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ABSTRACT

The use of point-set representations of music enable re-

peated pattern discovery to be performed on polyphonic

music. The discovery of patterns containing polyphony is

also enabled by the use of point-set representations. The

SIA and SIATEC algorithms discover repeated patterns

in point-sets by computing maximal translatable patterns

and their translational equivalence classes. While the al-

gorithms are relatively efficient, their application to larger

pieces of music is not viable due to quadratic space com-

plexity. This paper introcudes a novel algorithm, SIATEC-

C, for repeated pattern discovery in point-set representa-

tions of music. The algorithm discovers repeated patterns

and finds all of their occurrences, while running with sub-

quadratic space complexity. The algorithm can also pro-

vide significant running time improvements over the com-

parable SIATEC algorithm. The computational perfor-

mance of the algorithm is compared with SIATEC. The ac-

curacy of the algorithm is also evaluated on the JKU-PDD

data set.

1. INTRODUCTION

This paper presents a novel algorithm for computationally

efficient repeated pattern discovery in symbolically repre-

sented polyphonic music. The main contribution of the

algorithm is efficient production of candidate patterns for

a post-processing phase where the patterns can be refined,

and musically unimportant patterns can be filtered out.

The goal of repeated pattern discovery is to find musi-

cally important patterns and their occurrences in a piece of

music (intra-opus) or in a corpus (inter-opus). In repeated

pattern discovery no query is given by the user unlike in

pattern matching, where the goal is to find occurrences of

a query pattern [1]. Decomposing a piece of music into its

constituent elements is a fundamental part of music analy-

sis [2]. Repeated pattern discovery can thus be applied to

multiple problems in computational music analysis, such

as motivic analysis [3, 4], tune classification [5], segmen-

tation [6], and style analysis [7]. A compressed represen-

tation of a piece formed by its repeated patterns can even

be considered an analysis of the piece [8, 9].
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Repeated pattern discovery is a challenging problem

due to certain characteristics of music. Repetition is preva-

lent in music causing algorithms that focus just on find-

ing repetitions to output large numbers of patterns even for

short pieces of music [4, 10]. Often most of the repeated

patterns discovered by an algorithm do not correspond to

patterns that have musical significance [11]. Instead of re-

lying on repetition alone for discovering musically signif-

icant pattern, methods for identifying which patterns are

musically important are needed.

The SIATEC-C algorithm presented in this paper im-

proves upon the running time and space complexity of pre-

vious point-set algorithms by avoiding the computation of

patterns with large temporal gaps and small patterns that

are already included in a larger pattern.

2. RELATED WORK

String representations of music have been employed for

both pattern matching and discovery in monophonic mu-

sic. Monophonic music can be represented as a string for

pattern matching [12] or a set of strings for pattern discov-

ery [13]. String representations have been often used for

mining closed patterns, that is, patterns that cannot be ex-

tended without reducing the number of occurrences [4,10].

Monophonic music can also be represented as a pitch sig-

nal which enables the use of signal processing methods.

Wavelet analysis is used by [14] for repeated pattern dis-

covery in monophonic music.

Polyphonic music can be split into monophonic voices

in order to use monophonic pattern discovery methods

(e.g., in [13, 15]. Voice separation can be challenging if

the voice information is not included, and using mono-

phonic pattern discovery on separate voices cannot be di-

rectly used to discover polyphonic patterns or patterns that

move from one voice to another, such as call-and-response

patterns in jazz.

Point-set representations of music enable pattern

matching [16] and discovery in polyphonic music [11] with

patterns that can be polyphonic. Time-shifts and transposi-

tions of a pattern can be performed by translating the points

of the pattern by a vector. The SIA-family of algorithms

(see [17] for an overview) discover repeated patterns in

music by computing maximal translatable patterns (MTP)

and finding their occurrences by computing the transla-

tional equivalence classes (TEC) for the patterns ( [11]).

The definitions of MTPs and TECs are covered in section

3.
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The SIA algorithm by [11] computes all MTPs in a k-

dimensional point-set of n points in O(kn2 log n) worst-

case time and O(kn2) space, and the SIATEC algorithm

computes the TECs of all MTPs in O(kn3) worst-case

time and O(kn2) space. The worst-case space complexity

of computing all MTPs has been improved upon by [18]

to O(kn). Another variant of SIA is the SIAR algorithm

by [19], which aims to improve the computational perfor-

mance of MTP computation by restricting the number of

difference vectors by a sliding window.

A musical pattern may be time-warped and time-scaled.

[20] present an algorithm that can discover transposed

and time-warped repeating patterns in a two-dimensional

point-set of n points in O(n2 log n) time. The algorithm by

[21] can discover transposed and time-scaled repeated pat-

terns in a two-dimensional point-set in O(n4 log n) time.

The number of patterns discovered by computing MTPs

can often be very large even for small point-sets [11]. Var-

ious approaches based on the use of compression ratio,

compactness, and other heuristics have been developed for

selecting the musically most important patterns from the

set of discovered MTPs. The COSIATEC and SIATEC-

Compress algorithms [9, 22] compute a compressed repre-

sentation of a point-set. The algorithm by [23] similarly

aims to compute a representation formed by musically im-

portant patterns. [24] further develops the idea of comput-

ing a highly compressed representation of a point-set by re-

cursively splitting the input point-set and refining the TECs

by removing redundant translation vectors.

MTPs can contain large temporal gaps, such that, the

MTP may consist of a musically important pattern and ad-

ditional points called isolated members [19, 25]. [19] pro-

poses a solution to the problem of isolated membership

by using an additional processing stage called compact-

ness trawling to split MTPs into smaller patterns without

isolated members. Post-processing MTPs with compact-

ness trawling in SIA has been found to improve precision

and recall [26] over plain SIA. Compactness trawling com-

bined with the symbolic fingerprinting method presented

in [27] have been employed in the SIARCT-CFP algorithm

to discover inexact occurrences of repeated patterns with

high precision and recall [28].

3. BACKGROUND AND DEFINITIONS

In a point-set representation of music, note events are rep-

resented as points and a piece of music is represented as

a point-set D ⊂ R
k, where k is the dimensionality of the

points. Often k = 2, where the first dimension represents

the onset time of a note event, and the second dimension

represents the pitch of the note event. The rest of this pa-

per assumes that the points are two-dimensional, and p.x
denotes the onset time and p.y the pitch of a point p. The

number of points in a point-set D is denoted by |D| or n.

By using only the onset time of the note events, patterns

can be matched based on the inter-onset-intervals (IOI) of

the adjacent notes. This allows for variations in the du-

rations of the notes. The IOI between consecutive note

events p1 and p2 is defined as the difference p2.x− p1.x.

A point-set can be sorted by using a lexicographical or-

dering [11]. A two-dimensional point p1 is considered to

be less than a point p2, if and only if, p1.x < p2.x or

p1.x = p2.x and p1.y < p2.y. Lexicographical ordering

can be extended to points of any dimensionality. A lexico-

graphically sorted point-set is denoted Ds.

A pattern P ⊂ R
k is also a point-set, and P is said to

occur in D if P ⊆ D. Shifting a pattern P in time and

transposing it can be expressed as translation by a vector

t, where t.x is the time shift and t.y is the transposition.

Translating a pattern P by a vector t is denoted P + t [11].

The points in patterns are assumed to be in ascending lexi-

cographical order in this paper.

The maximal translatable pattern, MTP, of a vector t in

a point-set D is defined by [11] as

MTP (t,D) = {d | d ∈ D ∧ d+ t ∈ D}. (1)

The MTP of t in D is formed by the set of all points ind

D that can be translated by t so that the translated points

are also included in D. Negating the translation t produces

the same MTP, that is, MTP (t,D) = MTP (−t,D) [11],

therefore only MTPs for translations that are greater than

the zero vector are considered. All difference vectors be-

tween points in a point-set referred to in this paper are also

assumed to be greater than the zero vector. All MTPs in a

point-set can be computed with the SIA algorithm [11].

There are at most n(n− 1)/2 MTPs in a point-set with

n points. This occurs when differences between any pair

of points are distinct. Conversely, there are at least n − 1
MTPs in a point-set. The minimum number of MTPs oc-

curs in a point-set where all points are placed on a line

with a constant distance between adjacent points. These

extreme cases are unlikely to occur in point-sets represent-

ing music, however, they are useful for analysis of algo-

rithms that compute MTPs. A point-set with a minimum

number of MTPs is denoted by Dmin and a point-set with

a maximum number of MTPs is denoted by Dmax.

A pattern P may have multiple occurrences in a point-

set D. The set of all occurrences of P in D is represented

by the translational equivalence class (TEC) [11] of the

pattern. Two patterns A and B are considered translation-

ally equivalent if, and only if, there exists a translation t
such that A = B + t. Translational equivalence of A and

B is denoted by A ≡T B. The translational equivalence of

patterns can be compared using their vectorized represen-

tations [11]:

V EC(P ) = ⟨p2 − p1, p3 − p2, . . . , pl − pl−1⟩, (2)

where pi denotes the ith point of a lexicographically sorted

pattern P of length l. Two patterns are translationally

equivalent if and only if their vectorized representations

are equal [11]. The TEC of a pattern P in a point-set is the

set of all subsets that are translationally equivalent to P :

TEC(P,D) = {Q | Q ≡T P ∧Q ⊆ D}. (3)

The SIATEC algorithm can be used to compute the TECs

of all MTPs in a point-set [11]. The TEC of a pattern P
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can be represented by storing one occurrence of the pattern

and the translation vectors required to produce all other

occurrences of P [11].

4. THE SIATEC-C ALGORITHM

The SIATEC-C algorithm computes TECs of patterns in

a point-set D, such that, the IOI between adjacent points

in a pattern is at most a given threshold δ. SIATEC-C

also avoids producing small patterns when the points cov-

ered by the pattern are already covered by a larger discov-

ered pattern. SIATEC-C thus avoids producing patterns

with isolated members while reducing the running time

and memory footprint. This approach aims at similar re-

sults as compactness trawling in [19]. Cutting patterns at

large IOI gaps has also been suggested in [29].

The outline of SIATEC-C is described in algorithm 1.

The pseudocode aims at a concise presentation of the al-

gorithm. A more thorough pseudocode description and a

reference implementation of the algorithm that covers all

details is also made available 1 . The algorithm takes as

its inputs a point-set D and the IOI thershold δ. The first

components of the points are assumed to represent to onset

times of note events. The algorithm outputs the discovered

patterns and all of their occurrences represented as TECs.

The algorithm begins by sorting the input point-set in

ascending lexicographical order to produce the point-set

Ds. The variables T and W are used for tracking a sliding

window for each point in Ds in the onset dimension. The

sliding windows are used in computing MTPs in order to

restrict the number of MTPs that need to be kept in mem-

ory simultaneously. The array T keeps track of the index

from where to continue computation on each iteration, and

the array W keeps track of the upper bounds of the win-

dows. The indexing in the pseudocode starts at 1 and array

access is denoted by brackets. For T the value at index i
stores the index in Ds for where the next sliding window

starts. The value at index i of W stores the upper bound

of the sliding window for the ith point of Ds. The indices

in T are initialized to the range from 1 to n (line 4) and

on line 5 the upper bounds are initialized for each point

p ∈ Ds to be p.x+ δ. The values in the array C keep track

of the size of the largest pattern occurrence that covers the

corresponding point in Ds.

The difference index structure I is computed by the

COMPUTEDIFFINDEX function. Difference vectors be-

tween all pairs of points, pi and pj , for which the IOI be-

tween the points does not exceed the theshold δ, are com-

puted. The differences along with the index-pairs ⟨i, j⟩
are stored in the intermediate array I ′. The array is sorted

in ascending lexicographical order by the difference vec-

tors and indices. The sorted array is partitioned by the

difference vectors, so that an array of entries of the form

⟨v, [⟨s1, t1⟩, . . . , ⟨si, ti⟩]⟩ is created. Each entry contains a

difference vector v and the corresponding source and tar-

get indices. The source indices si are the indices of points

in Ds that can be translated by v within Ds, and the corre-

1 https://github.com/otsob/siatec-c-code

Algorithm 1 SIATEC-C Algorithm

1: function SIATEC-C(D, δ)

2: Ds ← SORTLex(D)
3: n← |Ds|
4: T ← [1, 2, . . . , n]
5: W ← INITWINDOWBOUNDS(Ds, δ)
6: C ← [0, 0, . . . 0] of n zeros

7: I ← COMPUTEDIFFINDEX(Ds, δ)
8: while T [1] ≤ n do

9: M ← COMPUTEMTPS(Ds, T,W )
10: M ′ ← CUTANDSORT(M, δ)
11: for P ∈M ′ do

12: if IMPROVESCOVER(P,C) then

13: FINDTRANSLATORS(P, I,Ds, C)
14: OUTPUTTEC

sponding target indices are of the points that are produced

by translating the point at the source index by v. The index

structure I is sorted in ascending order of difference vec-

tors and all source and target indices for an entry are also

in ascending order.

In the main loop of the SIATEC-C algorithm (lines 8±

14 of 1), MTPs are computed for translation vectors within

the sliding windows by the COMPUTEMTPS function. The

MTPs are computed by first computing all translations be-

tween pairs of points where the target point is within the

sliding window of the source point. The indices of the

source points are stored in pairs with the translations. The

array thus produced is sorted in ascending lexicographical

order and partitioned by the translation vectors. The func-

tion is otherwise equal to the SIA algorithm [11], except

that the difference vectors are limited by the sliding win-

dows defined by the arrays T and W , and the indices of

the MTP and its translated occurrence are also stored. The

sliding windows are used to avoid keeping all O(n2) dif-

ferences in memory at the same time. On each iteration

the indices in T are updated to the point just outside the

current window and then the sliding window upper bounds

in W are incremented by δ.

The produced MTPs can have gaps in them that exceed

the threshold δ. Thus the MTPs are cut on line 10 to pro-

duce the set of patterns M ′, where the IOI between no adja-

cent patterns points exceeds δ. The patterns are also sorted

in descending order of size to ensure that larger patterns

are handled first. The function IMPROVESCOVER checks

if the pattern, or its translated version, is larger than any of

the patterns that cover the same points. A pattern is con-

sidered to improve the cover only if it improves the cover

value of at least one point. This step reduces the number of

small and duplicate patterns that would be otherwise out-

put by the algorithm. Small patterns may be output by the

algorithm even if a larger pattern covering the same points

is discovered. This occurs in the case that the small pat-

tern is found on an earlier iteration of the main loop (lines

8±14).
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4.1 Finding translators

Finding the translators of a pattern P is achieved by

traversing the index-pairs stored in I using the vectors of

the vectorized representation V EC(P ). This is equivalent

to finding translationally equivalent prefixes of P and ex-

tending the prefixes until they are equal in length to P .

Algorithm 2 SIATEC-C: Find translators and update cover

1: function FINDTRANSLATORS(P, I,Ds, C)

2: V ← V EC(P )
3: v ← V [1]
4: A← { t | ⟨s, t⟩ ∈ FINDINDICES(v, I) }
5: for i ∈ [2, . . . , |V |] do

6: v ← V [i]
7: A′ ← FINDINDICES(v, I)
8: A← { t | ⟨s, t⟩ ∈ A′ ∧ s ∈ A }

9: l← P [|P |]
10: τ ← { Ds[i]− l | i ∈ A }
11: C ← UPDATECOVER(P,A,C, I)
12: return τ

Figure 1 illustrates the process of finding the translators

of a pattern P , V EC(P ) = [v, u] with a very minimal

point-set example. The crosses and points form two three-

point patterns that are translationally equivalent. First bi-

nary search is used to find the index pairs for v from I , re-

turning the index pairs [⟨1, 2⟩, ⟨4, 5⟩]. The second elements

of these pairs are the indices of points that can be translated

with u to continue translationally equivalent prefixes of P .

On the next iteration the index-pairs associated with u are

retrieved producing the index-pairs [⟨2, 3⟩, ⟨5, 6⟩]. The tar-

get indices 2 and 5 of the vector v are matched with the

source indices of u to find that the translationally equiva-

lent prefixes can be extended with the points at indices 3
and 6 to find the last points of translationally equivalent

occurrences of P . The translators can be computed sim-

ply as the difference between the last points of the found

occurrenc es and the last point of P .

4.2 Time and space complexity

The following theorems present the worst case time and

space complexity of SIATEC-C.

Theorem 4.1. Let D be a 2-dimensional point-set with n
points. Let m be the largest number of points in any span

of length δ in the onset dimension and let h be the number

of points in the largest MTP in D. Then the worst case time

complexity of SIATEC-C is O(hn2 log nm).

Proof. Computing the difference index I requires comput-

ing O(nm) difference vectors, sorting them, and partition-

ing. Thus COMPUTEDIFFINDEX runs in O(nm log nm)
time.

The number of iterations the main loop on lines 8±14 of

algorithm 1 executes is approximately n
δ
= O(n). Com-

puting the MTPs requires also computing O(nm) differ-

ence vectors, sorting and partitioning them into MTPs,

and then sorting the MTPs by size, thus running in

(a) Step 1: Prefix of length 2

(b) Step 2: Prefix of length 3

Figure 1: FINDTRANSLATORS example

O(nm log nm) time. However, the total amount of compu-

tation required to compute MTPs in the loop performs the

same number of difference vector computations and com-

parisons as computing all MTPs and sorting them by size,

thus the total amount of work needed for MTP computa-

tion during the execution of the algorithm is O(n2 log n)
just as in SIA [11].

For a pattern P , the size of its vectorized represenation

is |P | − 1. The FINDTRANSLATORS function is thus run

on O(n2) difference vectors in total. For each difference

vector, the loop finds the index pairs from I in O(log nm)
time using binary search and computes the intersection of

A with the source indices in A′. The number of index pairs

that can be found for a difference vector v in I is equal

to the size of the largest MTP in D, denoted by h. Thus

computing the intersection of sorted arrays is linear in h,

resulting in time complexity of O(h log nm) for a single

difference vector in P⃗ . Overall, finding all translators for

all produced patterns has a worst case time complexity of

O(hn2 log nm).

The overall worst case time complexity of the algorithm

is thus dominated by computing the translators, resulting in

a worst case time complexity of O(hn2 log nm).
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Theorem 4.2. Let D be a 2-dimensional point-set with n
points, and let m be the largest number of points in any

span of length δ in the onset dimension. Then the worst

case space complexity of SIATEC-C is O(nm).

Proof. Computing the difference index I requires storing

O(nm) difference vectors and corresponding index pairs,

and after partitioning the number of difference vectors and

index pairs does not increase. Therefore I takes O(nm)
space.

On each iteration of the main loop on lines 8±14 of al-

gorithm 1 the MTP computation requires keeping O(nm)
difference vectors in memory.

In the FINDTRANSLATORS function the number of in-

dex pairs contained in A or A′ is at most the equal to the

size of the largest MTP in D. Therefore the space com-

plexity of FINDTRANSLATORS is O(n).
The space complexity of SIATEC-C is dominated by I

and the MTP computation, therefore the worst case space

complexity is O(nm).

5. RESULTS

This section contains the computational performance re-

sults of the SIATEC-C algorithm and its evaluation on the

JKU-PDD dataset.

5.1 Computational Performance

The running time and memory usage of the SIA, SIAR

(r = 1), SIATEC, and SIATEC-C algorithms was mea-

sured on two types of point-sets: Dmin and random pat-

terns. The point-set sizes ranged from 1000 to 10000 in

increments of 1000. The Dmin dataset was chosen as it

produces the worst-case running time of SIATEC-C and

can thus provide an estimate of the upper bound of run-

ning time and memory usage. Random patterns were used

instead of concatenating short pieces of music together to

control the sizes of MTPs in the benchmark data.

The algorithms were implemented using the Rust 2 pro-

gramming language. The measurements were performed

on a machine running Ubuntu 20.04 with an Intel i7-

processor and 16GB of memory. The IOI threshold pa-

rameter δ of SIATEC-C was set to a 50.0 for the artificial

point-sets, for music point-sets δ = 4 was used throughout,

corresponding to one measure in 4

4
time.

The measurements for running times are plotted in fig-

ure 2 and the maximum heap usage measurements are plot-

ted in figure 3. Log-scale is used on the y-axis as the mea-

surements vary greatly in the range of values. The most

significant running time improvements SIATEC-C can pro-

vide compared to SIATEC can be seen in the plot for the

running time on the random pattern point-sets. Even with

the largest point-sets, the running time of SIATEC-C is

22.2s, while the running time of SIATEC exceeds 2500s.

On random pattern point-sets SIAR is the fastest algorithm.

In the case of the Dmin point-sets the running time of

SIATEC and SIATEC-C behaves relatively similarly. With

2 https://www.rust-lang.org

SIAR the Dmin produces worst-case performance lead-

ing the performance of SIAR to be comparable to that of

SIA. This is explained by the worst-case time complexity

of SIAR, which on a k-dimensional point-set of size n is

O(kn3) [30].

The memory usage was measured using the Heaptrack

software 3 that only measures heap memory. With the

largest random patterns point-set SIATEC-C uses only

26.08MB and with the largest Dmin point-set 78.20MB.

On the random patterns point-sets SIAR runs with the

smallest memory footprint. However, the Dmin point-

sets illustrates the quadratic space complexity of SIAR

[30], with the memory footprint of SIAR exceeding that

of SIATEC-C. Thus replacing SIA with SIAR in SIATEC

will not guarantee a smaller memory footprint than can be

obtained with SIATEC-C.

SIAR can be a very performant algorithm on many

point-sets, however, its performance varies greatly depend-

ing on the size of the largest MTPs in the input point-set.

In order to investigate the impact of the worst-case time

and space complexities between SIATEC-C and SIAR,

both algorithms were run on a point-set representation 4

of Beethoven’s 9th symphony (n = 107, 355). SIATEC-C

(δ = 4) ran in approximately 28 minutes with peak heap

usage of 1.97GB while SIAR (r = 1) ran in approxi-

mately 1 hour 7 minutes with peak heap usage 5.64GB.

While SIAR can be the most performant algorithm on

small point-sets, due to its worst-case time and space com-

plexity there is no guarantee that it will be the most perfor-

mant on large point-sets.

5.2 Evalution on JKU-PDD

The accuracy of the SIATEC-C algorithm was evaluated

on the JKU-PDD data set [31]. A version of SIATEC-

C without any post-processing was evaluated to investi-

gate whether it is capable of achieving establishment pre-

cision and recall comparable to other point-set algorithms

that have been shown to benefit from post-processing, e.g.,

compactness trawling [26, 28].

The COSIATEC and SIATECCompress compression

algorithms [22] produce a compressed representation

of the input point-set by selecting TECs produced by

SIATEC. The algorithms COSIATEC-C and SIATEC-

CCompress are otherwise equal to COSIATEC and SIATE-

CCompress except they use SIATEC-C instead of SIATEC

for producing TECs.

Table 1 displays the mean values of the MIREX met-

rics over the monophonic and polyphonic corpus of JKU-

PDD. Compared to SIATEC and SIAR, SIATEC-C pro-

duces fewer patterns and achieves slighlty improved estab-

lishment precision and recall.

6. DISCUSSION AND CONCLUSION

In this paper we have presented a novel algorithm SIATEC-

C for repeated pattern discovery in symbolic polyphonic

3 https://github.com/KDE/heaptrack
4 Converted from https://musescore.com/openscore/

scores/5733014.
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Algorithm Corpus Npoints Npatterns Ngt Pest Rest F1est P3L R3L F13L Pocc(c = 0.75) Rocc(c = 0.75) F1occ(c = 0.75) Pocc(c = 0.5) Rocc(c = 0.5) F1occ(c = 0.5)

SIATEC monophonic 677.2 30014.8 6.2 0.128 0.679 0.208 0.072 0.613 0.125 0.681 0.569 0.617 0.459 0.561 0.503
SIATEC-C (δ = 4) monophonic 677.2 970.0 6.2 0.189 0.890 0.308 0.131 0.852 0.227 0.842 0.854 0.844 0.558 0.824 0.649

SIAR (r = 1) monophonic 677.2 5365.0 6.2 0.148 0.679 0.236 0.091 0.505 0.149 0.685 0.422 0.509 0.496 0.391 0.424
COSIATEC monophonic 677.2 15.2 6.2 0.136 0.234 0.169 0.085 0.199 0.117 0.165 0.165 0.165 0.256 0.192 0.219
SIATECCompress monophonic 677.2 10.6 6.2 0.124 0.116 0.114 0.068 0.091 0.075 0.000 0.000 0.000 0.000 0.000 0.000
COSIATEC-C monophonic 677.2 28.8 6.2 0.090 0.214 0.124 0.088 0.217 0.122 0.000 0.000 0.000 0.120 0.038 0.058
SIATEC-CCompress monophonic 677.2 21.4 6.2 0.087 0.148 0.109 0.068 0.130 0.088 0.200 0.110 0.142 0.200 0.110 0.142

SIATEC polyphonic 1289.0 59081.8 5.4 0.105 0.690 0.178 0.066 0.595 0.117 0.677 0.543 0.593 0.499 0.530 0.501
SIATEC-C (δ = 4) polyphonic 1289.0 977.6 5.4 0.131 0.775 0.217 0.097 0.675 0.164 0.868 0.708 0.759 0.570 0.645 0.577

SIAR (r = 1) polyphonic 1289.0 12721.4 5.4 0.116 0.635 0.195 0.089 0.483 0.147 0.683 0.476 0.544 0.588 0.419 0.477
COSIATEC polyphonic 1289.0 19.6 5.4 0.091 0.196 0.122 0.056 0.172 0.083 0.157 0.157 0.157 0.290 0.224 0.253
SIATECCompress polyphonic 1289.0 15.8 5.4 0.103 0.121 0.108 0.059 0.092 0.069 0.000 0.000 0.000 0.000 0.000 0.000
COSIATEC-C polyphonic 1289.0 41.2 5.4 0.070 0.161 0.095 0.058 0.143 0.081 0.000 0.000 0.000 0.050 0.019 0.027
SIATEC-CCompress polyphonic 1289.0 24.6 5.4 0.093 0.194 0.122 0.077 0.171 0.102 0.170 0.170 0.170 0.296 0.206 0.226

Table 1: Mean MIREX metrics on JKU-PDD (highest metric values in bold)

Figure 2: Running times

music. The algorithm is based on previous research on re-

peated pattern discovery in polyphonic music using point-

set representations of music [11].

The SIATEC-C algorithm can provide significant run-

ning time improvements over SIATEC in discovering pat-

terns and their occurrences when the input consists of pat-

terns that vary in size. In terms of worst-case perfor-

mance, SIATEC-C does not provide improvements over

SIATEC in running time. The most significant improve-

ment SIATEC-C can provide in terms of computational ef-

ficiency is its small memory footprint, in which SIATEC-

C can outperform SIAR. By keeping the memory usage

small, repeated pattern discovery based on point-set repre-

sentations can be applied to much longer pieces of music

than previously.

The simple heuristic of cutting patterns at large IOI gaps

Figure 3: Maximum heap usages

in SIATEC-C was found to perform at least as well as the

MTP-TEC computation performed by SIATEC in terms

of precision and recall. Using SIATEC-C as the TEC al-

gorithm for the compression algorithms COSIATEC and

SIATECCompress did not improve their precision or re-

call. A different approach to filtering and refining the pat-

terns produced by SIATEC-C is thus needed.

The version of SIATEC-C presented in this paper uses

the size of patterns as a means of prefiltering. The cover

array approach can also be used with other measures that

can be computed for a point-set pattern, such as compact-

ness [11, 22]. Evaluating the musical importance of a pat-

tern is a challenging problem. As SIATEC-C also finds all

occurrences of the patterns it discovers, the algorithm can

be extended with various pattern filtering methods.
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