of the template
can be computed by the mutually exclusive events of it being found
as an occurrence of a template token 𝑖 times (with probability 𝑙),
and 𝑘 − 𝑖 times as an occurrence of a value token (with probability
𝑣 = 1 − 𝑙), i.e.:

𝑝 (𝑡) = ∑𝑘
𝑖=1 𝑙

𝑖 𝑣𝑘−𝑖 =
𝑙

(
𝑙𝑘−𝑣𝑘

)
𝑙−𝑣

. (1)

Our goal here is to find the maximum value of the probability, and
hence we compute the partial derivative of 𝑝 (·) w.r.t. 𝑘 :

𝜕𝑝

𝜕𝑘
= −

𝑙

(
(1−𝑙)𝑘 log(1−𝑙)−𝑙𝑘 log(𝑙)

)
2𝑙−1

, (2)

where we need to assume 𝑙 ≠ 0, 𝑙 ≠ 1, 𝑙 ≠ 1
2 . By solving for 𝑘 :

𝜕𝑝

𝜕𝑘
= 0 −→ 𝑘 =

log
(
𝑙 log(𝑙)
log(1−𝑙)

)
−log(𝑙)

log(1−𝑙)−log(𝑙)
, (3)

2450

and, by taking the limit for 𝑙 → 0+ (for tags) and for 𝑙 → 1− (for
texts), we obtain the following result:

lim
𝑙→0+ 𝑘 = lim

𝑙→0+
log

(
𝑙 log(𝑙)
log(1−𝑙)

)
−log(𝑙)

log(1−𝑙)−log(𝑙)
= lim

𝑙→1− 𝑘 = 1. (4)

We now prove by induction that it holds for 𝑛 pages. The basic
step follows from Equation 4 above. As for the inductive step, let
us now assume that the property holds for 𝑛 − 1 pages by inductive
hypothesis for a candidate token 𝑡 . Given a new page, either that
candidate does not occur at all and cannot be observed (i.e., 𝑘 = 0),
or, if it occurs, it has to be present at most once (𝑘 ≤ 1) so that
Equation 4 holds, as well. □

5 SEP AS A SEARCH PROBLEM
The family of landmark grammars allows the SEP to be conveniently
modeled as an informed search problem [54] in a space whose states
are each associated with a landmark-tree. Every edge of the space
is associated with a possible split on the landmark-tree of the state
it departs from, and the split creates the landmark-tree associated
with the state the edge leads to.

SEP is thus reduced to the problem of finding the state 𝑠∗ with
the smallest cost, the latter being defined as the total size (in tokens)
of the strings extracted by its underlying landmark-tree from the
input pages: 𝑔(𝑠) = ∑

𝑟 ∈𝑅 (𝑠) |𝑟 |, where 𝑅(𝑠) is the set of all regions
extracted by the landmark grammar associated with the state 𝑠 . The
initial state of this search space is the empty landmark-tree whose
cost is equal to 𝑛, the total number of tokens in the input pages.
The goal states are the landmark-trees on which additional splits
cannot be operated for the absence of candidate landmarks. SEP is
thus reduced to the problem of finding the goal state 𝑠∗ with the
most fine-grained data extraction, i.e., the smallest cost 𝑔(𝑠∗).

Example 5. Figure 4 shows an excerpt of the search space for
the running example. The root is an empty landmark-tree. The two
highlighted landmark-trees are those in Figures 2a and 2b. Several
paths might lead to the same state as shown by the gray colored
state in Figure 4: it is possible that a landmark-tree is obtained by
applying the same set of split operations in different sequences.

The number of possible states can be overwhelming, even for
rather small input pages, if each contain different tokens. However,
for real pages, and especially templated ones, many tokens are
repeated in every page. The efficiency of the search algorithm can
be measured with the number of number of visited states, i.e., the
number of splits performed to reach a goal state.

We introduce 𝑘-SEP, a constrained variant of the general SEP
specifically designed for the family of landmark grammars. It re-
duces the number of states of the search space by discarding tokens
not occurring frequently enough to be considered as plausible land-
marks. It is based on the following additional assumption.

Assumption (𝑘-SEP). Given a landmark grammar and a set of
input regions that it parses, every landmark must occur exactly
once in at least 𝑘 input regions.

It is worth mentioning that findTempl actually deals with 1-SEP,
as it implicitly requires every landmark to occur at least once to be
observed and considered as one of the possible candidate landmarks.

Figure 4: Excerpt of the search space for the example

5.1 A*-Solution for k-SEP
The search space of a 𝑘-SEP instance features two important char-
acteristics: first, a goal state is any state associated with a landmark-
tree onwhich no further split is possible for the absence of candidate
landmarks satisfying the 𝑘-SEP assumption; second, any split de-
creases the overall cost of at least 𝑘 units, as that is the minimum
number of token occurrences it removes from the extracted strings.

A* is a best-first search algorithm [54] that maintains a frontier
over all and only the visited states that could still potentially be
in the path to the optimal goal state. In every iteration, and un-
der rather general assumptions on the adopted cost function, it
selects which paths departing from that frontier need to be further
expanded towards the goal to not miss the optimal state.

A* bases its decisions on a cost function 𝑓 (𝑠) = 𝑔(𝑠) + ℎ(𝑠), that
aims at optimistically estimating the cost from the initial state to
the optimal goal state by crossing the current state 𝑠: 𝑔(𝑠) is the
actual cost of the path to reach the current state 𝑠 , and the heuristic
function ℎ(𝑠) estimates the cost required to expand the path from 𝑠

all the way down to the optimal goal state.
We define ℎ(·) as the function estimating the number of tokens

yet to be modelled by a landmark-tree, as ℎ(𝑠) = 𝑖 (𝑠) − 𝑔(𝑠), where
𝑖 (𝑠) = 𝑜<𝑘 (𝑠)+𝑜𝑢 (𝑠). 𝑜<𝑘 (𝑠) counts the number of tokens occurring
in less than 𝑘 regions; 𝑜𝑢 (𝑠) is the number of tag occurrences which
are left “unbalanced“ by a previous split: they are opened (resp.
closed) in a region but closed (resp. opened) in a different one. We
name 𝑖 (𝑠) incompressible cost after the observation that it counts the
tokens that cannot be modelled (from there on) in a 𝑘-SEP search
space by a landmark. With this definition of the heuristic function,
it is the incompressible cost function 𝑖 (·) that ends up driving A*’s
visit of the search space. Indeed, 𝑓 (𝑠) = 𝑔(𝑠) + ℎ(𝑠) = 𝑖 (𝑠).

Example 6. Figure 4 shows 𝑔(·) and ℎ(·) values over a few states
of the 2-SEP search space for the running example. TheA*-algorithm
follows the path that includes the nodes on the left side of the figure
and reaches the optimal landmark-tree, which is the state at the
bottom left of the figure.

It is well known that A* algorithm effectiveness strongly depends
on some crucial properties of the adopted heuristics function ℎ(·).

As for its completeness, i.e., the capability of always finding the
optimal solution, A* requires ℎ(·) to be admissible. An heuristic ℎ(·)
is said admissible if it never overestimates the cost of reaching the

2451

goal, i.e., ℎ∗ (𝑠) ≤ ℎ(𝑠) ≤ 0 for every state, where ℎ∗ (𝑠) is the actual
cost of the optimal path from the current state to the goal.

The A* algorithm is said optimally efficient, i.e., with the guaran-
tee that there cannot exist other algorithms that always visit fewer
states than A*, if ℎ(·) is consistent (or monotone). An heuristic ℎ(·)
is said consistent if its value never decreases along any path from
the initial state towards a goal state.

Lemma (Properties of the Heuristic Function). The heuristic func-
tion ℎ(𝑠) = 𝑖 (𝑠) − 𝑔(𝑠) is consistent and admissible for 𝑘 ≥ 2.

Proof. We only prove the consistency as it also entails the ad-
missibility. Given a state 𝑠 , let 𝑧 be any of its successor, and let
𝑠∗ be the goal state; for a heuristic to be consistent, the following
conditions must hold [49]:

(1) ℎ(𝑠∗) = 0;
(2) ℎ(𝑧) ≥ 𝑐 (𝑠, 𝑧) + ℎ(𝑠), with 𝑐 (𝑠, 𝑧) being the actual cost of

reaching a descendant 𝑧 from 𝑠 .
The first condition is trivial as the algorithm itself halts when

only incompressible tokens are left in the extracted regions.
As for the second condition, when going from a state 𝑠 to one of

its children, say 𝑧, the cost of reaching 𝑧 from 𝑠 is:

𝑐 (𝑠, 𝑧) = 𝑔(𝑠) − 𝑔(𝑧) = ∑
𝑟 ∈𝑅 (𝑠) |𝑟 | −

∑
𝑟 ∈𝑅 (𝑧) |𝑟 |,

and therefore we can rewrite that condition as:

𝑖 (𝑧) −∑𝑟 ∈𝑅 (𝑧) |𝑟 | ≥
∑
𝑟 ∈𝑅 (𝑠) |𝑟 | −

∑
𝑟 ∈𝑅 (𝑧) |𝑟 | + 𝑖 (𝑠) −

∑
𝑟 ∈𝑅 (𝑠) |𝑟 |,

that is: 𝑖 (𝑧) ≥ 𝑖 (𝑠). The latter trivially holds by definition of the
incompressible cost function 𝑖 (𝑠) = 𝑜<𝑘 (𝑠)+𝑜𝑢 (𝑠). A token counted
by 𝑜<𝑘 (·) occurs exactly once in less than 𝑘 regions cannot occur
more frequently by means of some additional splits. Similarly for
𝑜𝑢 (·): unbalanced tags of the regions extracted in the current state
cannot later be rejoined by a split. □

5.2 Greedy Search
Although the worst-case time complexity for inducing an optimal
landmark tree by means of the A* algorithm is still exponential, real
pages can hardly trigger such exponential behaviour in practice.
Indeed, backtracking can only occur in the presence of tokens in the
input regions with a recurrent HTML ambiguity, when the behavior
of template tokens is not distinguishable from that of value tokens
by just counting the occurrences. Even if backtracking happens,
it is most likely going to be “localized", i.e., confined in smallish
regions, at tolerable costs.

We now introduce Greedy, a variant of the search algorithm
that removes any trace of backtracking by always expanding the
state with a minimal value of the cost function 𝑓 (·): it can be used
to benchmark the contributions of A* both in term of additional
computational costs, and in term of the improvements over the
quality of induced landmark-trees. It can also be used to study the
characteristic of the regions that trigger the backtracking when
running A* on real pages.

Greedy, as well as A*, tends to prefer landmarks with the largest
number of occurrences amongst those occurring exactly once in at
least 𝑘 pages. However, whereas A* backtracks to already visited
states for finding the best choice, Greedy’s single choice might
significantly affect the quality of the final outcome.

We also aim at measuring the importance of the tie-breaking
policy by considering two Greedy variants: Greedy-rnd makes a
random choice, whereas Greedy-inf makes an informed decision
by adopting additional priority criteria, as follows: texts are better
than tags; longer texts are preferred over shorter ones; tags higher
in the DOM hierarchical representation of input pages are preferred
over those deep in the tree.

These criteria for prioritizing the landmark aim at preferring the
candidates that are most likely part of the template. They respond
to the intuition that textual candidate landmarks, especially longer
ones, are more likely to be part of the template than a leaf tag.

Independently of the adopted variant, Greedy certainly exhibits
a better worst-case time-complexity than A*.

Proposition 7 (Greedy-findTempl complexity). Greedy worst-
case time-complexity for inducing a landmark-tree is O(𝑛2 log𝑛).

Proof. It follows from the O(𝑛) nodes in a landmark tree, from
the complexityO(𝑛 log𝑛) of split operations, from theO(log𝑛) cost
of inserting new landmarks into a priority queue that maintains the
candidates’ ranking, and from the fact that every split can originate
at most 3 new candidates to insert in the priority queue. □

6 HTML DYNAMIC TOKENIZATION
So far we neglected the attributes of tag tokens for the sake of
simplicity.We now remove this limitation, and leverage the richness
of modern pages arising from the rather complex inner structure
of an HTML tag: each has an element name along with an optional
list of attributes, each with a name and an optional value.

The source code of a templated page often contains many tags
with the same element name but different roles in the template.
The roles can be distinguished by also leveraging the differences in
the attributes of a tag. For example, if <DIV class="movie-title">

and <DIV class="movie-price"> are modeled by the same landmark
<DIV> that ignores their HTML attributes, we would end up confus-
ing tokens that clearly play two distinct roles in a templated page:
the landmarks need to be sensitive to the value of the attributes,
say class, to distinguish the occurrences’ roles.

Unfortunately, deciding which attribute names and values should
be considered for every candidate landmark is a challenging prob-
lem. The presence of HTML attributes turns out to be occasionally
misleading: consider for example the quite common practice of
highlighting even and odd rows of a long HTML table with differ-
ent colors to facilitate reading. This detail has nothing to do with
the semantics of the contents: it is preferable a landmark <TR> that
neglects the presence of the bgcolor attribute and so matches both
<TR> and <TR bgcolor="#808080">.

Let <T> denote a landmark matching all tag tokens having as
element name T, independently of the presence of attributes. We
introduce the notation <T a=* b=*> for a landmark sensitive to the
presence of attributes and matching the two occurrences <T a="x"

b="y"> and <T a="z" b="z">, and the notation <T a="x" b=*> for a
landmark that is also sensitive to value of the a attribute: it matches
with <T a="x" b="y"> but not with <T a="z" b="z">.

A straightforward extension of our wrapper inference algorithm
can deal with HTML attributes by reconsidering the SEP search

2452

<TR>

<TR bgcolor=*> <TR align=*>

<TR bgcolor="#808080"> <TR align=* bgcolor=*> <TR align="center">

<TR bgcolor="#808080"
align=*>

<TR bgcolor=*
align="center">

<TR bgcolor="#808080"
align="center">

Figure 5: Lattice of tag landmark candidates

space modeling discussed in Section 5: the search space built with-
out considering attributes is now expanded with states to take into
account the new landmark candidates.3

This technique is named dynamic tokenization: at inference time,
it deals with lexical aspects that are traditionally faced during the
preliminary tokenization of the input pages, well before the infer-
ence even started. Namely, it decides which HTML attributes of
HTML tags should somehow “emerge” into tokens, to better solve
the 𝑘-SEP. In a sense, the induction algorithm is inferring not only
a landmark grammar description of the input pages, but also, and
contextually, the most appropriate lexical description of its tokens
to let that inference succeed.

All the candidate landmarks matching with a tag token of a
certain element name can be ordered into a lattice structure (C, ⪯)
as shown by the example lattice in Figure 5: it has been created
with the candidate landmarks that model all TR occurrences, such
as <TR bgcolor="#808080" align="center">.

Let C be the set of all possible candidates with the same element
name and let ⪯ denote a partial order relation between candidates.
The least upper bound of the lattice is always the landmark match-
ing with all token occurrences having the same element name,
independently of the presence of HTML attributes.

Given two landmarks T1 and T2 from that lattice: 𝑇1 ⪯ 𝑇2 iff
for every token occurrence 𝑡 , 𝑡 matches 𝑇1 ⇒ 𝑡 matches 𝑇2, i.e.,
landmarks that are greater according to the partial order ⪯ have
the same or a larger number of occurrences in every page.

During the inference, in order to decide whether a token can
play the role of a landmark or not, the tags occurring in the input
regions are grouped by their element name, and each is associated
with a lattice hosting all its occurrences. The candidates in the
lattice having exactly one occurrence in at least 𝑘 pages contribute
with a state in the 𝑘-SEP search space.

We assume that only a finite and already known set of attribute
names and values can contribute to the lattice:4 A* visits more states
when the dynamic tokenization is enabled because the new candi-
dates increase the branching factor of the search space. However,
both Greedy and A* worst-case time complexity do not increase.

3Conversely, extending the landmark grammars would turn out cumbersome as formal
grammars assume an up-front static lexical analysis of the input string.
4Our prototype can be configured by specifying which attributes should be used to
build the lattice (in our experiments: id,class), optionally with the value (class),
or that should just be ignored (bgcolor).

7 EXPERIMENTAL EVALUATION
We developed a Java prototype implementation of findTempl for
automatic wrapper inference based on landmark grammars. It im-
plements the optimal algorithm A*, the two variants of the Greedy
algorithm, a baseline Random that will be presented later, and the
HTML dynamic tokenization technique.5 Our experimental evalu-
ation 6 is based on two benchmarks: (𝑖) the Structured Web Data
Extraction (SWDE) dataset [30]; (𝑖𝑖) the Alaska benchmark [10].

SWDE is a rather consolidated dataset progressively adopted as a
reference by several Web data extraction systems [6, 30, 38, 42, 50]
and therefore suitable for comparing existing approaches. It was
sourced from 80 websites over 8 domains for a total of 124𝑘 pages.

Alaska is a more recent benchmark, which was conceived for
Web data integration tasks, but can be used for evaluating Web data
extraction systems as well. It includes a large manually curated
ground-truth with 587 attributes from 20 websites.

Each of the benchmarks comes with a ground-truth made of
correct attribute values from the pages of the dataset. To evaluate
the quality of the generated wrappers, we compute the precision
and recall over all attributes in the ground-truth. Given a collection
of pages P and an attribute 𝑎, let 𝑎(P) be the set of attribute values
extracted from the pages by the wrapper for that attribute, and let
𝑎𝑔 (P) be the corresponding correct values for the same attribute
from the ground-truth: precision is defined as 𝑃 =

|𝑎𝑔 (P)∩𝑎 (P) |
|𝑎 (P) | ,

and recall as 𝑅 =
|𝑎𝑔 (P)∩𝑎 (P) |
|𝑎𝑔 (P) | . Then, 𝐹 -measure is computed as

usual: 𝐹 =2× 𝑃×𝑅
𝑃+𝑅 . In order to associate each ground-truth attribute

with one of the output attributes, we always select the output
attribute having the best 𝐹 -measure value. As a measure of the
cost, we count the number of split operations. For an approximate
measure of the computation times, our sub-optimized prototype
on a commodity machine7 takes 4.36 seconds for 1𝑘 serial splits
(by averaging over all the experiments we conducted). Over the
SWDE dataset, A* performs an average of ~14𝑘 splits per site (with a
standard deviation 𝜎 =~17𝑘); for the Alaska Benchmark it performs
an average of ~600𝑘 splits per site (𝜎 =~38𝑘). It is worth noticing
that the presented inference algorithms can be easily decomposed
to perform several splits in parallel.

7.1 SWDE Benchmark
SWDE has been used for the evaluation of several Web data extrac-
tion systems proposed in the literature. Moreover, it has been used
for the evaluation of WADaR [41], which is a tool for joint wrapper
and data repairing, itself based on the exploitation of several pre-
existing proposals such as DEPTA [60], DIADEM [22], ViNTs [61],
RoadRunner [14], and WEIR [6]. Indeed, WADaR fixes the data
extracted by automatically generated wrappers and improves their
quality (the 𝐹 -measure grows by 15% − 60% [42]).

The main idea behind WADaR’s repairs is to exploit the hints
coming from a bunch of domain-specific annotators (oracles, in
WADaR’s terminology), which it uses to detect and fix anomalies

5We consider the attributes of all tags without their values, except for the attributes
class and id, for which we also consider the values. bgcolor is ignored.
6The dataset, the results and the logs of the experiments are available at this address:
https://thesmallestextractionproblem.github.io.
7Equipped with a 2.50GHz Intel Core i7-6500U processor and 8Gb of RAM

2453

https://thesmallestextractionproblem.github.io

in the extracted tuple of values. For instance, it can check whether
the extracted value, or a substring of it, belongs to the domain of
an attribute. If not, WADaR will look for a repair transformation to
jointly fix all the tuples of values extracted by the wrapper. Because
of the very nature of WADaR, which improves the quality of the
results of other systems, a comparison with WADaR transitively
provides a comparison with all the systems it is based upon.

Two other recent systems have been evaluated over SWDE:
HYB [50], a supervised wrapper generator, and OpenCeres [38],
an Open Information system capable of automatically discovering
new attributes. The evaluation of OpenCeres has motivated the
definition of an expanded version of the benchmark, which includes
additional ground-truth for 272 additional attributes from 21 sites
of 3 SWDE domains (Movie, NBA, and University).

Table 3 shows precision and recall averaged over all the attributes
in the SWDE ground-truth (or the expanded version, when avail-
able). We report the results for A* (with the dynamic tokenization
enabled), WADaR, HYB, and OpenCeres.

A* has been evaluated by inferring a wrapper from a random
sample of 20 pages for every site (0.01-0.1% of those available in
the dataset). A* achieves 93.88% in precision and 93.25% in recall,
improving WADaR’s results by 12.00%, and 20.13%, respectively. It
is worth noticing that WADaR requires external knowledge for its
repairs, in the form of domain-specific annotators, while our entire
process is fully automatic.

Table 3 also shows that A* outperforms HYB, a semi-supervised
system to synthesize a wrapper from very few examples: the user
is required to interact with the system to provide positive and
negative examples that will drive the wrapper generation starting
from a few initial annotations (just 2 on the SWDE dataset).

We also report the results of the evaluation over the expanded
SWDE against OpenCeres, a system that requires a seed KB made
of pairs of attribute value/label to run the extraction. The expanded
dataset contains more challenging optional attributes w.r.t. the
original dataset (with 12% loss both in precision and recall) but
A* can still outperform OpenCeres. However, it is worth observing
that OpenCeres has a different and more challenging goal, as it
aims at finding both labels and values of attributes.

Finally, we also compare A* against Random and Greedy, the
other sub-optimal algorithms visiting the same search space, as a
baseline: as Random selects landmarks without a clue, it helps to
assess how challenging a dataset is; Greedy is used as a reference
to analyze the role of A*’s backtracking for its optimality.

7.1.1 Random. The results in Table 3 are obtained by averaging
100 executions over all the sites of each domain. Interestingly, and
despite the totally clueless strategy, Random obtains respectable
precision results (always above 73%) on SWDE. Conversely, the
recall is rather disappointing (always below 48%), revealing that
minimizing the number of false negatives is the real challenge for
this benchmark. The results on the expanded dataset are similar.

7.1.2 Greedy. The greedy version of our inference algorithm visits
the search space by always preferring the landmark that minimize
the length of the extracted strings after the split. Table 3 shows the
results obtained by Greedy-rnd and Greedy-inf, the two variants
differing only for the policy adopted for breaking the ties. The

Table 3: Experiments on the SWDE dataset

SWDE Exp. SWDE
P R F P R F

WADaR 81.88 73.12 77.25
HYB 86±3 87±3 86±3
OpenCeres 72 48.33 57.84
Greedy-rnd 91.25 90.63 92.27 78.33 78.67 78.50
Greedy-inf 92.38 90.88 91.62 80.33 79.67 80.00
A* 93.88 93.25 95.56 81.67 81.67 81.67
Random 77±2 34±3 48±1 64±5 12±2 20±1

former makes a random choice, while the latter heuristically ranks
the candidates, as described in Section 5.2.

The obtained results are close to those of the optimal algorithm
A*, achieving a precision of 92.38% (resp. 91.25%) and a recall of
90.88% (resp. 90.63%) with Greedy-inf (resp. Greedy-rnd), i.e.,
a loss of just 2.06% in precision and 2.5% in recall. On average it
saves 9.8% splits (with a standard deviation of 20.87%). Also, the
differences in the results of the two variants show that only a rather
small portion of the loss can be recovered by using smarter policies
to break ties: most of the loss is due to the lack of backtracking.

As for the results on the expanded dataset, it is worth noticing
that the differences between A*’s and Greedy’s results are similar
to those computed on the original SWDE dataset.

7.2 Alaska Benchmark
The Alaska benchmark is an end-to-end benchmark for Big Data
Integration tasks. It contains more than 29𝑘 pages from 20 web-
sites. The dataset was not specifically designed as a data extraction
benchmark, and despite the SWDE dataset contains more pages
and sites than Alaska’s, the variety of attributes in the latter dataset
makes it more challenging.

Indeed, let us classify attributes as either head or tail depending
on whether they are present or not in the majority of the sites pro-
vided by a benchmark for a certain domain. The SWDE benchmark
is by construction built in such a way that it includes only 3-5 head
attributes per domain. Conversely, the majority of the attributes in
the Alaska Benchmark’s ground-truth are not head attributes.

Head attributes are usually located in a fixed, non optional por-
tion of the template, while tail attributes are more challenging and
optional attributes generally located in regions of the page with a
looser HTML structure.

7.2.1 Alaska Benchmark Ground-Truth. The Alaska benchmark in-
cludes a dataset of Web pages about e-commerce products with
a manually curated ground-truth made of linkages (pair of pages
referring to the same real-world entity) and schema matches (pair
of attributes from distinct sites with matching semantics). Unfortu-
nately, it does not include a ground-truth specifically designed for
Web data extraction, as the benchmark aims at evaluating the inte-
gration of the extracted data rather than their extraction from the
HTML source of the pages. Indeed, the dataset is available as JSON
files created by using an ad-hoc extractor specialized for HTML
tables containing products specification.

Given the size of the benchmark, manually curating the qual-
ity of those extracted data is a daunting task. We derived a Web
data extraction ground-truth by looking for the occurrences of at-
tribute values in the HTML source code of the pages. We selected

2454

only the attributes that according to the Alaska benchmark ground-
truth are offered by several pages across distinct sites. Since the
results of the integration is manually curated, and the data are
redundantly offered by multiple sources, we build our Web data
extraction ground-truth based on the assumption that these cor-
rectly integrated redundant data are correctly extracted, as well. We
manually verified and confirmed the correctness of all the values
for a random sample of 50 values. We also manually checked, for
a sample of 5 random attributes of the selected ones, that all the
values not available in the JSON files were also not available in
the HTML source of the corresponding page. Overall, out of the
initial 587 attributes available in the Alaska benchmark, our data
extraction ground-truth includes 92 attributes most of which are
published only by a minority of the sites in the dataset.

7.2.2 Results on the Alaska Benchmark. The experimental evalua-
tion on the Alaska benchmark is carried out by using the optimal
algorithm A*, and the two Greedy variants to benchmark and anal-
yse the amount of backtracking needed to get the optimal solution.

We used 10% of the pages of each site as training set.8 The
results shown in Figure 6 feature an average precision and recall of
78.15% and 84.20%, respectively. Figure 6a also shows the percentage
of additional splits that A* needed for every site in the Alaska
benchmark (Δ Split). On average Greedy saves 21.3% of splits (with
a standard deviation of 8.23%).

Figure 6c plots the differences between the number of splits
operated by the A* and Greedy algorithms w.r.t. the size of the
regions involved by the split. The split is counted once for every
involved region. This experiment shows that the vast majority of
additional splits operated by A* while backtracking is for small
regions with less than 4-5 tokens.

7.2.3 The parameter 𝑘 . To evaluate the impact of the 𝑘 parameter
in the search space for solving 𝑘-SEP, we illustrate the results of a
few experiments conducted on some representative websites from
the Alaska benchmark by averaging over all the attributes as 𝑘
ranges from 2 to 12. The continuous lines in Figure 6d (left vertical
axis) shows the 𝐹 -measure for the wrapper produced by the A*
algorithm (similar results are obtained with Greedy). The larger
the value of 𝑘 , the fewer fine-grained details of the template can be
observed: on loosely templated websites (e.g., buzzillions.com and
cambuy.com.au) the 𝐹 -measure significantly drops, as soon as some
optional portion of the HTML template occurring less than 𝑘 times
in the sample pages cannot be properly identified as such anymore.
On the contrary, the template of regularly structured websites (e.g.,
gosale.com and pcconnection.com) are still perfectly observable
and the 𝐹 -measure is steady even for large values of 𝑘 .

Figure 6d also plots with dashed lines (right vertical axis —
Δ Split) the percentage of splits which are saved as 𝑘 increases.
The reference is the number of splits performed for 𝑘 = 2. It can be
noticed that the two sites with the largest savings are those that
also experienced a significant 𝐹 -measure drop: the additional splits
are used for modelling fine-grained details of the template.

7.2.4 Experiments with Undersampled Input. In many practical sce-
narios, the quality of the training set used to infer a wrapper is not
known up-front. A comprehensive evaluation of an unsupervised
8Except for ebay.com site that contains ~7.1k pages, for which we use 70 pages.

generator should also consider the quality of the output wrapper
when the set of training pages is not large enough to provide all
the needed statistical evidence of every fine-grained variation of
the underlying HTML template.9

We simulate these scenarios by means of undersampled collec-
tions of pages from the Alaska benchmark. The plots depicted in
Figures 6e with a continuous line show the average 𝐹 -measure (left
vertical axis) for A* and Greedy. The results are averaged over all
the attributes as the percentage of training pages increases from
2% to 10% of the dataset size. The A* algorithm achieves an average
59.35% precision and 58.80% recall with a training set of only 4%
pages. Interestingly, Greedy-inf performs more often closer to A*
than to Greedy-rnd: the policy to break ties has a direct impact on
the learning algorithm in these undersampled scenarios.

7.2.5 HTML Dynamic Tokenization. In order to evaluate the contri-
bution of the dynamic tokenization technique presented in Section 6,
we ran again the experiments described in Section 7.2.4 with dy-
namic tokenization disabled. The dashed lines in Figures 6e plot the
differences between the 𝐹 -measure of the output wrapper obtained
in the two experiments (right vertical axis — Δ𝐹 -measure), i.e., the
improvements due to the technique.

We intentionally consider only settings in which the number of
training pages is rather small (less than 10%) so that the statistical
evidence to classify tokens as either template or content is scarce.
With dynamic tokenization disabled, there is a drop both in terms
of precision and of recall, due to the reduced ability to properly dis-
tinguish tags having the same element name but different roles in
the underling HTML template. The smaller the percentage of pages
used to induce a wrapper, the more significant its contribution to
A*’s performance. On the contrary, since Greedy does not back-
track, it cannot fully exploit dynamic tokenization: its contribution
to Greedy’s performance becomes quickly negligible as the size
of the training set gets smaller. To conclude, this experiment con-
firms that the advantages of A* over Greedy are more remarkable
when the input collection of pages is undersampled and dynamic
tokenization is enabled.

8 RELATEDWORKS
Extracting data from pages is a long-standing and challenging re-
search and industrial problem on which at least twenty years of
research [59] have been spent. Several startups have been created
with the explicit goal of extracting and leveraging Web data, such
as Lixto [45], Wrapidity [47], Diffbot [43], and import.io [44]. It
also well known that many companies, of every size, create and
maintain for their business lines ad-hoc solutions to gather and
process Web data, sometimes even at massive scale [46].

Vertex [28] has been one of the first documented large scale
end-to-end production system that solves several tasks (including
grouping pages by structure, and learning XPath-based rules that
are robust to page changes). It is based on a supervised approach
in which human operators have to provide a few annotated pages.

In scientific research, several trends can be highlighted: as for
the level of automation, the proposed techniques initially focused
on increasing the level of automation of the inference process,
9It also a quite common practice to collect pages bymeans of inherently biased crawling
programs, such as those collecting items from top-lists.

2455

~

buzzi
llions

.com

camb
uy.co

m.au

camm
arkt.c

om
ebay.

com
gosal

e.com ilgs.n
et

pccon
necti

on.co
m

price
dekh

o.com
shopm

ania.i
n

0

20

40

60

80

100

0 0

19

80

43

32

88

23

87

7

25

59

92

10
0

84

91

69

92

7

26

71

92

10
0

84

91

77

92

44

33

76

92

10
0

84

91

77

92

13

31

11

26

15

23

31

19 16

Random Greedy-rnd Greedy-inf A* Δ Split

(a) Precision and Δ Split

buzzi
llions

.com

camb
uy.co

m.au

camm
arkt.c

om
ebay.

com
gosal

e.com ilgs.n
et

pccon
necti

on.co
m

price
dekh

o.com
shopm

ania.i
n

0

20

40

60

80

100

0 0

19

32

90

43

58

44

57

42

11

57

92

99

63

88

64

93

42 42

74

92

99

63

88

78

93

61

34

89

79

99

63

88

78

93

Random Greedy-rnd Greedy-inf A*

(b) Recall

−0.5 0 0.5 1 1.5 2

·105

0

5

10

15

20

Diff. between A* and Greedy #splits

Si
ze

of
sp
lit
te
d
re
gi
on

s

(c) Splits Characteristics

2-SEP 4-SEP 8-SEP 12-SEP
0

10

20

30

40

50

60

70

80

90

100

F-
m
ea
su
re

buzzillions cambuy gosale pcconnection

0

10

20

30

40

50

60

70

80

90

100

Δ
Sp

lit

Δ buzzillions Δ cambuy Δ gosale Δ pcconnection

(d) Impact of 𝑘 parameter

2% 4% 6% 8% 10%0

10

20

30

40

50

60

70

80

90

Training pages

F-
m
ea
su
re

Greedy-rnd Greedy-inf A*

0

10

20

30

40

50

60

Δ
F-
m
ea
su
re

Δ Greedy-rnd Δ Greedy-inf Δ A*

(e) Dynamic Tokenization

Figure 6: Experiments on the Alaska Benchmark

ranging from ad hoc formal languages for writing wrapper [11],
to supervised solution [1, 25, 28, 35, 58], and also fully automatic
solutions [2, 14]; as for the scale, the initial solutions aim at ex-
tracting data from a single site [1], whereas later approaches were
designed to deal with many websites [15, 22, 29]; as for the kind of
patterns exploited, regular expressions over HTML-syntax based
tokens [2, 13], visual features [36, 60, 61], and several types of an-
notations [22, 38, 41, 50], have all been covered, sometimes by also
exploiting the redundancy across Web sources [6, 37]; as for the
type and variety of sources, a recent trend is that of proposing
solutions able to gather data holistically not only from templated
websites, but also from other type of sources [19, 38, 39].

Unsupervised approaches like RoadRunner [12], ExAlg [2], Fi-
VaTech [33], Trinity [56], and ViDE [36] are all based on the analy-
sis of the differences between pages generated by using the same
HTML template. It is then possible to reverse engineer a model of
that template, for example by means of regular expressions [2], or
one of their union-free subsets [12]. However, in practice, all these
systems are not used for large scale extraction tasks: their perfor-
mances are too dependent on how well the input pages satisfy the
underlying assumptions. The generated wrapper turns out to be
extremely sensitive to even small details in the pages of the training
set, and their quality is highly unpredictable at scale [16].

In sharp contrast to many of the previous approaches that strug-
gled to infer a token-level description of each and every detail of a
HTML template, the local parsability property of landmark gram-
mars allows the generation of wrappers that can extract data by

confining the effect of parsing failures even in presence of unex-
pected variations of the underlying template in the parsed pages.

The concept of token rolewas first mentioned in [2] together with
other techniques for distinguishing token occurrences (e.g., associat-
ing each one with its canonical-XPath, e.g., /html[1]/body[1]/b[2]):
we took inspiration from this technique to clarify the challenges
posed by HTML ambiguity. However, we get its consequences to
the fullest extent (see Section 6).

The local parsability property can help to tackle the same chal-
lenges faced by the approaches that discussed the robustness of
the wrappers such as [9, 18, 23, 48]. They introduced techniques
to infer robust, over time, XPath expressions for extracting a sin-
gle annotated attribute. In contrast, our technique focuses on a
non-directional parsing algorithm that allows to confine the effect
of any type misalignment/error, independently of its nature and
origin. The property has been introduced in the context of Floyd
grammars [21, 26] to handle parsing errors [17, 51].

A problem originally formulated as: “What is the smallest context-
free grammar that generates exactly one given string?”, titles a pa-
per [8] in the early 2000s, but the same problem was already posed
by several authors in the second half of 1990s, as one of the basic
tools used for developing loss-less data compression solutions [34],
and can be traced back, in different formulations [7] to older litera-
ture [57]. A recent proposal [5] shifts from the original formulation
with one input string [40] to a generalized version in which several
strings must be parsed by the output grammar [55].

2456

REFERENCES
[1] Brad Adelberg. 1998. NoDoSE—a tool for semi-automatically extracting struc-

tured and semistructured data from text documents. In Proceedings of the 1998
ACM SIGMOD international conference on Management of data. 283–294.

[2] Arvind Arasu and Hector Garcia-Molina. 2003. Extracting structured data from
web pages. In Proceedings of the 2003 ACM SIGMOD international conference on
Management of data. ACM, 337–348.

[3] Jean-Christophe Aval. 2008. Multivariate fuss–catalan numbers. Discrete Mathe-
matics 308, 20 (2008), 4660–4669.

[4] Mohd Amir Bin Mohd Azir and Kamsuriah Binti Ahmad. 2017. Wrapper ap-
proaches for web data extraction: A review. In 2017 6th International Conference
on Electrical Engineering and Informatics (ICEEI). IEEE, 1–6.

[5] Hideo Bannai, Momoko Hirayama, Danny Hucke, Shunsuke Inenaga, Artur Jez,
Markus Lohrey, and Carl Philipp Reh. 2019. The smallest grammar problem
revisited. CoRR abs/1908.06428 (2019). arXiv:1908.06428 http://arxiv.org/abs/
1908.06428

[6] Mirko Bronzi, Valter Crescenzi, Paolo Merialdo, and Paolo Papotti. 2013. Extrac-
tion and Integration of Partially Overlapping Web Sources. Proc. VLDB Endow. 6,
10 (2013), 805–816. https://doi.org/10.14778/2536206.2536209

[7] Katrin Casel, Henning Fernau, Serge Gaspers, Benjamin Gras, andMarkus Schmid.
2020. On the Complexity of the Smallest Grammar Problem over Fixed Alphabets.
Theory of Computing Systems (11 2020), 1–66. https://doi.org/10.1007/s00224-
020-10013-w

[8] M. Charikar, E. Lehman, Ding Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and
A. Shelat. 2005. The smallest grammar problem. IEEE Transactions on Information
Theory 51, 7 (2005), 2554–2576. https://doi.org/10.1109/TIT.2005.850116

[9] Boris Chidlovskii, Bruno Roustant, and Marc Brette. 2006. Documentum ECI
Self-Repairing Wrappers: Performance Analysis. In Proceedings of the 2006 ACM
SIGMOD International Conference on Management of Data (Chicago, IL, USA) (SIG-
MOD ’06). Association for Computing Machinery, New York, NY, USA, 708–717.
https://doi.org/10.1145/1142473.1142555

[10] Valter Crescenzi, Andrea De Angelis, Donatella Firmani, Maurizio Mazzei, Paolo
Merialdo, Federico Piai, and Divesh Srivastava. 2021. Alaska: A Flexible Bench-
mark for Data Integration Tasks. arXiv:2101.11259 [cs.DB]

[11] Valter Crescenzi and Giansalvatore Mecca. 1998. Grammars have exceptions.
Information Systems 23, 8 (1998), 539–565.

[12] Valter Crescenzi and Giansalvatore Mecca. 2004. Automatic information extrac-
tion from large websites. Journal of the ACM (JACM) 51, 5 (2004), 731–779.

[13] Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. 2004. Handling
irregularities in roadrunner. In AAAI-04 ATEM Workshop.

[14] Valter Crescenzi, Giansalvatore Mecca, Paolo Merialdo, et al. 2001. Roadrunner:
Towards automatic data extraction from large web sites. In VLDB, Vol. 1. 109–118.

[15] Valter Crescenzi, Paolo Merialdo, and Disheng Qiu. 2015. Crowdsourcing large
scale wrapper inference. Distributed and Parallel Databases 33, 1 (2015), 95–122.

[16] Valter Crescenzi, Paolo Merialdo, and Disheng Qiu. 2019. Hybrid Crowd-Machine
Wrapper Inference. ACM Trans. Knowl. Discov. Data 13, 5, Article 51 (Sept. 2019),
43 pages. https://doi.org/10.1145/3344720

[17] Stefano Crespi Reghizzi, Violetta Lonati, Dino Mandrioli, and Matteo Pradella.
2017. Toward a Theory of Input-Driven Locally Parsable Languages. Theor.
Comput. Sci. 658, PA (Jan. 2017), 105–121. https://doi.org/10.1016/j.tcs.2016.05.003

[18] Nilesh Dalvi, Philip Bohannon, and Fei Sha. 2009. Robust web extraction: an
approach based on a probabilistic tree-edit model. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of data. ACM, 335–348.

[19] Xin Luna Dong, Xiang He, Andrey Kan, Xian Li, Yan Liang, Jun Ma, Yifan Ethan
Xu, Chenwei Zhang, Tong Zhao, Gabriel Blanco Saldana, et al. 2020. AutoKnow:
Self-driving knowledge collection for products of thousands of types. In Proceed-
ings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. 2724–2734.

[20] Steve Faulkner, Arron Eicholz, Travis Leithead, Alex Danilo, and SangwhanMoon.
2017. HTML 5.2. W3C. Retrieved January 17 (2017), 2018.

[21] Robert W Floyd. 1963. Syntactic analysis and operator precedence. Journal of
the ACM (JACM) 10, 3 (1963), 316–333.

[22] Tim Furche, Georg Gottlob, Giovanni Grasso, Xiaonan Guo, Giorgio Orsi, Chris-
tian Schallhart, and Cheng Wang. [n.d.]. DIADEM: Thousands of Websites to a
single database. PVLDB 7 (14), 1845–1856 (2014).

[23] Tim Furche, Jinsong Guo, Sebastian Maneth, and Christian Schallhart. 2016.
Robust and Noise Resistant Wrapper Induction. In Proceedings of the 2016 Interna-
tional Conference on Management of Data (San Francisco, California, USA) (SIG-
MOD ’16). Association for Computing Machinery, New York, NY, USA, 773–784.
https://doi.org/10.1145/2882903.2915214

[24] David Gibson, Kunal Punera, and Andrew Tomkins. 2005. The volume and
evolution of web page templates. In Special interest tracks and posters of the 14th
international conference on World Wide Web. 830–839.

[25] Georg Gottlob, Christoph Koch, Robert Baumgartner, Marcus Herzog, and Sergio
Flesca. 2004. The Lixto data extraction project: back and forth between theory
and practice. In Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. 1–12.

[26] Dick Grune. 2010. Parsing Techniques: A Practical Guide (2nd ed.). Springer
Publishing Company, Incorporated.

[27] Dick Grune and Ceriel JH Jacobs. 2007. Parsing Techniques. Monographs in
Computer Science. Springer, (2007), 13.

[28] Pankaj Gulhane, Amit Madaan, Rupesh Mehta, Jeyashankher Ramamirtham,
Rajeev Rastogi, Sandeep Satpal, Srinivasan H Sengamedu, Ashwin Tengli, and
Charu Tiwari. 2011. Web-scale information extraction with vertex. In 2011 IEEE
27th International Conference on Data Engineering. 1209–1220. https://doi.org/10.
1109/ICDE.2011.5767842

[29] Jinsong Guo, Valter Crescenzi, Tim Furche, Giovanni Grasso, and Georg Gottlob.
2019. RED: Redundancy-Driven Data Extraction from Result Pages?. In The World
Wide Web Conference. ACM, 605–615.

[30] Qiang Hao, Rui Cai, Yanwei Pang, and Lei Zhang. 2011. From one tree to a forest:
a unified solution for structured web data extraction. In Proceedings of the 34th
international ACM SIGIR conference on Research and development in Information
Retrieval. 775–784.

[31] Bin He, Mitesh Patel, Zhen Zhang, and Kevin Chen-Chuan Chang. 2007. Access-
ing the deep web. Commun. ACM 50, 5 (2007), 94–101.

[32] Crunchbase Inc. 2013. Lixto acquired by McKinsey. https://www.crunchbase.
com/organization/lixto-software.

[33] Mohammed Kayed and Chia-Hui Chang. 2010. FiVaTech: Page-Level Web Data
Extraction from Template Pages. IEEE Transactions on Knowledge and Data
Engineering 22, 2 (2010), 249–263. https://doi.org/10.1109/TKDE.2009.82

[34] J. C. Kieffer and En-Hui Yang. 2006. Grammar-Based Codes: A New Class of
Universal Lossless Source Codes. IEEE Trans. Inf. Theor. 46, 3 (Sept. 2006), 737–754.
https://doi.org/10.1109/18.841160

[35] Alberto HF Laender, Berthier A Ribeiro-Neto, Altigran S Da Silva, and Juliana S
Teixeira. 2002. A brief survey of web data extraction tools. ACM Sigmod Record
31, 2 (2002), 84–93.

[36] Wei Liu, Xiaofeng Meng, and Weiyi Meng. 2010. ViDE: A Vision-Based Ap-
proach for Deep Web Data Extraction. IEEE Transactions on Knowledge and Data
Engineering 22, 3 (2010), 447–460. https://doi.org/10.1109/TKDE.2009.109

[37] Colin Lockard, Xin Luna Dong, Arash Einolghozati, and Prashant Shiralkar. 2018.
Ceres: Distantly supervised relation extraction from the semi-structured web.
arXiv preprint arXiv:1804.04635 (2018).

[38] Colin Lockard, Prashant Shiralkar, and Xin Luna Dong. 2019. OpenCeres: When
open information extraction meets the semi-structured web. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
3047–3056.

[39] Colin Lockard, Prashant Shiralkar, Xin Luna Dong, and Hannaneh Hajishirzi.
2020. Web-scale Knowledge Collection. In Proceedings of the 13th International
Conference on Web Search and Data Mining. 888–889.

[40] Markus Lohrey. 2012. Algorithmics on SLP-compressed strings: A survey. Groups
Complexity Cryptology 4, 2 (2012), 241–299. http://dblp.uni-trier.de/db/journals/
gcc/gcc4.html#Lohrey12

[41] Stefano Ortona, Giorgio Orsi, Marcello Buoncristiano, and Tim Furche. 2015.
WADaR: Joint wrapper and data repair. Proceedings of the VLDB Endowment 8,
12 (2015), 1996–1999.

[42] Stefano Ortona, Giorgio Orsi, Tim Furche, and Marcello Buoncristiano. 2016.
Joint repairs for web wrappers. In 2016 IEEE 32nd International Conference on
Data Engineering (ICDE). IEEE, 1146–1157.

[43] Home page. 2021. Diffbot. https://www.diffbot.com/.
[44] Home page. 2021. import.io. https://www.import.io/.
[45] Home page. 2021. Lixto. http://www.lixto.com/.
[46] Home page. 2021. Meltwater: Media Monitoring & Social Listening Platform.

https://www.meltwater.com/.
[47] Home page. 2021. Wrapidity. https://www.wrapidity.com.
[48] Aditya Parameswaran, Nilesh Dalvi, Hector Garcia-Molina, and Rajeev Rastogi.

2011. Optimal Schemes for Robust Web Extraction. Proceedings of the VLDB
Conference 4, 11 (September 2011). http://ilpubs.stanford.edu:8090/998/

[49] Judea Pearl. 1984. Heuristics: intelligent search strategies for computer problem
solving. (1984).

[50] Mohammad Raza and Sumit Gulwani. 2020. Web Data Extraction using Hybrid
Program Synthesis: A Combination of Top-down and Bottom-up Inference. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data. 1967–1978.

[51] Stefano Crespi Reghizzi, Luca Breveglieri, and Angelo Morzenti. 2013. Formal
languages and compilation. Springer.

[52] Stefano Crespi Reghizzi, Luca Breveglieri, and Angelo Morzenti. 2019. Formal
languages and compilation. Springer.

[53] Stefano Crespi Reghizzi and Dino Mandrioli. 2012. Operator precedence and the
visibly pushdown property. J. Comput. System Sci. 78, 6 (2012), 1837–1867.

[54] Stuart Russel, Peter Norvig, et al. 2013. Artificial intelligence: a modern approach.
Pearson Education Limited.

[55] Payam Siyari and Matthias Gallé. 2017. The Generalized Smallest Grammar
Problem (Proceedings of Machine Learning Research), Sicco Verwer, Menno van
Zaanen, and Rick Smetsers (Eds.), Vol. 57. PMLR, Delft, The Netherlands, 79–92.

2457

https://arxiv.org/abs/1908.06428
http://arxiv.org/abs/1908.06428
http://arxiv.org/abs/1908.06428
https://doi.org/10.14778/2536206.2536209
https://doi.org/10.1007/s00224-020-10013-w
https://doi.org/10.1007/s00224-020-10013-w
https://doi.org/10.1109/TIT.2005.850116
https://doi.org/10.1145/1142473.1142555
https://arxiv.org/abs/2101.11259
https://doi.org/10.1145/3344720
https://doi.org/10.1016/j.tcs.2016.05.003
https://doi.org/10.1145/2882903.2915214
https://doi.org/10.1109/ICDE.2011.5767842
https://doi.org/10.1109/ICDE.2011.5767842
https://www.crunchbase.com/organization/lixto-software
https://www.crunchbase.com/organization/lixto-software
https://doi.org/10.1109/TKDE.2009.82
https://doi.org/10.1109/18.841160
https://doi.org/10.1109/TKDE.2009.109
http://dblp.uni-trier.de/db/journals/gcc/gcc4.html#Lohrey12
http://dblp.uni-trier.de/db/journals/gcc/gcc4.html#Lohrey12
https://www.diffbot.com/
https://www.import.io/
http://www.lixto.com/
https://www.meltwater.com/
https://www.wrapidity.com
http://ilpubs.stanford.edu:8090/998/

http://proceedings.mlr.press/v57/siyari16.html
[56] Hassan A. Sleiman and Rafael Corchuelo. 2014. Trinity: On Using Trinary Trees

for Unsupervised Web Data Extraction. IEEE Transactions on Knowledge and Data
Engineering 26, 6 (2014), 1544–1556. https://doi.org/10.1109/TKDE.2013.161

[57] James A. Storer and Thomas G. Szymanski. 1982. Data Compression via Textual
Substitution. J. ACM 29, 4 (Oct. 1982), 928–951. https://doi.org/10.1145/322344.
322346

[58] Fergus Toolan and Nicholas Kusmerick. 2002. Mining web logs for personalized
site maps. In Proceedings of the Third International Conference on Web Information

Systems Engineering (Workshops), 2002. Citeseer, 232–237.
[59] Xiaoying Wu and Dimitri Theodoratos. 2013. A survey on XML streaming

evaluation techniques. The VLDB Journal 22, 2 (2013), 177–202.
[60] Yanhong Zhai and Bing Liu. 2005. Web data extraction based on partial tree

alignment. In Proceedings of the 14th international conference on World Wide Web.
76–85.

[61] Hongkun Zhao, Weiyi Meng, Zonghuan Wu, Vijay Raghavan, and Clement Yu.
2005. Fully automatic wrapper generation for search engines. In Proceedings of
the 14th international conference on World Wide Web. 66–75.

2458

http://proceedings.mlr.press/v57/siyari16.html
https://doi.org/10.1109/TKDE.2013.161
https://doi.org/10.1145/322344.322346
https://doi.org/10.1145/322344.322346

