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Abstract: The modeling tools that are commonly used for embedded software devel-
opment are rather limited when it comes to communicating certain model properties
between different groups of engineers. For example, calibration engineers need to
understand dependencies between signals and calibration parameters, while function
developers create models with a divide-and-conquer strategy, where details of signal
dependencies are hidden by abstract interfaces.

We state requirements for modeling tools to improve the exploring of complex
data flow models and to facilitate the understanding of engineers from different do-
mains. We propose an approach that combines transient views and automatic layout
and present two implementations based on different technologies, GMF and KLighD.
While both technologies fulfill all requirements, KLighD turned out to be superior in
terms of both performance and programming effort. The implementations are based
on an open-source framework and are employed in a commercial product that targets
the calibration process for automotive software development.

1 Introduction

In many application domains, such as the automotive industry, model-driven software dev-

elopment (MDSD) has become the established approach for the design and specification of

system features, as well as their implementation in form of software executed by embed-

ded computer systems. MDSD offers advantages such as separation of specification and

implementation, reuse of function specifications across different development phases from

simulation over prototyping to target integration, and automatic generation of safe code for

different target microcontroller platforms. Commercial tools such as ASCET from ETAS

GmbH, Simulink from The MathWorks, Inc., and the research framework Ptolemy from

UC Berkeley, offer similar means to model functions graphically based on block diagrams

for data flow oriented functions, or statecharts for control flow oriented functions. In such

tools, complex functions can be divided into manageable pieces such that the problem of

graphically specifying the functions is mastered. This results in nested graphical models

∗This work was also funded in part by the Program for the Future Economy of Schleswig-Holstein and the

European Regional Development Fund (ERDF)
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consisting of several hierarchies of elements, each represented by a diagram. A complex

embedded system, an engine control system of an automotive vehicle for example, can

contain several hundreds or even thousands of individual diagrams.

While the graphical modeling approaches of MDSD are well suited to divide and conquer

complex functions into manageable parts, they do not address the need of engineers to get

a seamless understanding of the overall functionality at the system level. This, however,

is especially important after a function has been designed by one engineer and needs to be

understood by other engineers.

Control applications such as anti-lock braking systems or engine control systems often

need to be fine-tuned to match a desired behavior or to optimally control a physical pro-

cess. For this purpose, calibration engineers need to get an in-depth understanding of how

the functions in the electronic control system work. Since many functions are developed

by means of MDSD approaches, the graphical models are an important source of infor-

mation to get such an understanding. Often, the engineers do not have direct access to

the models and the tools themselves, but are only provided with a textual documentation

with a fixed page size, suited for printouts, where screenshots of the model hierarchies are

depicted. It is not untypical for calibration engineers, who are highly-paid application ex-

perts, to have to work with documents that exceed 5000 pages, where the cross-navigation

index alone may consume about a third of the pages. Needless to say, retrieving specific

information and assembling a complete picture of the application from such serialized,

static documents is thus a very tedious and time-consuming exercise.

Contributions This article presents an approach for exploring and browsing fragmented

complex data flow models that may come from several sources. The work presented here

has been driven by concrete demands for the calibration of electronic control units, but we

expect the results to be applicable to other areas, facing similar challenges, as well. We

state requirements for tooling support and propose a number of methods to fulfill these

requirements, specifically 1) a transient views approach, where the information that is

relevant for model exploration is extracted from the source models and transformed on-

the-fly into a generic light-weight format for presentation, 2) systematic use of automatic

layout for drawing the diagrams, and 3) an exemplary view modification increasing the

benefit of our model browser and illustrating some opportunities of the transient views

approach.

We present two exemplary implementations of these concepts, and compare and evaluate

them in terms of tool responsiveness and implementation effort. The implementations

are part of the EHANDBOOK solution (ETAS), which provides interactive documentation

facilities with an integrated model viewer, and of the KIELER open source project.1

Outline The rest of this paper is organized as follows. We discuss related work in the

remainder of this section and collect requirements for proper tooling support in Sec. 2.

The basic concepts are presented in Sec. 3, the corresponding implementations in Sec. 4.

Comparisons and evaluations are discussed in Sec. 5. Finally, we summarize in Sec. 6.

1 http://www.informatik.uni-kiel.de/rtsys/kieler/
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Related Work

UC Berkeley’s Ptolemy project is an example of a modeling tool that allows heterogeneous

compositions of model parts [EJL+03], which is what we also want to do here. Each part

can define locally how its content shall be executed using a model of computation. The

composition of parts is done according to the actor-oriented design paradigm [LNW03],

where actors communicate via ports. Ptolemy uses a simple and extensible meta model

[BLL+08] defining the models’ abstract syntax that is implemented in Java. The Ptolemy

framework focuses on semantic aspects of heterogeneous models. Thus, each actor comes

with all information necessary for model simulation, and the models are treated as mono-

lithic artifacts. Here, in contrast, we concentrate on the exploration and browsing of large-

scale models by abstracting them into light-weight structures, which can be inspected more

efficiently.

Considerable effort has been spent on simplifying the development of modeling tools

for customized or domain-specific modeling environments. Corresponding development

environments include meta modeling facilities for creating the basic data structures as

well as support for determining the representations of those structures in diagrams. Ex-

amples of such tools are Marama [GHL+13], DIAMETA [Min06], GME [LMB+01],

VMTS [MLC06], GMF Tooling,2 and MetaEdit+.3 Those frameworks, however, focus

on the creation of models rather than browsing existing models most comfortably. In our

scenario existing complex models from different languages shall be explored by users.

This requires a high quality tool in terms of responsiveness as well as accurate rendering.

Editing assistance such as undo and redo operations, however, is not required.

The work of Storey et al. [SWFM97] employs automatic diagram synthesis for program

comprehension and architecture recovery of given code rather than representing specifica-

tion data in a reader-friendly form. In a follow-up work Bull et al. [BSLF06] developed

the Zest4 framework enabling visualizations of flat graph structures in Eclipse. Its aim is

to provide a graph widget that seamlessly integrates into the existing widget zoo. This

framework, however, supports neither ports nor nested graph representations.

Regarding the visualization of hierarchical models, an approach that follows the fisheye

view concept [SB92] was introduced by Schaffer et al. [SZG+96]: the content of hierar-

chical nodes is displayed directly inside their bounding box. The fisheye zoom technique

allows dynamic collapsing or expanding of composite nodes in order to hide or reveal their

content. This leads to the concept of focus & context, where the details of the currently

viewed component are directly embedded in the context the component is used in. Earlier

focus & context implementations employed algorithms for modifying the previous lay-

out in order to eliminate node overlaps [RMG07, SFM99], which is especially suited for

changing the layout as little as possible, thus helping the user to preserve his or her mental

map of the model. However, it is yet unclear how such layout modifications can be done

under consideration of port constraints. Here, we combine a focus & context visualization

with graph layout methods enhanced by orthogonal routing and port constraint support.

2http://www.eclipse.org/modeling/gmp/?project=gmf-tooling
3http://www.metacase.com/mep/
4 http://www.eclipse.org/gef/zest/
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Figure 1: An ASCET model with original, manually drawn layout.

2 Exploring Complex Models – Requirements

In the following, we discuss requirements imposed on modeling tools that we found nec-

essary to improve the experience of navigating complex models. We focus on the process

of presenting and browsing existing models, which may be fragmented, i. e. spread over

multiple files, and neglect any functionality to create new models or alter existing ones.

The actor models of our driving application, such as shown in Fig. 1, consist of other actors

that are connected by edges via ports (denoted by little arrows). To assess the size of such

diagrams, Klauske [Kla12] analyzed 12 Simulink models from automotive applications

and measured an average size of 3333 nodes and 4274 edges per model. However, each

hierarchy level (the direct content of a composite actor) is usually rather moderate in size.

In Klauske’s measurements each level contains 22 nodes and 29 edges on average.

A very basic requirement is to draw the elements of which diagrams are composed in the

same way as in their original modeling tools. The symbols used to draw these elements of-

ten convey important semantic properties, e. g. about the type of a node. The mathematical

operators for addition, subtraction, division, and minimum are identified easily in Fig. 1

due to their intuitive graphical representation. Without this representation, the rectangular

node figures would all seem like black boxes.

Model Harmonization Large, possibly fragmented models shall be presented in a seam-

less fashion. For this purpose, several requirements can be stated.

H1 The impression of fragmentation shall be eliminated; hierarchy and fragment bound-

aries have to be spanned without breaking the natural flow of navigation.

H2 Likewise, no additional tool windows are to be opened when showing further details

of the model.

H3 Existing relationships between the fragments, e. g. wires that cross a hierarchy level,

shall be connected and be visible within the view.
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H4 Multiple different modeling languages shall be combinable within one diagram, e. g.

data flow notions as well as statechart notions.

Automatic Layout The automatic generation of graph-based views requires the created

elements and shapes to be positioned in the available view area. We discern between the

micro layout, affecting the composition of figures used to draw each single element, i. e. a

node, edge, port, or label, and the macro layout, affecting the placement of these elements

on the canvas [SSvH12]. The requirements on these two levels of diagram layout are very

different: for micro layout we need a flexible mechanism for relative placement and size

determination, while for macro layout we rely on aesthetic criteria for graph drawing,

which have been well studied [BRSG07].

The most important macro layout criteria imposed in the context of actor diagrams as

considered here are the following.

L1 Edges shall point from left to right, except feedback edges, which may point to the

opposite direction.

L2 Edges are connected to specific ports on their source and target nodes. Usually these

ports cannot be moved arbitrarily, but are subject to different kinds of positioning

constraints (see below).

L3 Each output port may be connected to multiple input ports, effectively forming a

directed hyperedge.

L4 Edges shall be routed orthogonally, i. e. only using horizontal or vertical line seg-

ments, with as few crossings and bends as possible.

L5 The drawing shall be compact, i. e. it shall have a small area and good aspect ratio

(near that of a computer screen).

L6 If applicable, the layout shall be as close as possible to that seen in the original

modeling tool in which the diagram was created, which we call the original layout.

Ports are placed on the border of their respective node, but their exact positioning is subject

to different constraints that depend on the specific application (Criterion L2). We consider

different constraint levels that determine how much the automatic layout process is allowed

to modify port positions [KSSvH12]: with FREE constraints, ports can be freely placed,

while FIXEDSIDE assigns a specific node side to each port. With FIXEDPOS constraints,

port positions must not be modified by the layout process at all.

Criterion L6 is particularly relevant when users are already familiar with an existing dia-

gram from the original tool. Retaining the original layout would help users to recognize

the model at first glance, without requiring them to adjust their mental map of the model.

Several metrics have been proposed to measure the closeness of two layouts [BT00]. How-

ever, an aspect that is not covered by these abstract metrics is to respect domain-specific

constraints, e. g. placing inputs of the model to the left and outputs to the right.
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(a) Ptolemy’s original editor Vergil. The content of each hierarchical node is displayed in a new tool window,

thus the user can easily lose the context he is working in.

(b) KIELER’s Ptolemy viewer. Hierarchy is embedded directly into the nodes, and multiple visual representations

are possible within the same diagram.

Figure 2: Snippet from Ptolemy’s CarTracking model. Three hierarchy levels are visible,

of which the outermost level (Following Car actor) contains data flow. One of its actors

(ModalModel) contains a statechart, of which a state (faulty) is refined by a data flow model.

3 Towards Transient Views of Actor Models

Transient Views We apply the transient views approach to synthesize the graphical rep-

resentations of semantic models automatically [SSvH13]. This approach is about the on-

demand creation of diagrams without storing any intermediate data persistently. Thereby,

no specific relationship between objects in the application model and elements in the dia-

gram is prescribed. This way implicit model information can be made explicit, and frag-

mented information can be aggregated in order to present them to users most conveniently

(Criterion H1). Concrete diagrams are created by composing view models that are then

handed over to a rendering tool. They are automatically arranged, and heavy-weight edit-

ing facilities are omitted in favor of responsiveness of the tool. The approach is optimized

for user interactivity like changing the depicted amount of detail, e. g. by expanding or

collapsing nodes.
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The fact that the view models denoting the diagram are completely separated from the

source models paves the way for composing diagrams from different hierarchy levels of

a model or even different modeling languages in the same view, fulfilling Criterion H4.

Thus, the so created diagrams are not restricted to actor-based models, but can also visu-

alize state machines, process models, or component composition specifications. This way

model visualizations meeting all the harmonization requirements stated in Sec. 2 can be

realized. As illustrated by Fig. 2, the combined visualization of multiple hierarchy levels

can help the user to set the focus without losing the corresponding context of the overall

model. Furthermore, view models need not to be created in one run, but may be built up

incrementally. For example, nested diagram elements can be attached lazily when their

container element is expanded. View models may also be updated continuously, e. g. for

displaying feedback data while performing simulations or in-system-tests.

In spite of the separation of application models and view models, transient view mappings

allow to associate diagram elements to the model elements they are derived from. By

means of such associations, queries can be performed on model elements that are chosen

via their representatives in the diagram, and the results can be visualized in the diagram

for easiest understanding by the user.

Automatic Layout Automatic macro layout can be realized using graph layout methods

[DETT99]. Some of the macro layout criteria listed in Sec. 2 have been thoroughly studied

in graph drawing research. The main method for obtaining a left-to-right layout as stated

in Criterion L1 is the layer-based (a. k. a. hierarchical) approach, which was proposed by

Sugiyama et al. [STT81]. Regarding Criterion L3, Sander proposed an extension of the

layer-based approach for routing orthogonal hyperedges [San04]. More recently, further

extensions have been published to support port constraints for Criterion L2 [KSSvH12,

SFvHM10]. Minimizing the number of edge crossings and bends (Criterion L4) are both

NP-hard problems, but numerous heuristics have been developed [DETT99]. In contrast,

the compactness of layouts stated in Criterion L5 has not been addressed much yet in the

context of layer-based drawing. Most computed layouts are acceptable w. r. t. compactness,

but further research in that area could certainly improve them.

A simple solution to meet Criterion L6, closeness to the original layout, is to extract the

layout information from the original view model, attach it to the new view model created

in our browsing application, and apply that layout directly to all diagram elements. With

this procedure it is possible to obtain identically looking diagrams in both the original tool

and the new browsing tool. However, there are two major limiting factors: the approach

requires a good hand-made layout that satisfies the first five layout criteria, which is very

time-consuming, and it cannot be applied when the sizes of some elements change or new

connections are drawn, since that could cause unwanted overlappings. The latter happens

in particular when focus & context browsing methods are employed as outlined in Sec. 2.

We propose to use both the original and automatically computed layouts according to the

following scheme. We choose one of these alternatives on each hierarchy level of the

composite diagram. If none of the nodes on a given hierarchy level are expanded and no

new connections to the surrounding level have been added, the original layout is applied,

otherwise the automatic layout is applied. This can optionally be enhanced by methods for
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Figure 3: Automatic layout of the ASCET model shown in Fig. 1 (here with FIXEDSIDE

port constraints on the Limiter and PIDT1 nodes). The automatic layout is quite similar

to the manually drawn one, supporting our assumption that state-of-the-art algorithms are

able to provide layouts of adequate quality.

dynamic graph layout [Bra01] using the original layout as prototype, which constrain the

computed layout to be as close as possible to that prototype. In our experience, however,

today’s state-of-the-art layout algorithms already produce layouts of such quality that in

most cases the effort of including dynamic layout methods would not pay off. Fig. 3 shows

an automatic layout of the diagram in Fig. 1, which is drawn with original layout.

Bridging Hierarchy Boundaries – An Exemplary View Customization

In the graphical notations of actor-based models, (see Fig. 3), each actor is connected with

other actors of the same hierarchy level through ports and links. The ports are depicted

by little symbols placed onto the boundaries of the figure representing the actor. Regard-

ing the actor itself, those external port views are part of the actor’s context. In contrast,

specifications of the interior of non-atomic actors usually represent the actor’s ports as

floating nodes, which are connected with other elements that are part of the specification

(see Fig. 2a). Those internal port views are part of the actor’s focus.

Following the concept of focus & context, our application shall be able to visualize the con-

tent of a composite actor surrounded by its context (cf. Criterion H1). However, this con-

cept implies that both the floating internal ports and the actor’s external ports are present

in the view, which can lead to confusion. According to Criterion H3, internal and external

ports shall be connected as shown in the left of Fig. 4. This way the data flow is made

explicit and can be followed much easier.
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Figure 4: Expansion of the Limiter block with direct links between hierarchy levels.

In most actor-based modeling languages ports are subject to FIXEDPOS constraints (see

Sec. 2). However, when focus & context browsing is employed, it is advisable to relax

these constraints. Adding edges to connect the content of a focused node with its context

and keeping strict port constraints could lead to confusing edge routings: for instance, con-

nections to input ports anchored to the top side would need to be routed all the way to the

left side of the contained diagram. If the constraints are relaxed to FREE, in contrast, the

layout algorithm can arrange all input ports to the left and output ports to the right, which

complies better with the overall flow of connections and thus allows shorter edges and less

bend points. The expanded node in Fig. 4, which originally had two input ports on the

top side (see Fig. 1), has been drawn with such relaxed constraints. As a consequence, we

need a flexible interface in order to dynamically adapt parameters of the layout algorithm

such as the port constraints depending on the context. We use the layout configuration

interface provided by KIELER for this purpose [SSM+13].

4 Two Approaches for Realization

In this section, we present two different realizations of the transient-views-based concepts

introduced in Sec. 3. One uses the established GMF Tooling for rapid prototyping of

graphical editors, while the other uses a viewer framework based on KIELER with the

focus on high performance and minimizing the time-to-diagram. Both realizations use

the KIELER layout algorithms for automatically computing macro layouts as described

in Sec. 3. The foundation is laid by an implementation of the layer-based graph layout

algorithm with extensions for port constraints and orthogonal edge routing [KSSvH12].

The diagrams shown in Fig. 2b, 3, and 4 all have been arranged with that algorithm.

We employed the two realizations for visualizing Ptolemy models in an open source ap-

plication, as well as ASCET and Simulink models in an industrial application. The latter

is implemented and validated in the EHANDBOOK (ETAS), an Eclipse-based interactive

documentation system for ECU software. This system aims to support the efficient explo-
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Figure 5: KIELER Actor Oriented Modeling (KAOM) meta model describing structural

information and key-value annotations.

ration of complex models and to facilitate the system-wide function understanding needed

by calibration engineers.

4.1 Graphical Modeling Framework (GMF)

GMF Tooling uses a model-driven approach to generate graphical editors from abstract

specifications. These specifications are built around an application-specific meta model

based on the Eclipse Modeling Framework (EMF), which is used to represent concrete

model instances. In our application, however, model instances are extracted from different

third party tools that are not based on Eclipse. We bridge this technological gap using

a generic meta model, called KIELER Actor Oriented Modeling (KAOM) and shown in

Fig. 5, that contains only the necessary data for displaying the models. Models from differ-

ent sources, e. g. Ptolemy, ASCET, or Simulink, are all first transformed into this common

EMF-based format. The code generated by GMF Tooling then takes care of creating cor-

responding diagrams (the view and the controller in terms of the MVC paradigm). This

process involves creating a dedicated concrete view model that is an instance of the GMF

Notation model for storing macro layout information, a set of edit parts for controlling

user interaction, and a set of figures for drawing the diagram elements.

The KAOM meta model is inspired by the MoML format used by Ptolemy [BLL+08,

Chapter 1]. The central class is Entity, which represents nodes of the diagram, e. g. primi-

tive actors such as addition operators or composite actors containing other entities. Actors

contain Port instances to describe their interface, and ports can be connected via Link in-

stances. Relation is used to properly represent Ptolemy models, but is currently not used

for other languages. Each of these classes can contain Annotation instances, which are
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basically key-value pairs for attaching arbitrary data to model elements. We use annota-

tions to store the source language and the specific type of an element in order to select

the according figure from a predefined library, which is important for rendering the dia-

gram element in the same way as done in its source tool. Furthermore, we add annotations

holding the concrete position of each element in the original layout.

GMF supports collapsing and expanding composite nodes, which fits directly with our

focus & context approach. In theory it would be possible to load a whole model at once,

let GMF create the graphical viewer, and initially collapse all composite actors; users could

then selectively expand the actors in their focus. However, many models from industrial

applications are too large for this naive approach to work: loading the models would take

a long time, or might even fail due to memory limitations. Fortunately, as mentioned in

Sec. 2, even for such large-scale applications it is quite typical for each hierarchy level to

have a limited number of actors and connections such that they can be printed easily on one

page. Following this observation and the approach of Scheidgen et al. [SZFK12], we split

the input models such that each hierarchy level is persisted as a fragment. When a diagram

is opened, only its top-level fragment is loaded. Upon expansion of a composite actor,

its content is loaded lazily from the corresponding fragment, and when it is collapsed,

its content is unloaded again. This method limits memory consumption to the subset of

model elements that are actually shown in the generated view and greatly reduces the time

to open an initial view compared to the standard behavior of GMF, but of course it also

raises the time to expand composite actors.

4.2 KIELER Lightweight Diagrams (KLighD)

KLighD enables the visualization of models and other graph-like data in form of node-

link-diagrams according to the transient views approach [SSvH13]. Its aim is to provide

this opportunity without the burden of making oneself familiar with the peculiarities of

drawing frameworks and techniques of arranging diagrams. In contrast to GMF Tooling,

which derives diagrams from application models in a one-to-one manner, KLighD relies on

custom diagram synthesis mappings to formally describe diagrams based on given applica-

tion data. The view models produced by such mappings adhere to the KGraph/KRendering

format, which is well-suited for applying automatic layout and modifying diagrams inter-

actively [SSvH12]. The fact that it is specified in EMF’s meta modeling language Ecore

enables the full integration with Eclipse-based MDSD concepts and tools for implement-

ing diagram synthesis mappings.

The drawings of the desired diagrams, which correspond to the views in the MVC pattern,

are rendered by the mature 2D graphics framework Piccolo2D,5 which has been migrated

to SWT for use in Eclipse. The life cycle of those diagrams is controlled by an MVC-

like controller that is part of KLighD. This controller is in charge of updating the views

according to changes in the view models, as well as implementing the first class citizen op-

erations hiding and showing, expanding and collapsing, focusing elements, etc. Similarly

5http://www.piccolo2d.org/
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to the GMF-based solution, the arrangement of the diagram elements is contributed by the

KIELER Infrastructure for Meta Layout (KIML). The KGraph part of the view model is

the input for the KIML component, which evaluates layout directives such as port con-

straints (see Sec. 2), selects and executes layout algorithms, and augments the view model

elements with concrete position information. The procedure of creating graphical views

of given models is outlined in Fig. 6.

5 Evaluation

This section presents evaluations comparing the GMF-based and KLighD-based approaches

presented in the previous section. We consider two aspects of these approaches: perfor-

mance and implementation effort.

Performance We measured the execution time first for synthesizing view models and

rendering the diagrams, and second for applying automatic layout and updating the di-

agram rendering. The measurements were performed with about 360 example models

provided by the Ptolemy project. These models represent more realistic content than

randomly constructed ones do. In addition, this collection covers a reasonable range of

diagram elements per model.

Each of those models was examined 5 times with an intermediary sleep time of a few sec-

onds, allowing the tool to perform cleanup operations and the garbage collector to tidy up

the memory. Based on the data obtained this way, we computed the mean execution time

for opening and closing diagrams of each model, as well as for computing and applying an

automatic layout. The result is shown in Fig. 7: we measured an overall average speedup

of 2.64 for opening diagrams with KLighD compared to GMF, and a speedup of 7.41 for
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Figure 7: Experimental measurement results for execution time.

automatically arranging diagrams. The superior fluidity of the KLighD-based viewer is

noticeable at first glance while using the tool, especially for operations such as collapsing

or expanding composite elements.

We monitored the heap memory that was used by the whole application for both techniques

by means of the VisualVM6 tool. With large examples we observed a reduction of up to

50% for the KLighD-based approach compared to GMF. Since the concrete measured

amounts of consumed memory include the offset required by the application platform, the

ratio of the adjusted values would be even more in favor of KLighD. The measurements

were done on a typical mobile business computer with a quad core CPU, a memory of

8GB, and an up-to-date Java Runtime Environment (JRE) installed.

Comparison of Implementations We experienced several problems of the GMF-based

solution regarding its implementation and maintenance. While the time to obtain a first

version of a diagram editor for KAOM models is very short, the realization of many fur-

ther features and details requires a lot of effort. The GMF Tooling generated 96 Java

classes with over 12 000 lines of code; understanding that code and how it relates to the

corresponding source models is a tedious task, but regrettably it is often necessary. The

feature that involved most effort was the accurate reconstruction of the figures for render-

ing the many different node types of the source languages, especially considering that they

are all represented by the class Entity in the KAOM model. The code generated by GMF

had to be extended in order to dynamically adapt the visual representation of each entity

depending on annotations of the corresponding KAOM model element.

The KLighD-based solution allows much more direct and light-weight modifications of

the created diagrams. In particular, the indirection of an intermediate meta model such

as KAOM is not required, and adapting the rendering of entity figures can be done in a

descriptive manner using elements of the KRendering meta model. This leads to a more

6http://visualvm.java.net/
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intelligible and maintainable code base. For instance, the GMF-based visualization of

Ptolemy models was implemented in the Xtend7 language and compiled to 1372 lines

of Java code with 733 lines of hand-written code for the transformation to the KAOM

format, plus 1576 lines for the correct rendering of Ptolemy diagram elements, 5337 lines

generated by EMF for the KAOM meta model, 2374 lines of generic extensions of the

GMF editor code, and the aforementioned generated GMF code, which was customized

with 14 hand-edited code generation template files. This amounts to a total of roughly

24 000 lines of code. The KLighD-based visualization with the same functionality is made

of Xtend code that compiles to 4829 lines of Java code with 884 lines of hand-written code,

which is less than 6 000 lines in total.

6 Summary and Future Work

Today’s modeling tools provide reasonable support for application developers, who are

typically responsible for just a small portion of the system. However, it is sometimes nec-

essary to get an understanding of overall system functionality and to extract information

that is spread over a range of components. We have identified a number of requirements

that arise here, and have presented a concept combining transient views and automatic

layout to address them. The concept has been realized with two different Eclipse-based

technologies: GMF and KLighD. The presented methods allow the seamless browsing of

previously fragmented models as well as the integrated handling of heterogeneous models

comprising different source notations.

Comparing the two realizations of the transient views concept, we found that KLighD

allows to implement such applications with less effort both for the first prototypes and in

the long term compared to GMF. Furthermore, it reaches much better performance both

in terms of execution time and memory consumption. Hence, KLighD meets its design

objective stated in [SSvH13] in this application, and, as a bottom line, we would not

recommend employing a heavy-weight editor framework such as GMF when the goal is

merely visualizing and browsing models, but not editing.

First practical experiences with real-world models of the automotive industry have con-

firmed our thesis that automatically arranged models can easily be understood. The auto-

matic layout algorithms that take into account the positioning of ports optimize the read-

ability of the graphical models. This offers large time-saving potential for engineers who

are used to work with classical, page-oriented documentation.

While the pilot users of the EHANDBOOK solution at ETAS report promising experiences,

a substantial user study, evaluating the impacts on the daily work routine, has yet to be

performed. We also plan to integrate further methods supporting the understanding of the

models, e. g. dynamic exploration during the simulation of a model and the visualization

of time-critical paths based on profiling information. Another area for future work is the

further optimization of automatic layout algorithms in the context of hierarchical data-flow

models and very-large-scale models.

7http://www.eclipse.org/xtend/
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