@inproceedings{ding-riloff-2018-human,
title = "Human Needs Categorization of Affective Events Using Labeled and Unlabeled Data",
author = "Ding, Haibo and
Riloff, Ellen",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-1174",
doi = "10.18653/v1/N18-1174",
pages = "1919--1929",
abstract = "We often talk about events that impact us positively or negatively. For example {``}I got a job{''} is good news, but {``}I lost my job{''} is bad news. When we discuss an event, we not only understand its affective polarity but also the reason why the event is beneficial or detrimental. For example, getting or losing a job has affective polarity primarily because it impacts us financially. Our work aims to categorize affective events based upon human need categories that often explain people{'}s motivations and desires: PHYSIOLOGICAL, HEALTH, LEISURE, SOCIAL, FINANCIAL, COGNITION, and FREEDOM. We create classification models based on event expressions as well as models that use contexts surrounding event mentions. We also design a co-training model that learns from unlabeled data by simultaneously training event expression and event context classifiers in an iterative learning process. Our results show that co-training performs well, producing substantially better results than the individual classifiers.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ding-riloff-2018-human">
<titleInfo>
<title>Human Needs Categorization of Affective Events Using Labeled and Unlabeled Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Haibo</namePart>
<namePart type="family">Ding</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We often talk about events that impact us positively or negatively. For example “I got a job” is good news, but “I lost my job” is bad news. When we discuss an event, we not only understand its affective polarity but also the reason why the event is beneficial or detrimental. For example, getting or losing a job has affective polarity primarily because it impacts us financially. Our work aims to categorize affective events based upon human need categories that often explain people’s motivations and desires: PHYSIOLOGICAL, HEALTH, LEISURE, SOCIAL, FINANCIAL, COGNITION, and FREEDOM. We create classification models based on event expressions as well as models that use contexts surrounding event mentions. We also design a co-training model that learns from unlabeled data by simultaneously training event expression and event context classifiers in an iterative learning process. Our results show that co-training performs well, producing substantially better results than the individual classifiers.</abstract>
<identifier type="citekey">ding-riloff-2018-human</identifier>
<identifier type="doi">10.18653/v1/N18-1174</identifier>
<location>
<url>https://aclanthology.org/N18-1174</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>1919</start>
<end>1929</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Human Needs Categorization of Affective Events Using Labeled and Unlabeled Data
%A Ding, Haibo
%A Riloff, Ellen
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F ding-riloff-2018-human
%X We often talk about events that impact us positively or negatively. For example “I got a job” is good news, but “I lost my job” is bad news. When we discuss an event, we not only understand its affective polarity but also the reason why the event is beneficial or detrimental. For example, getting or losing a job has affective polarity primarily because it impacts us financially. Our work aims to categorize affective events based upon human need categories that often explain people’s motivations and desires: PHYSIOLOGICAL, HEALTH, LEISURE, SOCIAL, FINANCIAL, COGNITION, and FREEDOM. We create classification models based on event expressions as well as models that use contexts surrounding event mentions. We also design a co-training model that learns from unlabeled data by simultaneously training event expression and event context classifiers in an iterative learning process. Our results show that co-training performs well, producing substantially better results than the individual classifiers.
%R 10.18653/v1/N18-1174
%U https://aclanthology.org/N18-1174
%U https://doi.org/10.18653/v1/N18-1174
%P 1919-1929
Markdown (Informal)
[Human Needs Categorization of Affective Events Using Labeled and Unlabeled Data](https://aclanthology.org/N18-1174) (Ding & Riloff, NAACL 2018)
ACL