@inproceedings{kim-etal-2020-will,
title = "Will {I} Sound Like Me? Improving Persona Consistency in Dialogues through Pragmatic Self-Consciousness",
author = "Kim, Hyunwoo and
Kim, Byeongchang and
Kim, Gunhee",
editor = "Webber, Bonnie and
Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.65",
doi = "10.18653/v1/2020.emnlp-main.65",
pages = "904--916",
abstract = "We explore the task of improving persona consistency of dialogue agents. Recent models tackling consistency often train with additional Natural Language Inference (NLI) labels or attach trained extra modules to the generative agent for maintaining consistency. However, such additional labels and training can be demanding. Also, we find even the best-performing persona-based agents are insensitive to contradictory words. Inspired by social cognition and pragmatics, we endow existing dialogue agents with public self-consciousness on the fly through an imaginary listener. Our approach, based on the Rational Speech Acts framework (Frank and Goodman, 2012), can enforce dialogue agents to refrain from uttering contradiction. We further extend the framework by learning the distractor selection, which has been usually done manually or randomly. Results on Dialogue NLI (Welleck et al., 2019) and PersonaChat (Zhang et al., 2018) dataset show that our approach reduces contradiction and improves consistency of existing dialogue models. Moreover, we show that it can be generalized to improve context-consistency beyond persona in dialogues.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kim-etal-2020-will">
<titleInfo>
<title>Will I Sound Like Me? Improving Persona Consistency in Dialogues through Pragmatic Self-Consciousness</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hyunwoo</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Byeongchang</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gunhee</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Webber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We explore the task of improving persona consistency of dialogue agents. Recent models tackling consistency often train with additional Natural Language Inference (NLI) labels or attach trained extra modules to the generative agent for maintaining consistency. However, such additional labels and training can be demanding. Also, we find even the best-performing persona-based agents are insensitive to contradictory words. Inspired by social cognition and pragmatics, we endow existing dialogue agents with public self-consciousness on the fly through an imaginary listener. Our approach, based on the Rational Speech Acts framework (Frank and Goodman, 2012), can enforce dialogue agents to refrain from uttering contradiction. We further extend the framework by learning the distractor selection, which has been usually done manually or randomly. Results on Dialogue NLI (Welleck et al., 2019) and PersonaChat (Zhang et al., 2018) dataset show that our approach reduces contradiction and improves consistency of existing dialogue models. Moreover, we show that it can be generalized to improve context-consistency beyond persona in dialogues.</abstract>
<identifier type="citekey">kim-etal-2020-will</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-main.65</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-main.65</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>904</start>
<end>916</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Will I Sound Like Me? Improving Persona Consistency in Dialogues through Pragmatic Self-Consciousness
%A Kim, Hyunwoo
%A Kim, Byeongchang
%A Kim, Gunhee
%Y Webber, Bonnie
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F kim-etal-2020-will
%X We explore the task of improving persona consistency of dialogue agents. Recent models tackling consistency often train with additional Natural Language Inference (NLI) labels or attach trained extra modules to the generative agent for maintaining consistency. However, such additional labels and training can be demanding. Also, we find even the best-performing persona-based agents are insensitive to contradictory words. Inspired by social cognition and pragmatics, we endow existing dialogue agents with public self-consciousness on the fly through an imaginary listener. Our approach, based on the Rational Speech Acts framework (Frank and Goodman, 2012), can enforce dialogue agents to refrain from uttering contradiction. We further extend the framework by learning the distractor selection, which has been usually done manually or randomly. Results on Dialogue NLI (Welleck et al., 2019) and PersonaChat (Zhang et al., 2018) dataset show that our approach reduces contradiction and improves consistency of existing dialogue models. Moreover, we show that it can be generalized to improve context-consistency beyond persona in dialogues.
%R 10.18653/v1/2020.emnlp-main.65
%U https://aclanthology.org/2020.emnlp-main.65
%U https://doi.org/10.18653/v1/2020.emnlp-main.65
%P 904-916
Markdown (Informal)
[Will I Sound Like Me? Improving Persona Consistency in Dialogues through Pragmatic Self-Consciousness](https://aclanthology.org/2020.emnlp-main.65) (Kim et al., EMNLP 2020)
ACL