@inproceedings{lotfi-etal-2020-deep,
title = "A Deep Generative Approach to Native Language Identification",
author = "Lotfi, Ehsan and
Markov, Ilia and
Daelemans, Walter",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.159",
doi = "10.18653/v1/2020.coling-main.159",
pages = "1778--1783",
abstract = "Native language identification (NLI) {--} identifying the native language (L1) of a person based on his/her writing in the second language (L2) {--} is useful for a variety of purposes, including marketing, security, and educational applications. From a traditional machine learning perspective,NLI is usually framed as a multi-class classification task, where numerous designed features are combined in order to achieve the state-of-the-art results. We introduce a deep generative language modelling (LM) approach to NLI, which consists in fine-tuning a GPT-2 model separately on texts written by the authors with the same L1, and assigning a label to an unseen text based on the minimum LM loss with respect to one of these fine-tuned GPT-2 models. Our method outperforms traditional machine learning approaches and currently achieves the best results on the benchmark NLI datasets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lotfi-etal-2020-deep">
<titleInfo>
<title>A Deep Generative Approach to Native Language Identification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ehsan</namePart>
<namePart type="family">Lotfi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ilia</namePart>
<namePart type="family">Markov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Walter</namePart>
<namePart type="family">Daelemans</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Native language identification (NLI) – identifying the native language (L1) of a person based on his/her writing in the second language (L2) – is useful for a variety of purposes, including marketing, security, and educational applications. From a traditional machine learning perspective,NLI is usually framed as a multi-class classification task, where numerous designed features are combined in order to achieve the state-of-the-art results. We introduce a deep generative language modelling (LM) approach to NLI, which consists in fine-tuning a GPT-2 model separately on texts written by the authors with the same L1, and assigning a label to an unseen text based on the minimum LM loss with respect to one of these fine-tuned GPT-2 models. Our method outperforms traditional machine learning approaches and currently achieves the best results on the benchmark NLI datasets.</abstract>
<identifier type="citekey">lotfi-etal-2020-deep</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.159</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.159</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1778</start>
<end>1783</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Deep Generative Approach to Native Language Identification
%A Lotfi, Ehsan
%A Markov, Ilia
%A Daelemans, Walter
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F lotfi-etal-2020-deep
%X Native language identification (NLI) – identifying the native language (L1) of a person based on his/her writing in the second language (L2) – is useful for a variety of purposes, including marketing, security, and educational applications. From a traditional machine learning perspective,NLI is usually framed as a multi-class classification task, where numerous designed features are combined in order to achieve the state-of-the-art results. We introduce a deep generative language modelling (LM) approach to NLI, which consists in fine-tuning a GPT-2 model separately on texts written by the authors with the same L1, and assigning a label to an unseen text based on the minimum LM loss with respect to one of these fine-tuned GPT-2 models. Our method outperforms traditional machine learning approaches and currently achieves the best results on the benchmark NLI datasets.
%R 10.18653/v1/2020.coling-main.159
%U https://aclanthology.org/2020.coling-main.159
%U https://doi.org/10.18653/v1/2020.coling-main.159
%P 1778-1783
Markdown (Informal)
[A Deep Generative Approach to Native Language Identification](https://aclanthology.org/2020.coling-main.159) (Lotfi et al., COLING 2020)
ACL