
Towards the Web of Things:
Using DPWS to Bridge Isolated OSGi Platforms

Oliver Dohndorf, Jan Krüger and
Heiko Krumm

TU Dortmund University
Dortmund, Germany

(oliver.dohndorf, jan.krueger)@tu-dortmund.de

Christoph Fiehe, Anna Litvina, Ingo Lück and
Franz-Josef Stewing

MATERNA Information & Communications
Dortmund, Germany

(christoph.fiehe, anna.litvina)@materna.de

Abstract—Bringing heterogeneous devices like industrial ma-
chines, home appliances, and wireless sensors into the Web
assumes the usage of well-defined standards and protocols.
Our approach combines the Web Service standard for devices
DPWS with the embedded system and component management
standard OSGi. It implements the specifications of OSGi
Remote Services, as well as OASIS Discovery, Eventing, SOAP-
over-UDP, and DPWS. Furthermore, runtime WSDL genera-
tion and interpretation is supported, as well as the presentation
URL feature which automatically provides a web browser user
interface for interactive device access. Thus, our approach is an
appropriate and comprehensive basis for the seamless, flexible,
and standard-compliant integration of things into the Web.

Keywords-DPWS-OSGi integration; embedded devices.

I. INTRODUCTION

Web Services as a most widespread implementation of the
service-oriented architecture (SOA) provide a comfortable
way of creating flexible service-oriented applications for
the Web. The enhancement of this approach is presented
by the Devices Profile for Web Services (DPWS) [1] which
targets resource-constrained embedded devices. Therefore,
the field of application is significantly wide and variable. In
the meantime, DPWS has been published as a specification
within the OASIS Web Services Discovery and Web Services
Devices Profile (WS-DD) [2]. The native integration of DPWS
into Windows Vista and Windows 7 is another convincing
point in favor of DPWS.

The OSGi specification [3] created by the OSGi Alliance
defines an open, modular, and scalable local service delivery
platform. Running within a Java Virtual Machine (JVM),
OSGi offers an in-JVM SOA. Exceeding JVM boundaries
and providing distributed solutions are the main purposes
of the OSGi Remote Services specification introduced in the
latest version of the OSGi Service Compendium. Furthermore,
several OSGi framework implementations allow the usage
on resource-constrained devices.

Combining these two technologies is a promising way to
ensure a wide field of application in bringing heterogeneous
devices into the Web and building modular, distributed,
service-oriented solutions. In this paper, we present our

implementation of DPWS-OSGi mutual integration [4] and
the latest results of our current work. In particular, we focus
not only on the federation of isolated OSGi frameworks but
also on the integration of native DPWS devices. We hope
that our approach will be the next step on the way to the Web
of Things where versatile devices and objects are connected
seamlessly to the Web providing for modular, flexible, and
service-oriented solutions.

The paper is structured as follows: Section 2 provides
the technical background of our approach and introduces
DPWS and OSGi technologies. Related work is presented
in Section 3. In Section 4 we define the key requirements
for the solution which is introduced in detail in Section 5.
We demonstrate the applicability of our approach by means
of an example from the medical home care domain and
present some noteworthy performance measurement results
in Section 6. Section 7 sums up the paper.

II. RELATED WORK

The Universal Plug’n’Play (UPnP) was the first spec-
ification of a service-oriented infrastructure for embedded
application scenarios. DPWS, being inspired by UPnP, defines
a minimal set of Web Service standards and specifications
targeting the provision of Web Service based communication
for embedded devices. The special attention is paid to
secure message transmission, dynamic discovery, description,
subscription, and event notification.

According to the specification, a DPWS device hosts
several services which can be discovered and used by DPWS
clients. A device sends ”Hello” and ”Bye” when joining
and leaving a network, respectively. Searching for particular
services is performed through sending a ”Probe” message.
Matching services respond with ”Probe Match” messages.
”Invocation” messages are aimed for performing the service
usage. The eventing mechanism comprises subscribing for
particular event types by sending a ”Subscribe” message
and informing the subscribed clients through a ”Notification”
message. The basic messaging within DPWS employs SOAP
using HTTP and SOAP-over-UDP.

720978-1-4244-5328-3/10/$26.00 ©2010 IEEE



Among the existing implementations of the DPWS spec-
ification, the open source Java Multi Edition DPWS Stack
(JMEDS)1, is characterized by its modular extensible archi-
tecture and remarkable features. These include interpretation
and generation of service descriptions (WSDL) at runtime, a
web browser user interface accessible via the presentation
URL, and a small footprint.

A service-oriented standardized way of managing the
software lifecycle is one of the main aims of the OSGi
technology [5]. OSGi provides for the integration of pre-built,
collaborative components and caters for the reusability and
maintenance costs issues through dynamic service provision
and update mechanisms. The OSGi specification defines the
OSGi framework which offers an execution platform for Java-
based components, called bundles. The platform permits to
install, uninstall, start, stop, and update bundles at runtime
without restarting the entire system. Moreover, extending the
bundle’s class path with classes or additional resources is
possible through attaching a corresponding fragment bundle
to the host bundle. The functionality of the bundles is offered
in the form of services in a publish-find-bind way. The
services are registered under one or more interfaces within
the service registry and can be found by other bundles
when necessary. Event Admin Service provides a generic
mechanism to subscribe for and receive events from the
framework or other services.

The extension of the self-contained SOA environment
provided by OSGi to a Distributed OSGi framework was
firstly addressed in RFC 119 [6]. This resulted in the OGSi
Remote Services specification introduced in the latest version
of the OSGi Service Compendium [3]. The challenge of
bridging isolated OSGi frameworks has been taken up by
several researchers up to now. Apache CXF [7] provides the
reference implementation of the RFC 119 specification.

R-OSGi [8], developed by ETH Zurich, provides support
for sharing OSGi services over a network and allows a
centralized OSGi application to be transparently distributed
among different OSGi frameworks. For this purpose, the
application must be manually factored into distributable
components. Dynamic proxy generation at runtime and a
distributed service registry serve the aim of transparency.
For data transmission, R-OSGi uses a proprietary binary
protocol over persistent TCP connections. For realization
of the distributed service registry jSLP [9] is used, a Java
implementation of the Service Location Protocol (SLP) [10].
The service discovery mechanism of R-OSGi is extendable
by other protocol implementations.

The Device Access specification in [3] defines the generic
automatic detection and attachment of existing network
devices on an OSGi framework. Following these concepts,
the DPWS Discovery Base Driver [11], developed within the
ITEA ANSO project, implements the integration of DPWS

1WS4D.org Stack developed by TU Dortmund University and MATERNA

devices and services into OSGi. With this solution, it is
possible to discover and use DPWS devices and services
without concerns about underlying communication protocols.
Similarly, the UPnP Base Driver specified in the UPnP Device
Service Specification [12] defines a generic bridge between
UPnP and OSGi technologies. One of its implementations
was developed within the DomoWare project [13].

III. REQUIREMENTS

Designing distributed applications, where no homogeneous
devices are present and no centrally managed infrastructure
is available, is a highly complex issue. Enabling everyday
devices to connect to the Internet as well as making them
discoverable, linkable, and usable by means of common
open standards is not sufficient. There is a strong need for
modular, global solutions for applications which are based
on reuse, seamless integration, and runtime composition of
services provided by these devices. The self-contained SOA
environment of OSGi extended to exceed JVM boundaries
is a suitable technology for this purpose, whereas DPWS
allows solutions for devices with constrained resources.

We define the following key requirements for DPWS-OSGi
mutual integration:

• Location transparency: The usage of local and remote
OSGi and DPWS services must not differ for clients.
Remote services are to be accessed as if they resided
the local framework.

• Support of legacy services: Providing services remotely
should not require any modifications.

• Fault transparency: The communication faults specific
for a distributed environment must be handled in the
same way as the reliability aspect is addressed by OSGi.

• Dynamics: The continuous changes in the topology
imply that services appear, disappear, or become tem-
porarily unavailable all the time. These facts should not
impose any restrictions and must be regarded as a norm.

• Manageability: Local clients – DPWS as well as OSGi –
should be able to access only those services that are
intended to be remotely available. On the contrary,
a mechanism should be provided to integrate only
whitelisted remote services into a local OSGi framework.

• Compatibility: We set a high value on the ability to
federate different OSGi implementations. Therefore,
only standard OSGi services can be used in the solution.
Moreover, the solution must also be applicable to those
OSGi implementations which are designed for resource-
constrained devices.

IV. WS4D.ORG DPWS-OSGI INTEGRATION

Addressing the listed requirements we integrate DPWS and
OSGi technologies mutually and realize transparent cross-
platform access to native services relying on existing security
mechanisms. Figure 1 gives an architectural overview of our
approach. According to the conventional model of distributed

721



Figure 1. Skeleton and Proxy Generation

object systems [14], we distinguish between a client which
uses and a server which provides a service. Acting as a
server, the OSGI framework, on the right, intends to offer
remote access to its OSGi service of the bundle A. At the
same time, the native DPWS device A’ provides access to its
DPWS service A’. Bundle B, on the client OSGi framework
is able to use these services. The native DPWS client has
also the ability to use the service of the bundle A installed
in the server OSGi framework. On finding the service (1),
the skeleton generator bundle checks the availability of the
required marshaling services (2). After that, it generates the
DPWS device A hosting the corresponding DPWS skeleton
service A. JMEDS which is wrapped as an OSGi bundle
announces the presence of the DPWS device by sending a
”Hello” message (4a) to the client OSGi framework and to
the native DPWS client respectively (4b). On receiving a
”Hello” message from the server OSGi framework (4a) or
from the native DPWS device (4c), the JMEDS bundle on
the client-side informs the proxy generator bundle. After
checking the required marshaling services (5), the proxy
generator generates a package bundle containing the required
interfaces (6). It creates the DPWS proxy service A and
proxy A bundle with the appropriate OSGi proxy service (7).
Thus, bundle B is able to use the OSGi service provided by
bundle A and the native DPWS service A’ respectively (8).

A. Skeleton

In order to be remotely accessible, an OSGi service
must be supplied with a corresponding skeleton object.
Thus, the DPWS skeleton service unmarshals incoming
requests, invokes the corresponding OSGi services, and
marshals the responses. Skeleton objects are generated by the
skeleton generator on demand. So, the issue of dynamics of
OSGi services at runtime, i.e. appearance, disappearance and
changes of services, is addressed. On arrival of services, the
skeleton generator recognizes it and analyzes the input and
output parameters of the declared actions. Being serializable
to XML representation and backwards is a basic requirement
for parameter types. The primitive types map directly to

standard XML types, the OSGi specification, however, does
not restrict the parameter types to the primitive ones. So,
custom types need special marshaling services. In case they
are not available, they can be looked up in an external bundle
repository, downloaded, installed, and started automatically.
Further, they are registered in the service registry and can be
used later on. After that, the corresponding DPWS skeleton
service is created and added to a DPWS device. One DPWS
device is generated for each remotely accessible OSGi bundle.
The declared and inherited methods of its OSGi services map
directly to DPWS skeleton service’s operations.

It is important that the usage of remote services does not
differ from the usage of local services for a client. As a
result, remote services are registered locally under the same
interfaces and properties. A great challenge is to preserve
the interface inheritance hierarchy, i.e. to declare all the
methods in the proper interfaces. WSDL 1.1 which is used in
DPWS, however, does not support the interface inheritance
hierarchy natively. In order to handle this, an additional Java-
specific auxiliary DPWS service is added to the device to
provide information about the inheritance hierarchy and the
mapping of actions to interfaces if needed. Moreover, an
OSGi-specific DPWS service is provided, in order to expose
information about the OSGi service properties. So, we do not
embed the property information into the WSDL documents of
the services, in order not to cause communication overhead
on each property change. The information offered by the
auxiliary services is useless for communication with native
DPWS clients and is ignored in this case.

Finally, the generated DPWS device is started. In terms of
distributed object systems, we speak about activation. JMEDS,
acting as an object adapter, gets the generated DPWS device
and sends a corresponding ”Hello” message.

B. Proxy

For the purpose of location transparency, the proxy object
which implements the same interface as the remote service is
employed. It is registered and can be looked up in the local
service registry. On receive of a ”Hello” message, the proxy

722



generator which holds a whitelist of external services to be
offered locally creates the local proxy automatically. The
generated proxy is an OSGi bundle offering the local OSGi
service under the same interface. Similarly to the server-side
skeleton, the encapsulated DPWS proxy service performs the
required parameter marshaling and carries out the remote
method invocation according to the forwarded method call.

Creating an OSGi proxy service requires the reconstruction
of the corresponding Java interfaces, firstly. In case of con-
necting isolated OSGi frameworks, a Java-specific auxiliary
service, provided by the server-side DPWS device, is involved.
It is assumed that no interface hierarchy is present, if the
service is not available. The properties of the service can
be requested from the OSGi-specific auxiliary service. If it
is not available, it is assumed that no additional properties
are present. In case of integration of native DPWS devices,
the existing rules for mapping WSDL to Java are used. By
means of Java bytecode generation, the Java interface classes
are created dynamically. We use the ASM library [15] which
is suitable for embedded devices. In dynamic environments,
no assumptions can be made in advance about the classes
contained in a specific Java package. This is relevant for
integrating remote OSGi services where the packages are
fixed as well as for native DPWS services where the packages
are deduced from the WSDL. Therefore, every Java package
is represented as a single bundle which hosts its interfaces
as attached fragment bundles. The package is exported by
the host bundle and imported by the proxy bundle. Thus,
the Java interface class objects are available in the OSGi
framework and can be used by other services.

C. Method Invocation

For OSGi clients there is no difference between the usage
of local or remote OSGi services and native DPWS services
respectively. The client retrieves an OSGi proxy service from
the service registry and casts it to the appropriate interface.
Equally, there is no difference for native DPWS clients in
the usage of native DPWS services and OSGi services.

OSGi client using remote OSGi service The proxy
service communicates with a corresponding skeleton service
via SOAP messages. The skeleton passes method calls to
the remote OSGi service. In this context, two aspects are of
special interest: late binding and fault handling. To support
late binding, SOAP messages contain the denotations of the
Java data types. The proxy and the skeleton interpret them and
instantiate the identified data types. SOAP requests received
by JMEDS are forwarded to the DPWS skeleton service
which calls the corresponding method of the actual OSGi
service. If the method call fails and an exception occurs, a
SOAP message containing the exception type and content is
returned to the proxy.

OSGi client using native DPWS service In this case,
the SOAP messages used for communication between proxy
and a native service does not contain Java data types.

Instead, the proxy service decides on the basis of predefined
rules which Java data type is to be instantiated. Faults
within the native service invocation are submitted within
the fault element of the SOAP message. They are mapped to
appropriate Java exceptions and thrown in the proxy service.

DPWS client using OSGi service The DPWS client
communicates with the skeleton service representing an OSGi
service. The exceptions are mapped to the SOAP message’s
fault element and can be processed by the client. As noted
above, the SOAP message of the method invocation does
not contain Java data type information, since a native client
can not handle it.

In any case, the method invocation may fail due to network
problems resulting in SOAP messages getting lost. In OSGi,
the proxy service receives a SOAP fault and unregisters
the service if retries do not succeed. It is important not to
introduce a new fault model so that proxy and actual service
do not differ in their behavior. The reaction of native clients
regarding SOAP faults can not be influenced.

D. Remote Event Notification

The eventing mechanism in the OSGi specification is
realized by means of the Event Admin Service. It provides a
publish-subscribe model for communication within a single
OSGi framework. To support remote notifications, events
published by an OSGi service have to be forwarded to all
OSGi frameworks that hold the corresponding proxy service.
Thus, the event converter bundle provides an event converter
service and registers it in the service registry. On events
published within the OSGi framework, it is notified. A DPWS
event converter device represents the OSGi framework and
hosts a service to propagate the event across OSGi boundaries.
DPWS clients subscribe to event types of interest and get
notifications on changes. In case of integration of native
DPWS devices, the DPWS proxy service subscribes by the
native services directly.

The Event Admin Service notifies the event converter
service on events published by a remote service. The event
converter marshals the event’s properties to XML representa-
tion and sends it as a DPWS notification. The native DPWS
client can handle this notification straightaway. In order to
reach the corresponding OSGi client, the corresponding OSGi
event is reconstructed from the received DPWS message.
Finally, the event converter bundle determines which handlers
must be informed and notifies them.

In DPWS, it is allowed to subscribe to a specific service.
The OSGi specification, in contrast, only recommends the
indication of the event publisher, but does not prescribe it.
Thus, it is not possible to assign a received event to its
publisher and corresponding skeleton service definitely. To
handle this, the remote event notification is performed by
a central instance of the event converter within the OSGi
framework. A filter is used to specify, which events are to
be published remotely.

723



Figure 2. Structure of the Application Example

For DPWS services that offer evented operations, the event
converter is not needed. The proxy subscribes to the operation
itself and publishes received events as OSGi events in the
local platform using the Event Admin Service. If native
clients are interested in OSGi events, they simply subscribe
DPWS events provided by the event converter.

V. APPLICATION EXAMPLE

We have tested and evaluated our solution on several real
world scenarios. To demonstrate its capabilities, we present
a simplified example from the medical home care domain
which was adapted from the more sophisticated scenario used
within the research project OSAmI [16].

According to the scenario, a cardiac patient has to conduct
a series of rehabilitation trainings at home which has to
be telemedically supervised by a medical supervisor, e.g.
a physician or a sports scientist. Therefore, the patient
is equipped with a training device, a bicycle ergometer,
and some medical sensors to monitor his vital signs. In
this example, pulse rate and blood oxygen saturation are
monitored. Furthermore, the patient is supplied with a so-
called home gateway, which provides a platform for running
the application to control the training device and medical
sensors and handles the communication with the supervisor.
During the training, the application supplies the patient with
information about his health state and the training’s progress.
The training itself is divided into three phases: warm up,
actual training, and cool down. For each phase, the supervisor
defines the appropriate settings like the target ergometer
load as well as upper and lower thresholds for the vital
signs. To adjust these settings at runtime and to monitor
the training session, the supervisor is supplied with the
appropriate supervisor application which runs on the so-
called clinic gateway. In our example, the home gateway
and the clinic gateway are in the same LAN. Within the
OSAmI project, we will implement this demonstrator as a
real world solution with the gateway devices connected to the
Internet. Communicating over the Internet will enforce the
consideration of several additional security aspects, which
are not regarded here for the sake of simplicity.

Figure 2 depicts the hardware involved in the scenario.
Standard PCs with x86 Intel Core 2 Duo CPUs and 1 GB
RAM each represent the home gateway (A) and the clinic
gateway (B). The communication link between these two
gateways is provided using a switched 100 MBit/s network
connection (1,2). As an interface to integrate the medical
sensor (E) and the bicycle ergometer (F), which both do
not have a network connection interface, the Foxboards
are used (C,D). Technically, the Foxboards are Linux-based
embedded systems with a 100 Mhz Axis Etrax 32 bit RISC-
based CPU, 32 MB RAM and 8 MB ROM [17]. On the one
hand, the Foxboards are connected to the medical sensor
using a serial 5V-TTL-level or to the ergometer with a RS-
232 connection (5,6). On the other hand, the Foxboards
are connected to the network using their on board network
interfaces (3,4).

The software comprised in the scenario consists of a
simple supervisor application and a home gateway application.
Both are realized as OSGi bundles running in separated
OSGi frameworks on the clinic (B) and the home gate-
way (A) respectively. The home gateway PC uses Microsoft
Windows XP as an operating system, where as the clinic
gateway PC uses Windows Vista. The Foxboards host native
DPWS services to provide access to the functions of the
medical sensor (C,E) and the ergometer device (D,F). These
services are implemented using JMEDS and run inside a
Kilobyte Virtual Machine (KVM), a minimalist JVM for
resource-constrained devices. Invoking an operation of the
DPWS services (e.g. setting the target load of the ergometer
device (D)) is translated into the appropriate command
sequence for the serial communication which is transmitted
to the device connected to the serial port. Vice versa,
data received over the serial connection from the medical
sensor or the ergometer is made available by means of the
corresponding DPWS services (e.g. the result of a pulse
measurement received from the medical sensor is published
in the network as a DPWS event). The DPWS service to
control the ergometer as well as the service to use the medical
sensor are needed in the training control application running
on the home gateway. For this purpose, they are integrated

724



into the OSGi framework using our DPWS-OSGi integration.
Hence, the usage of the DPWS service (e.g. setting the
ergometer target load) does not differ for a client from the
usage of a regular OSGi service. Also, the received DPWS
events (e.g. pulse measurement results) are published within
the OSGi framework as regular OSGi events. The application
on the home gateway provides in turn some functionality
to be used by the application running on the clinic gateway.
In detail, a function to define the mentioned phase settings
is provided, as well as alarm events which are fired if the
patient’s pulse rate exceeds the defined threshold levels. Here,
the use of DPWS-OSGi integration allows to implement this
function as a regular OSGi service which is registered in
the home gateway framework. The alarm events can be
realized as regular OSGi events which are propagated into
the home gateway framework. According to the configuration
of the bundles in the home gateway OSGi framework, this
service is made available for remote use, and the OSGi events
are propagated as DPWS events. The bundles in the clinic
gateway OSGi framework, on the other hand, are configured
to integrate this remote service into the local framework and
to propagate the received remote events as OSGi events into
the framework. Thus, the supervisor application can use the
remote service to configure the training phases and remote
alarm events to monitor the patient during the training.

The outcomes of measurement experiments in that scenario
shall give a hint about realistic footprints and performance
values. The generated proxy bundles are relatively small
in size. For example, the proxy bundle of the service to
configure the phase settings has a size of just 3 kB. In case
of integrating the ergometer control service, a native DPWS
service, the proxy has a size of 4.1 kB. The proxy bundles
for remote service access were created at runtime within
107 ms. The generation of the skeleton for a remote OSGi
service took only 1.1 ms. The average time for invoking a
remote OSGi service, running on the home gateway, was
4.7 ms and the average time for invoking a native DPWS
service, hosted on the embedded device, was 14.8 ms.

VI. CONCLUSION

In this paper, we have presented our current work con-
cerning the mutual integration of the DPWS and OSGi
technologies. The solution allows to connect isolated OSGi
frameworks and supports the usage of native DPWS devices
and services. In comparison to the DPWS Discovery Base
Driver, our remote service integration is fully transparent
and in contrast to R-OSGi relies only on broadly accepted
open standards and avoids the transmission of Java bytecode
across the network. As a result, the remote access to OSGi
services is not limited to OSGi- or Java-based clients. The
applicability of the approach was demonstrated by means of
a real-world example from the field of home medical care.

ACKNOWLEDGMENT

This work is funded by the German Federal Ministry of
Education and Research (BMBF) within the context of the
European ITEA 2 project Open Source Ambient Intelligence
(OSAmI) [16].

REFERENCES

[1] S. Chan et al., “Devices Profile for Web Services (DPWS)
Specification,” 2006.

[2] OASIS WS-DD Technical Committee, “Web Services Dis-
covery and Web Services Devices Profile (WS-DD),” 2008,
http://www.oasis-open.org/committees/ws-dd/.

[3] OSGi Alliance, “OSGi Service Platform Core Specification &
Service Compendium – Release 4, Version 4.2,” 2009.

[4] C. Fiehe, A. Litvina, I. Lück, F.-J. Stewing, O. Dohndorf,
J. Krüger, and H. Krumm, “Location-Transparent Integration
of Distributed OSGi Frameworks and Web Services,” in Proc.
of the IEEE 23nd International Conference on Advanced
Information Networking and Applications - Workshop SOCNE
(AINA 2009), Bradford, UK, May 2009.

[5] G. Wütherich, N. Hartmann, B. Kolb, and M. Lübken, Die
OSGi Service Platform. dpunkt.verlag GmbH, 2008.

[6] E. Newcomer et al., “RFC 119 - Distributed OSGi,” 2008.

[7] Apache Software Foundation, “Apache CXF RFC 119 Imple-
mentation,” http://cxf.apache.org/distributed-osgi.html, 2009.

[8] J. S. Rellermeyer et al., “R-OSGi: Distributed Applica-
tions through Software Modularization,” in Proc. of the
ACM/IFIP/USENIX 8th Int. Middleware Conf., 2007.

[9] “jSLP Documentation,” http://jslp.sourceforge.net, 2008.

[10] E. Guttman et al., “RFC 2608: Service Location Protocol,
Version 2,” 1999.

[11] A. Bottaro et al., “Dynamic Web Services on a Home Service
Platform,” in Proc. of the 22nd Int. Conf. on Advanced Info.
Networking and Applications. IEEE Computer Society, 2008.

[12] A. Bottaro, “RFP 72 - Extended Mapping for UPnP Discovery
Transparency,” April 2006.

[13] M. Demuru, F. Furfari, and S. Lenzi, “The Domoware UPnP
Service for OSGi,” http://domoware.isti.cnr.it, 2005.

[14] A. S. Tanenbaum and M. van Steen, Distributed Systems:
Principles and Paradigms. Prentice Hall PTR, 2001.

[15] E. Bruneton et al., “ASM: A Code Manipulation Tool to
Implement Adaptable Systems,” in Adaptable and Extensible
Component Systems, 2002.

[16] OSAmI-D Consortium, “OSAmI Commons: Open Source
Ambient Intelligence,” 2009, http://www.osami-commons.org.

[17] Acme Systems Srl., “Foxboard LX832: a complete Linux
system,” 2009, http://foxlx.acmesystems.it/?id=4.

725




