@inproceedings{yuasa-etal-2023-multimodal,
title = "Multimodal Neural Machine Translation Using Synthetic Images Transformed by Latent Diffusion Model",
author = "Yuasa, Ryoya and
Tamura, Akihiro and
Kajiwara, Tomoyuki and
Ninomiya, Takashi and
Kato, Tsuneo",
editor = "Padmakumar, Vishakh and
Vallejo, Gisela and
Fu, Yao",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-srw.12",
doi = "10.18653/v1/2023.acl-srw.12",
pages = "76--82",
abstract = "This study proposes a new multimodal neural machine translation (MNMT) model using synthetic images transformed by a latent diffusion model. MNMT translates a source language sentence based on its related image, but the image usually contains noisy information that are not relevant to the source language sentence. Our proposed method first generates a synthetic image corresponding to the content of the source language sentence by using a latent diffusion model and then performs translation based on the synthetic image. The experiments on the English-German translation tasks using the Multi30k dataset demonstrate the effectiveness of the proposed method.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yuasa-etal-2023-multimodal">
<titleInfo>
<title>Multimodal Neural Machine Translation Using Synthetic Images Transformed by Latent Diffusion Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ryoya</namePart>
<namePart type="family">Yuasa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Akihiro</namePart>
<namePart type="family">Tamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tomoyuki</namePart>
<namePart type="family">Kajiwara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Takashi</namePart>
<namePart type="family">Ninomiya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tsuneo</namePart>
<namePart type="family">Kato</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vishakh</namePart>
<namePart type="family">Padmakumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gisela</namePart>
<namePart type="family">Vallejo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yao</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This study proposes a new multimodal neural machine translation (MNMT) model using synthetic images transformed by a latent diffusion model. MNMT translates a source language sentence based on its related image, but the image usually contains noisy information that are not relevant to the source language sentence. Our proposed method first generates a synthetic image corresponding to the content of the source language sentence by using a latent diffusion model and then performs translation based on the synthetic image. The experiments on the English-German translation tasks using the Multi30k dataset demonstrate the effectiveness of the proposed method.</abstract>
<identifier type="citekey">yuasa-etal-2023-multimodal</identifier>
<identifier type="doi">10.18653/v1/2023.acl-srw.12</identifier>
<location>
<url>https://aclanthology.org/2023.acl-srw.12</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>76</start>
<end>82</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multimodal Neural Machine Translation Using Synthetic Images Transformed by Latent Diffusion Model
%A Yuasa, Ryoya
%A Tamura, Akihiro
%A Kajiwara, Tomoyuki
%A Ninomiya, Takashi
%A Kato, Tsuneo
%Y Padmakumar, Vishakh
%Y Vallejo, Gisela
%Y Fu, Yao
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F yuasa-etal-2023-multimodal
%X This study proposes a new multimodal neural machine translation (MNMT) model using synthetic images transformed by a latent diffusion model. MNMT translates a source language sentence based on its related image, but the image usually contains noisy information that are not relevant to the source language sentence. Our proposed method first generates a synthetic image corresponding to the content of the source language sentence by using a latent diffusion model and then performs translation based on the synthetic image. The experiments on the English-German translation tasks using the Multi30k dataset demonstrate the effectiveness of the proposed method.
%R 10.18653/v1/2023.acl-srw.12
%U https://aclanthology.org/2023.acl-srw.12
%U https://doi.org/10.18653/v1/2023.acl-srw.12
%P 76-82
Markdown (Informal)
[Multimodal Neural Machine Translation Using Synthetic Images Transformed by Latent Diffusion Model](https://aclanthology.org/2023.acl-srw.12) (Yuasa et al., ACL 2023)
ACL