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Abstract: Unintended side effects during changes of software demand for a precise
test case selection to achieve both confidence and minimal effort for testing. Identi-
fying the change related test cases requires an impact analysis across different views,
models, and tests. Model-based regression testing aims to provide this analysis earlier
in the software development cycle and thus enables an early estimation of test effort.
In this paper, we present an approach for model-based regression testing of business
processes. Our approach analyzes change types and dependency relations between
different models such as Business Process Modeling Notation (BPMN), Unified Mod-
eling Language (UML), and UML Testing Profile (UTP) models. We developed a set
of impact rules to forecast the impact of those changes on the test models prior to their
implementation. We discuss the implementation of our impact rules inside a prototype
tool EMFTrace. The approach has been evaluated in a project for business processes
on mobile devices.

1 Introduction

The lifetime of almost any software system is characterized by a continuous need for

changes in order to keep them up-to-date. Unintended side effects during these changes of

software introduce additional defects and errors to them. Tests as means for error detection

however require a high effort. Regression testing aims to reduce this effort by limiting the

test execution to a subset of the test cases that correspond to the changes [RH96].

Model-based regression testing (MBRT) has the potential to provide early assessments of

test effort by finding the impact of changes using the dependencies between requirements

and design models, implementation, and tests. Thus, the test effort can be reduced by

starting the test activity before the actual implementation of changes [BLH09]. However,

the representation of complex, process-based software systems demands for modeling dif-

ferent views to represent their structure, behavior and other relevant aspects.

These views represent different aspects of the same system, which results in an overlapping

of concepts and introduces dependencies between models of different views. Examples of

these views for business processes are the Process View, which represents the high level

business processes of the system, the Structural View which represents the component,

business resources, and other structural aspects of the system [PE00], and finally the Test

View which represents the test cases, test data, and other test related aspects [FR12]. De-
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pendencies across these views propagate the changes across several models and can also

potentially impact the tests. Hence, it is crucial to analyze the dependency relations be-

tween models belonging to various views such as to deal with change propagation and to

guide the test selection.

Unfortunately, most of the existing approaches use process code for regression testing

[WLC08, LQJW10, LLZT07]. Therefore, an early forecast of the required regression

testing effort and an early start of the testing activity are not possible. Moreover, cross

view dependency relations are not considered for business processes, which results in im-

precise test selection. Other model-based regression testing approaches which determine

the model dependencies during impact analysis, require repeated dependency analysis for

each change [MTN10, PUA06, BLH09], which is not feasible in limited time and budget

constraints. Broadly, the problem we focus on in this paper is:

If a change is applied on any model belonging to the structural or process

view of a business process, what will be its impact on the tests.

The main contribution of our approach is twofold. Firstly, we forecast the impact of

changes on the Structural, Process [SDE+10, PE00], and Test view [FR12] of business

processes to support regression test selection. To do so, we combine various approaches

for dependency detection, change modeling, and impact analysis. This allows us to acquire

the impacted test elements, which are then classified as required for retest, unaffected or

obsolete. Secondly, we develop a set of impact rules to react on various changes of the

models of the structural view and the process view. Since we record the dependency rela-

tions prior to the test selection, the dependency relations are not required to be repeatedly

identified every time the impact analysis is performed, thus increasing the efficiency of the

overall process.

The remainder of this paper is organized as follows. Section 2 presents an introduction to

the case study we are using in this paper and provides more details for the motivation of

our work. Section 3 formulates the test selection problem. Section 4 presents an overview

of our approach and elaborates on the dependency relations, changes, and the impact rules.

Section 5 discusses the details of test selection and classification. Section 6 presents the

tool that implements our approach. Evaluation of the approach on a framework and on

a scenario from our case study is presented in Section 7. Related work is discussed in

Section 8 and finally, Section 9 concludes the paper and outlines further work.

2 Field Service Technician Case Study

Before we discuss the problem of regression test selection for business processes in detail,

we first introduce our case study briefly and then formulate our problem by focusing on

several aspects of the case study.

The Field Service Technician case study was developed in a joint academic and industrial

research project Adaptive Planning and Secure Execution of Mobile Processes in Dynamic
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Scenarios (MOPS)1. Its goals are to automate the processes to assist field service orders,

which includes the planning, preparation, and execution of field service orders, manage-

ment of field tours, management of tools and spare parts, and resource scheduling. The

case study is of medium size and complexity and consists of 25 processes and 35 compo-

nents.

We modeled these processes, their interactions, and the services they utilize (Process View)

using BPMN collaboration diagrams. The other structural aspects of the processes, for

example the services provided by various participants and stakeholders of the processes

and their interfaces, the data acquired by the processes, and the relations between the

processes and business resources are modeled using UML class and component diagrams

(Structural View) [SDE+10, PE00, KKCM04] .

Test suites to tests the individual behavior of the processes and their interactions are also

required. The test suites which are being used for testing a stable version of processes

are known as a Baseline test suite. We model the baseline test suites using UTP 2 , which

allows us to model several aspects of the tests, such as the Test Architecture, Test Behavior,

and Test Data 2 . To evolve the processes of the Service Technician case study, various

changes are required to be introduced in these processes.

Section 7.2 presents an illustrative example which includes the details of views, depen-

dencies across these views and some example change scenarios on which our approach is

applied. Here, to further motivate the need for our approach, we briefly discuss one of the

changes from the scenario presented in Section 7.2.

A yet unrectified functional error in the system demands replacing an existing service with

the new one in a process. However, class-methods defined in class diagram implement

the interfaces of components, which in turn provide services to the processes. Similarly,

test cases in the test view also call these services during the test execution. Moreover,

mocks and stubs are implemented to mock the behavior of the class-methods and are used

by the test cases. If a service has to be replaced all such dependencies are required to be

understood and utilized to find the impacted tests. Thus, the questions arise that how many

such dependencies exist between these various views? If a change is to be introduced,

which test cases are affected due to such dependencies, and how they are affected?

3 Problem Definition

We consider the discussed various views and dependencies to formulate the problem of

regression test selection in the context of business processes.

Given a process P defined by a set of models SM= (B, CD, COD), where B is

a BPMN collaboration diagram representing the Process View, CD is a class

diagram, and COD is a component diagram representing the Structural View

of P. Given a set of baseline test models T to test P representing the Test View,

defined by a 2-tuple T=(Ta, Tb), where Ta is a class diagram representing the

1See: http://mops.uni-jena.de/us/Homepage-page-.html
2http://utp.omg.org/
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Test Architecture in UTP and Tb= (b1, b2,...,bn) is a set of activity diagram test

cases to test P representing the Test Behavior in UTP. Given a set of Changes

C=(c1, c2,...,cn), where each ci ∈ C is a distinct change type applicable on

any model in the set SM . For any given ci ∈ C, the problem is to determine

which elements of T will be affected by ci, which can be represented by T
′

.

Moreover, for each element x ∈ T
′

, it is required to determine how x can be

classified for regression testing.

The classification of test elements decides whether to select these elements for regression

testing or to omit them. Our classification of test elements is further explained in Section

5. The next section presents an overview of our approach to deal with the aforementioned

regression test selection problem.

4 Overview of Our Model-based Regression Test Selection Approach

Our approach is comprised of four major steps which are discussed in the following and

are also presented by Figure 1. In the first step, we elicitate and record the dependency
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Figure 1: Overview of Regression Test Selection Approach

relations between the system models (SM to SM ) and between the system models and

test models (SM to T). They remain valid as long as no changes occur, therefore they can

be utilized for impact analysis tasks. The SM to SM dependencies are recorded using

dependency detection rules, whereas the SM to T dependencies are recorded during the

test generation. Section 4.1 discusses the details of the dependency relations and how we

record them.

The next step is to apply a change on any of the BPMN or UML models (SM ) and to assess

its impact on the tests. We defined a set of change types to model changes as shown in

Figure 1. Each model in the set SM is analyzed for this purpose to identify the applicable

changes. Section 4.2 discusses the details of these changes.

When a change is applied on a model, its corresponding impact rules are triggered to

identify the potentially affected model elements and test elements. Our impact propaga-

tion rules analyze the interplay of change types and dependency relations to identify the

affected elements. Section 4.3 elaborates on the structure and application of our impact
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rules.

Finally, the impacted elements have to be analyzed to determine which test cases are re-

quired for regression testing and which test cases can be omitted. Therefore, we develop

a set of test selection and classification rules (TSC Rules). For the classification of the

test elements in a UTP model, we adapt and extend the test case classification scheme of

Leung and White [LW89] and applied it on UTP test elements. The classification scheme

and process are further explained in Section 5.

4.1 Recording Dependency Relations

To model them, we define the set of dependency relations as D=(d1, d2,...,dn), where each

di is a dependency relation defined by a 3-tuple (source, relation-type, target). The source

and target of a dependency relation specify the elements of either SM or T, which are

related to each other. The relation-type defines the purpose of a dependency relation and

clarifies its semantics. Dependency relations can be seen as relations between different

types of models (Cross-Model dependency relations) or relations within the same model

(Intra-Model dependency relations).

The cross-model dependency relations originating from Structural and Process views can

be categorized into four categories. These categories are also displayed by Figure 2 and

are discussed in the following.

Structural View to Structural View: expresses the relationships between UML class and
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Figure 2: Categories of Cross-Model and Intra-Model Dependency Relations

component diagrams (SM to SM ). As an example of this category, consider the depen-

dency relation SS1:(Interface, Equivalence, Interface) depicted by Figure 2. It specifies

that an Interface of a component in a UML component diagram can also be presented as a

concrete interface in a UML class diagram. However, both express the same Interface.

Process View to Structural View: This category covers dependency relations between

BPMN collaboration diagrams and UML class and component diagrams (SM to SM ). As
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an example, consider a Process in the BPMN collaboration diagram. It can be defined

as a component in a component diagram, where the component will define the interfaces

provided and acquired by the process [SDE+10]. This is depicted in Figure 2 as PS1,

(Process, Equivalence, Component).

Process View to Test View: consists of dependency relations between the elements of

BPMN collaboration diagrams and UTP test models (SM to T). One example of such a

relation is PT3:(Process, Tested By, TestCase), which suggests that a process can be tested

by a UTP Test Case.

Structural View to Test View: contains the dependency relations between the elements

of UML class and component diagrams and UTP test models (SM to T). An example of

such a relation is ST1:(Component, Mocked By, Test Component). It expresses a situation

where the behavior of a Component defined by a UML component diagram is simulated

by a Test Component in UTP test architecture.

Intra-Model. This category covers of dependency relations within one model, such as a

relation between two elements of a class diagram. Examples are IM1 and IM2 as depicted

by Figure 2. The dependency relation IM1 expresses that a class in a UML class diagram

can contain operations. A similar dependency relation of type Containment is suggested

by IM2, which expresses that a Lane element is contained by a Pool element in a BPMN

collaboration diagram. To record these dependency relations, we use two different meth-

ods as discussed in the following subsections.

Recording Dependency Relations During Test Generation: Dependency relations be-

longing to the test view (Categories Process View to Test View and Structural View to Test

View) can be recorded during the test generation [NZR10]. Our baseline test suites are

generated using a model-driven approach that uses information from BPMN collaboration

diagrams and UML class diagrams to generate UTP test architecture and test behavior

[FR12]. The UTP test architecture is in the form of UML class diagrams with UTP stereo-

types and test behavior is in the form of UML activity diagram test cases generated using

path traversal algorithms. During the test generation, the relations between source and

target models are also preserved. Each test case in UTP corresponds to a path in BPMN

collaboration diagram, thus mappings between the source and target elements also provide

the required dependency relations. An example is a Service Task in a BPMN collaboration

diagram that maps to a CallOperationAction in an activity diagram test case. This depen-

dency relation between the ServiceTask and CallOperationAction is recorded at the time

of test generation.

Recording Dependency Relations Using Detection Rules: The intra-model dependency

relations (Categories Structural View to Structural View and Process View to Structural

View) do not involve any test models. To record them, we utilize a rule-based approach

that was introduced in our previous works [LFR13]. This approach relies on a set of pre-

defined detection rules that are applied on a software and elicitate dependencies between

its software artifacts. Each rule is designed for detecting a specific dependency relation

using conditions encoded in the rule itself. These conditions allow the rules to query the

attributes (e.g. identifiers), relations (e.g. inheritance-relations) and the structure (e.g.

parent-child-relations) of models. However, we extended the set of dependency detection

rules to record the intra-model dependency relations and (SM to SM ) dependency relations
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in our approach.

4.2 Change Application

Our rule-based approach requires that changes applicable on the models are well under-

stood and explicitly specified. Therefore we define types of changes belonging to the set

SM by the concept of Atomic and Composite changes [LFR12] to define the changes for

each model in the set SM . Atomic changes are the basic unit of change, and cover the Ad-

dition, Deletion, and Updating the properties of model elements. A composite change on

the other hand is composed of several other atomic or composite changes. The composite

changes are: Moving, Replacing, Swapping, Merging, and Splitting of model elements

[LFR12]. The names of these composite changes are self explanatory, whereas their actual

definition is context dependent. Every change type ci ∈ C is an instance of the aforemen-

tioned atomic or composite change types. As discussed earlier, the structural aspects of

a process, for example the local or provided operations, can be defined inside a Class of

a UML class diagram, which is therefore referred to as a ProcessClass [KKCM04]. An

example change type in this context is Add Operation in ProcessClass, which is an in-

stance of the atomic change type Add. It adds an operation inside a ProcessClass which

can provide services to a process.

As discuss earlier, processes require services to commence a process. An example change

type in this context is Replace a Service, which is an instance of the composite change

type Replace. Since this is a composite change type, it requires removing the existing

ServiceTask in BPMN collaboration diagram and adding a new one in the place of the

previous ServiceTask. It should also update any calls to former ServiceTask with the new

ServiceTask. A change can be selected from the list of pre-defined change types to initiate

the impact analysis and test selection process. Hence, the estimation of required regression

testing effort is possible even before a change is actually implemented on a model. Hence,

our approach is not dependent on any specific change detection strategy such as model

comparison as compared to other MBRT approaches[BLH09, NZR10].

4.3 Rule-based Impact Analysis

When a change is introduced to a model, its dependency relations are to be analyzed for

change propagation across related models and tests. To do so, we developed a set of impact

analysis rules for studying the propagation of changes between the changed model and all

related, thus possibly impacted, models using the recorded dependency relations.

An impact rule can be regarded as a 5-tuple R=(ct,me, ED, QD, RD), where ct defines

the change type that acts as the Change Trigger for the impact rule and me defines the

model element on which ct is applied. The ElementDefinition-part (ED) is defined as

ED=(e1,e2 ,...,en), where each ei is an element from one of the models belonging the set

SM or T. The QueryDefinition-part (QD) is defined as QD=(q1, q2,...qn), where each qi
specifies a condition on the elements belonging to the set ED. These conditions include
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logical conditions which can filter the elements selected by the rule, for example AND,

OR, XOR, and pre-defined operations to query the attributes of models and the relations

between models.

One example of these pre-defined operations is modelRelatedTo(a, t, b), which checks if a

dependency relation of type t exists between a model element a and another model element

b. Finally, the ResultDefinition-part (RD) is defined as RD=(a1, a2,...,an), where each ai
is an action that reports an impact (Reporting Action). A Reporting Action can further

trigger a new change that may also trigger additional impact rules.

The actual execution and processing of our impact rules is accomplished in a recursive

manner [LFR13]. First, the initial change (Change Trigger) is selected for execution.

Rules which react on this kind of change are then being executed and produce a set of

impact reports. Each impact report equals a 3-tuple; the source of a change, the change

type, and the affected element. Each impact report is then again treated as the initial change

(Change Trigger) and processed accordingly. Consequently, further impact reports might

be created. The final result produced by this impact analysis process is an ordered set of

impact reports.

4.3.1 Example Impact Rule Illustration

To illustrate the aforementioned concept, we present a scenario and an impact rule which

can be applied in the context of this scenario. As discussed earlier in section 4.2, the
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structure of a process can be modeled using a ProcessClass in the system class diagram.

However, each Process can also be defined as a Component in a UML component diagram

[SDE+10], which defines its required and provided interfaces which are implemented as

operations in the ProcessClass corresponding to the process. Thus, a ProcessClass that

defines a process and its corresponding Component are “equivalent”to each other (SS2 in

Figure 2). Furthermore, a TestComponent can “mock” the behavior of the Component (ST1

in Figure 2) to test a certain process. In case the Participant involved in a collaborative

process is changed, its related Component and consequently the related TestComponent

would be affected as well.
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The example impact rule depicted in Listing 1 realizes this scenario. The element e4 is a

Change Trigger and the name of its associated change type is “Add Operation in Process-

Class”. The Element Definition part defines the elements to be evaluated by the impact

rule, i.e. Class, Component, and TestComponent. The conditions part applies constraints

on the model elements defined in the Element Definition part. The two main conditions use

the modelRelatedTo-operation to check if the dependency relations (ProcessClass, Equiv-

alence, Component) and (Component, Mocked By, TestComponent) exist for the model

elements specified in the element definitions.

If the conditions are satisfied, the next change is triggered and the impact is further prop-

agated as defined in the created Impact Report. The impact report states that the source

of the change was an element e1, a ProcessClass, and that the change is propagated to the

element e2, a TestComponent. The next change trigger will be the impact rule correspond-

ing to the change “Add MockOperation in TestComponent”, which will be applied on the

element e2.

5 Test Selection and Classification

We classify a UTP test suite into four types of test cases: Obsolete, Reusable, Retestable,

and New as suggested by Leung et al. [LW89]. To classify the composite model ele-

ments, we also introduce the notion of Partially Retestable elements to the classification

as explained in the following.

As presented in Section 3, the regression test selection problem consists of two fundamen-

tal parts: the identification of elements affected by a change ci ∈ C, and the classification

of these impacted elements. Let x ∈ T
′

be an element impacted by a change ci ∈ C. Let

I be the set of reporting actions produced by the impact rules after the application of ci on

x. Let (O,U,R, P , and A) represent the sets of Obsolete, Reusable, Retestable, Partially

Retestable, and New elements. The test classification problem is to determine whether x
belongs to O,U,R, P, or A. Where O refers to the set of obsolete elements, which are no

more valid for T
′

. The set U represents the set of Reusable elements in T
′

, which are not

affected when the change ci is applied. R is the set of elements which are affected by the

change ci and should be used to retest the process P after any required modifications and

should be included in T
′

.

We further extend the definition of Retestable by using another set of Partially Retestable

elements. An element x ∈ P is partially retestable, if at least one of its constituents is

Reusable and at least one of its child elements is Retestable. The element x should remain

in T
′

, whereas its affected constituents should be updated and used during regression

testing. Finally, A is the set of elements that are required to be added in T
′

to update it.

The type of the element x determines how it will be classified. Each element in UTP

has to be analyzed to define the conditions under which that element can belong to either

O,U,R, P, or A. We analyzed the UTP elements and define the classification conditions

for them. As an example, below we present some of the conditions under which a Test

Component element in UTP might belong to one of the classifications.
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Example of Classifying a Test Component – Let x = tc ∈ T
′

be a UTP TestComponent,

and let M be the set of MockOperations belonging to tc. In case a change ci is applied on

tc, it will be considered as Obsolete if the following conditions are met. There exists an

impact report r ∈ I caused by tc, such that the change type of r is Delete TestComponent.

The origin of the change type Delete TestComponent can vary due to the dependency

relations.

Element tc is considered Reusable if tc /∈ O,R, P, orA. This means that no reporting

action r ∈ I exists for tc. The element tc will be Retestable if ∀m ∈ M m is Retestable.

This means that, for a test component to be retestable, all of its mock operations should be

affected by ci. Otherwise, tc will be Partially Retestable under the following conditions;

(1) ∃m ∈ M,n ∈ M such that m is Reusable and n is Retestable, (2) ∃r ∈ I , such that

the change type of r is PropertyUpdate for tc, (3) A MockOperation is added to M inside

a r ∈ I . Finally, tc will be considered as New if ∃r ∈ I , such that the change type of r is

(Add TestComponent) for tc.

6 Tool Support

We implemented our approach in a prototype tool called EMFTrace 3 . EMFTrace is an

Eclipse-based tool which is built upon the Eclipse Modeling Framework 4 (EMF), and

was initially developed for dependency detection. Our tool offers features for importing

models from a variety of tools and modeling languages. It is capable of analyzing various

different types of software artifacts for dependency relations. This dependency analysis

is implemented by dependency detection rules as introduced in Section 4.1, which are

executed by the rule processing component integrated in EMFTrace.

EMFTrace has been extended to allow for rule-based impact analysis [LFR13] as presented

in Section 4.3.1. Therefore, the existing rule-processing infrastructure is reused and ex-

tended to allow for the generation of impact reports. To perform the test selection, we

further extended EMFTrace by implementing a test selector prototype plug-in. This plug-

in allows to analyze the impacted elements produced by the impact analyzer and classifies

the affected test elements.

7 Evaluation and Application on a Case study

To evaluate our approach, we applied the criteria of the framework of Rothermel et al

[RH96], which are employed by several MBRT approaches for evaluation [BLH09, NZR10].

The framework consists of 4 major criteria; Inclusiveness, Precision, Efficiency and Gen-

erality. Inclusiveness is the measure to which the modification revealing tests are included.

In contrast, Precision determines the presence of false positives. Efficiency is defined in

terms of time and space requirements of the approach, its automatability, the cost of calcu-

3https://sourceforge.net/projects/emftrace/
4http://www.eclipse.org/modeling/emf/

314



lating modifications, and the costs that occur during the preliminary and critical phases of

testing. Generality is the ability of the approach to perform in various practical scenarios

[RH96]. Further, we also applied our approach on a case study that automates business

processes on mobile devices.

7.1 Evaluation based on Rothermel et al.’s Criteria

Inclusiveness and Precision: Our approach considers 114 different dependency relations,

hence all modification revealing test cases covered by them will be considered for retest.

Since we cover a comprehensive set of dependency relations, there is less risk of missing

any possibly impacted test elements. We explicitly separate the non-modification revealing

test cases, i.e. the Reusable test cases. Hence, the precision of our approach is considerably

higher than the Retest-All approach. One of our previous studies show a precision of 80%

for the rule-based impact analysis [LFR13]. We expect the same precision, as our approach

is also based on the rule-based impact analysis.

Efficiency: We provide the tool support through EMFTrace (see Section 6), which saves

the time required for manual analysis. The worst case eventuates if each model of the

system is dependent on any other model of the system. Hence there are n(n − 1)/2
dependency relations for n models, which defines how often each impact rule is executed

due to recursion. The time complexity of a single rule computes to O(nk) where k is the

number of elements queried by the rule. Thus, the final time complexity equals O(m ·
nk+2), where m represents the number of rules. Moreover, since the approach is able to

forecast the number of test cases affected by a change in earlier phases of development,

it can save test costs compared to the approaches that require more effort in later critical

testing phases.

Generality: We consider two factors when analyzing the generality of our approach. First,

our rules are easier to extend without requiring any change to the underlying rule execution

engine and tooling. Hence, our concept offers improved extensibility when compared to

other approaches that require changes in their respective tools, which is often a tedious

task. Moreover, our approach does not require any explicit model comparison, thus making

it easier to integrate with any change detection mechanism than other approaches.

7.2 Application of Our Approach on a Scenario from the Field Service Technician

Case study

In the following, we present the application of our approach on a process TourPlanning-

Process from the Field Service Technician case study. The Tour Planning Process is

responsible for planning a field tour based on various strategies. Figure 3 shows small

cutouts of this process, its related classes, components, UTP test models, and their depen-

dencies.

Process View: the box numbered as (a) in Figure 3 shows a part of the BPMN collabo-

ration diagram representing the TourPlanningProcess. It shows three process participants,
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i.e. TourPlanner, RoutePlanner, and ServicePlanner. The participant Tour Planner com-

mences the process and collaborates with other participants to create a TourPlan. The part

presented in Figure 3 focuses on a situation where the TourPlan is created based on the

shortest available plan between start and end destinations. The participants RoutePlanner

and ServicePlanner provide two services modeled as Service Tasks: the getShortestRoute

service, which provides a shortest route between a given start and destination location, and

the getServiceOrders service which returns the list of service orders covering a particular

route. For our discussion we will concentrate on the dependencies of these participants

and services to other models.

Structural View: This view is represented in Figure 3 by the parts (b) and (c). Within this

view, the Process View participants RoutePlanner, TourPlanner, and ServicePlanner are

modeled as UML components, following the SoaML modeling method [SDE+10]. The
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Figure 3: A part of the tour planning process in MOPS, its different views and dependency relations

UML class diagram shown in part (b) presents two classes: HandleTourPlanningProcess,

and ServicePlanningManager. The first class represents the structural definition of the pro-

cess itself and the later class implements an interface of the ServicePlanner component. It

provides the service getServiceOrders() modeled as an operation. Test View: Finally, part

(d) and (e) show the Test View of the HandleTourPlanningProcess. The Test Architecture

as shown in part (d) includes a TestPackage and a TestContext class corresponding to the

HandleTourPlanningProcess. The UTP class TestContext contains the definitions of all

the test cases required for testing the process. However, Figure 3 shows only two of them

as an example. The actual test case specification in UTP is represented by an UML activity

diagram. Part (e) shows the exemplification of a test path, used to test the execution path

shown in the process view. The path is derived by applying a path search algorithm using

our test generation strategy [FR12].

Dependency Relations Across Views: The dashed arrows in Figure 3 show the depen-

dency relations among the elements of the models. An example dependency relation is
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D2, which is shown in bold in Figure 3 and represents a dependency relation of type

Mocked by between the participant RoutePlanner and its corresponding TestComponent.

It implements the dependency relation ST1 as presented in Figure 2.

Change Application and Impact Analysis for Replacement of a Service: To illustrate

Table 1: An excerpt of the results of applying Change 2 on the scenario

Rule 1 Rule 2

Change Operation Replace ServiceTask Replace CallOperationAction

Source createTourPlan: ServiceTask createTourPlan: CallOperationAction

Target createTourPlan: CallOperationAction Operation

Dependency Relation ServiceTask,Derivation,

CallOperationAction

CallOperationAction,Equivalence,

TestOperation

Triggered Change Replace CallOperationAction Replace TestOperation

the implementation of our To illustrate the utilization of the dependencies and rules we

discuss the implementation of the replacement of an operation. The service task create-

TourPlan was discussed with part (a) of Figure 3. Its corresponding Operation is repre-

sented by the HandleTourPlanningProcess in part (b) by a UML class with the stereotype

ProcessClass . The operation createTourPlan() creates and initializes a TourPlan

object and returns it to the calling process. However, we identified that the creation of a

TourPlan in HandleTourPlanningProcess not only requires 1the creation and initialization

of the TourPlan object, but it should also assign the Tour and the ServiceOrders selected

for the Tour to the TourPlan. Otherwise, an empty TourPlan object would be kept in the

system, which would violate the constraints of the system design. However, we want to

keep the existing createTourPlan operation due to its utilization in another scenario. The

change scenario can now be implemented by evaluating the rules and dependency rela-

tions, leading to the following changes.

Change 1 - Atomic (Add): Add a new operation OP: “TourPlan createTourPlan(Tour cur-

rentTour, ServiceOrders List so );” in the ProcessClass HandleTourPlanningPro-

cess. This corresponds to the AddOperation in ProcessClass change type discussed in

Section 4.2.

Change 2 - Composite (Replace): Replace the operation corresponding to createTour-

Plan ServiceTask in the HandleTourPlanningProcess collaboration diagram with OP. The

Replace ServiceTask change type is also referred to in Section 4.2.

The application of Change 1 will activate the impact rule depicted in Listing 1. That will in

turn utilize the dependency relations D1 and D12 depicted in figure 3. The rule would then

suggest to add a corresponding mock operation inside the test component HTPPTCom by

triggering the change type Add MockOperation in TestComponent, as suggested by the

rule in Listing 1.

The application of the Change 2 requires to trigger the change type Replace ServiceTask,

which is also discussed in Section 4.2. Table 1 represents partial results in the case when

the Change 2 will be applied to replace a ServiceTask. The first column presents the

triggering of the first rule, while the second one represents the rule triggered as a result of

applying the first rule. When the first rule replaces the ServiceTask createTourPlan, it will

affect the corresponding CallOperationAction in the test case activity diagram due to the
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dependency D7: (createTourPlan, Derivation, createTourPlan), as depicted in Figure 3.

Finally, Rule 2 will be triggered, which suggests replacing the CallOperationAction inside

the activity diagram test case. The rule for replacing the CallOperationAction triggers

another rule to replace its corresponding TestOperation inside the test code and so on.

Test Selection and Classification for the Scenario: The TestCase1, represented as an

activity diagram, is classified as Retestable, as it is required to be retested due to a change

in its called Operation. Other test cases remain unaffected because they do not call this

operation. As a new MockOperation is added inside the HTPPTCom TestComponent, it

would classified as Partially-Retestable. This classification is consistent with the case 3

presented in the classification discussed in Section 5.

7.3 Threats to Validity

We identified two major factors that can influence the results achieved by our approach.

The first factor is the accuracy of the dependency relations recorded by our dependency

detection approach. Although our rules cover several types of constraints for a precise

detection of dependency relations, the similarity of the names of model elements, however,

still plays a significant role. If proper naming conventions are not followed during the

modeling phase, some dependency relation might remain undetected and our approach

might produce imprecise results. The other factor is the size of the test suite. If the baseline

test suite is already too small, the reduction of cost and effort achieved by our approach

might not be significant compared to the retest-all approach. However, the results can still

be used to update the baseline test suite.

8 Related Work

A number of business process-based regression testing approaches use process code, such

as BPEL, for regression test selection [WLC08, LQJW10, LLZT07]. They start the test se-

lection activity after the changes are already implemented and cannot forecast the required

cost and effort earlier.

Our recent investigations on change impact analysis revealed the lack of support for the

interplay of different types of models and software artifacts [LFR13]. A few works, such

as the one of Ginige et al. [GG09], consider the relations between BPEL processes and the

WSDL web service specifications. Since we do not use process code for regression testing,

these dependency relations cannot contribute to our work. Wang et al. [WYZS12] use

dependency relations between the process layer and the service layer for impact analysis.

However, along with such dependencies, we support a more comprehensive set of other

dependency relations between processes, services, components, and test suites.

A number of MBRT approaches only consider intra-model relations inside a single artifact

and their impacts on tests [CPU07, CPU09, KTV02, TJJM00]. These approaches are

valuable for unit level testing; however, they cannot predict the indirect impacts resulting

from the changes in other system artifacts. A large number of MBRT approaches consider
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the inter-model relations between artifacts for test selection [MTN10, PUA06, BLH09].

However, they do not record these relations prior to the impact analysis. To perform test

selection more than once, each time the relations have to be repeatedly searched; thus,

increasing the test selection time.

Recent work by Naslavsky et al. [NZR10] makes the dependency links explicit by stor-

ing them in a separate model during the test generation process prior to the test selection.

However, this approach can only record dependency relations between the design mod-

els from which tests are generated and the tests themselves. We are not only using this

approach, but also recording other inter-model dependency relations between several de-

sign models using additional dependency detection rules. Moreover, our approach further

compares to all above mentioned approaches in following ways.

Firstly, these approaches perform the discovery of dependency relations during the im-

pact analysis activity. In our approach, we separate these two activities by discovering

the dependency relations in the first phase and later performing the impact analysis. In

this way, the discovery part can be reused for other maintenance activities, such as consis-

tency checking of models. Secondly, all above discussed approaches are based on model

comparison for test selection. They cannot deal with the changes directly captured from

a model editor. Our approach can be integrated with both. Once a change is available,

independent from the detection mechanism, the impact analysis activity can be started.

9 Conclusion and Future Directions

In this paper, we presented a model-based regression testing approach for business pro-

cesses. Our approach determines affected test cases by forecasting the impacts of changes

prior to their implementation. For this purpose, we first record the dependency relations

between UML models, BPMN models, and UTP test models. As another contribution,

we developed a set of impact rules to forecast the impacts of changes and the resulting

change propagation on different parts of a test suite. Tests are further classified to decide

their inclusion for regression testing. We discussed the implementation of our approach

in our prototype tool EMFTrace. To demonstrate the applicability of our approach, we

applied it on several change scenarios in a case study on mobile field service technicians

developed under the MOPS project. We further evaluated our approach according to the

criteria of Inclusiveness, Precision, Efficiency, and Generality. Our future work targets on

an extension of our impact rules to cover the concrete test scripts. Furthermore, we plan

to analyze how risk, cost, and fault severity based approaches can be integrated with our

approach for further test prioritization.
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