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ABSTRACT

This paper proposes a model that generates a drum track

in the audio domain to play along to a user-provided drum-

free recording. Specifically, using paired data of drumless

tracks and the corresponding human-made drum tracks,

we train a Transformer model to improvise the drum part

of an unseen drumless recording. We combine two ap-

proaches to encode the input audio. First, we train a vector-

quantized variational autoencoder (VQ-VAE) to represent

the input audio with discrete codes, which can then be

readily used in a Transformer. Second, using an audio-

domain beat tracking model, we compute beat-related fea-

tures of the input audio and use them as embeddings in

the Transformer. Instead of generating the drum track di-

rectly as waveforms, we use a separate VQ-VAE to encode

the mel-spectrogram of a drum track into another set of

discrete codes, and train the Transformer to predict the se-

quence of drum-related discrete codes. The output codes

are then converted to a mel-spectrogram with a decoder,

and then to the waveform with a vocoder. We report both

objective and subjective evaluations of variants of the pro-

posed model, demonstrating that the model with beat in-

formation generates drum accompaniment that is rhythmi-

cally and stylistically consistent with the input audio.

1. INTRODUCTION

Deep generative models for musical audio generation have

witnessed great progress in recent years [1±8]. While mod-

els for generating symbolic music such as MIDI [9±12] or

musical scores [13] focus primarily on the composition of

musical content, an audio-domain music generation model

deals with sounds and thereby has extra complexities re-

lated to timbre and audio quality. For example, while a

model for generating symbolic guitar tabs can simply con-

sider a guitar tab as a sequence of notes [11], a model that

generates audio recordings of guitar needs to determine not

only the underlying sequence of notes but also the way to

render (synthesize) the notes into sounds. Due to the com-

plexities involved, research on deep generative models for
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musical audio begins with the simpler task of synthesizing

individual musical notes [1±3], dispensing the need to con-

sider the composition of notes. Follow-up research [4±6]

extends the capability to generating musical passages of

a single instrument. The Jukebox model [7] proposed by

OpenAI greatly advances the state-of-the-art by being able

to, quoting their sentence, ªgenerate high-fidelity and di-

verse songs with coherence up to multiple minutes.º Being

trained on a massive collection of audio recordings with

the corresponding lyrics but not the symbolic transcrip-

tions of music, Jukebox generates multi-instrument music

as raw waveforms directly without an explicit model of the

underlying sequence of notes.

This work aims to improve upon Jukebox in two as-

pects. First, the backbone of Jukebox is a hundred-layer

Transformer [14, 15] with billions of parameters that are

trained with 1.2 million songs on hundreds of NVIDIA

V100 GPUs for weeks at OpenAI, which is hard to repro-

duce elsewhere. Inspired by a recent Jukebox-like model

for singing voice generation called KaraSinger [8], we in-

stead build a light-weight model with only 25 million pa-

rameters by working on Mel-spectrograms instead of raw

waveforms. Our model is trained with only 457 recordings

on a single GeForce GTX 1080 Ti GPU for 2 days.

Second, and more importantly, instead of a fully au-

tonomous model that makes a song from scratch with var-

ious instruments, we aim to build a model that can work

cooperatively with human, allowing the human partner to

come up with the musical audio of some instruments as in-

put to the model, and generating in return the musical audio

of some other instruments to accompany and to comple-

ment the user input, completing the song together. Such a

model can potentially contribute to human-AI co-creation

in songwriting [16] and enable new applications.

In technical terms, our work enhances the controllabil-

ity of the model by allowing its generation to be steered

on a user-provided audio track. It can be viewed as an in-

teresting sequence-to-sequence problem where the model

creates a ªtarget sequenceº of music that is to be played

along to the input ªsource sequence.º Besides requirement

on audio quality, the coordination between the source and

target sequences in terms of musical aspects such as style,

rhythm, and harmony is also of central importance.

We note that, for controllability and the intelligibility

of the generated singing, both Jukebox [7] and KaraSinger

[8] have a lyrics encoder that allows their generation to be

steered on textual lyrics. While being technically similar,
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our accompaniment generation task (ªaudio-to-audioº) is

different from the lyric-conditioned generation task (ªtext-

to-audioº) in that the latter does not need to deal with the

coordination between two audio recordings.

Specifically, we consider a drum accompaniment gener-

ation problem in our implementation, using a ªdrumlessº

recording as the input and generating as the output a drum

track that involves the use of an entire drum kit. We use

this as an example task to investigate the audio-domain ac-

companiment generation problem out of the following rea-

sons. First, datasets used in musical source separation [17]

usually consist of an isolated drum stem along with stems

corresponding to other instruments. We can therefore eas-

ily merge the other stems to create paired data of drum-

less tracks and drum tracks as training data of our model.

(In musical terms, drumless, or ªMinus Drumsº songs are

recordings where the drum part has been taken out, which

corresponds nicely to our scenario.) Second, we suppose a

drum accompaniment generation model can easily find ap-

plications in songwriting [18], as it allows a user (who may

not be familiar with drum playing or beat making) to focus

on the other non-drum tracks. Third, audio-domain drum

accompaniment generation poses interesting challenges as

the model needs to determine not only the drum patterns

but also the drum sounds that are supposed to be, respec-

tively, rhythmically and stylistically consistent with the in-

put. Moreover, the generated drum track is expected to

follow a steady tempo, which is a basic requirement for a

human drummer. We call our model the ªJukeDrummer.º

As depicted in Figure 1, the proposed model architec-

ture contains an ªaudio encoderº (instead of the original

text encoder [7, 8]) named the drumless VQ encoder that

takes a drum-free audio as input. Besides, we experiment

with different ways to capitalize an audio-domain beat and

downbeat tracking model proposed recently [19] in a novel

beat-aware module that extracts beat-related information

from the input audio, so that the language model for gener-

ation (i.e., the Transformer) is better informed of the rhyth-

mic properties of the input. The specific model [19] was

trained on drumless recordings as well, befitting our task.

We extract features from different levels, including low-

level tracker embeddings, mid-level activation peaks, and

high-level beat/downbeat positions, and investigate which

one benefits the generation model the most.

Our contribution is four-fold. First, to our best knowl-

edge, this work represents the first attempt to drum ac-

companiment generation of a full drum kit given drum-free

mixed audio. Second, we develop a light-weight audio-to-

audio Jukebox variant that takes an input audio of up to 24

seconds as conditioning and generates accompanying mu-

sic in the domain of Mel-spectrograms (Section 3). Third,

we experiment with different beat-related conditions in the

context of audio generation (Section 4). Finally, we report

objective and subjective evaluations demonstrating the ef-

fectiveness of the proposed model (Sections 6 & 7). 1 .

1 We share our code and checkpoint at: https://github.com/
legoodmanner/jukedrummer. Moreover, we provide audio ex-
amples at the following demo page: https://legoodmanner.

github.io/jukedrummer-demo/

Figure 1: Diagram of the proposed JukeDrummer model

for the inference stage. The training stage involves learn-

ing additional Drum VQ Encoder and Drumless VQ De-

coder (see Figure 2) that are not used at inference time.

2. BACKGROUND

2.1 Related Work on Drum Generation

Conditional drum accompaniment generation has been

studied in the literature, but only in the symbolic domain

[20, 21], to the best of our knowledge. Dahale et al. [20]

used a Transformer encoder to generate an accompany-

ing symbolic drum pattern of 12 bars given a four-track,

melodic MIDI passage. Makris et al. [21] adopted instead

a sequence-to-sequence architecture with a bi-directional

long short-term memory (BLSTM) encoder extracting in-

formation from the melodic input and a Transformer de-

coder generating the drum track for up to 16 bars in MIDI

format. While symbolic-domain music generation has its

own challenges, it differs greatly from the audio-domain

counterpart studied in this paper, for it is not about gener-

ating sounds that can be readily listened to by human.

Related tasks that have been attempted in the litera-

ture with deep learning include symbolic-domain gener-

ation of a monophonic drum track (i.e., kick drum only)

of multiple bars [4], symbolic-domain drum pattern gener-

ation [22±25], symbolic-domain drum track generation as

part of a multi-track MIDI [26±29], audio-domain one-shot

drum hit generation [30±34], audio-domain generation of

drum sounds of an entire drum kit of a single bar [35], and

audio-domain drum loop generation [36]. Jukebox [7] gen-

erates a mixture of sounds that include drums, but not an

isolated drum track. By design, Jukebox does not take any

input audio as a condition and generate accompaniments.

2.2 The Original Jukebox model

The main architecture of Jukebox [7] is composed of two

components: a multi-scale vector-quantized variational au-

toencoder (VQ-VAE) [37±41] and an autoregressive Trans-

former decoder [14, 15]. The VQ-VAE is for converting a

continuous-valued raw audio waveform into a sequence of

so-called discrete VQ codes, while the Transformer estab-

lishes a language model (LM) of the VQ codes capable of

generating new code sequences.
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Figure 2: We use separate VQ-VAEs for the drumless and

drum tracks, both operating on the Mel-spectrograms.

Specifically, VQ-VAE consists of an encoder and a de-

coder, referred to as the VQ-VAE encoder E and VQ-VAE

decoder D below, respectively. Given an audio waveform

x ∈ R
1×N , where N denotes the number of audio sam-

ples (e.g., N = 1,058,400 for a 24-second audio clip sam-

pled at 44.1 kHz), the VQ-VAE encoder would convert x

into a sequence of latent vectors {ht ∈ R
D, t = 1, ..., T},

where the sequence length T is proportional to N , and the

VQ-VAE decoder would have to reconstruct x from the

ªvector-quantizedº version of the latent vectors, denoting

as {h′

t ∈ R
D, t = 1, ..., T}, that is obtained by finding the

nearest prototype vector h′

t = ez of each ht in a codebook

of prototype vectors {ek ∈ R
D, k = 1, ...,K}, where K

is the size of the codebook. Each prototype vector can be

regarded as a cluster centroid in the latent space as a result

of K-means clustering. The VQVAE encoder/decoder and

the codebook are jointed learned by minimizing the recon-

struction loss ∥xt −D(h′

t)∥
2

2
, and the commitment loss of

the clustering ∥E(xt)−sg(ez)∥
2

2
, where xt denotes a slice

of x, sg(.) the stop-gradient operation, and ht = E(xt).
Once the VQ-VAE is trained, the x can be viewed as

a sequence of ªIDsº {zt ∈ Z1:K , t = 1, ..., T}, each cor-

responding to the index of the element of the codebook

that is used to represent each slice of x. The Transformer

can then be trained on such sequences of IDs to learn the

underlying language, or ªcomposition rules,º of the audio

codes. Once trained, the transformer can be used to gener-

ate a novel sequence of codes, which can then be converted

into an audio waveform by the VQVAE decoder.

As the waveforms are extremely long, Jukebox actually

uses a ªmulti-scaleº VQ-VAE that converts a waveform

into three levels of codes, and accordingly three Trans-

formers for building the LM at each level [7]. KaraSinger

works on Mel-spectrograms but also uses multi-scale VQ-

VAE [8]. We simplify their architecture by working on

Mel-spectrograms with only one level of codes instead of

multiple levels, as introduced below.

3. PROPOSED METHODS

In our task, we are given pairs of audio waveforms, namely

a drumless stem x
m and a drum stem x

d. Our goal is to

train a model that can generate xd
∗

given an unseen x
m
∗

from

Figure 3: Details of our Transformer encoder/decoder.

the test set. To achieve so, we propose several extensions

of the Jukebox model. While we focus on drum accompa-

niment generation only, the same methodology may apply

equally well to other conditional generation tasks.

Two VQ-VAEs. As illustrated in Figure 2, we build

separate VQ-VAEs for x
m and x

d using drumless stems

and drum stems respectively. Once trained, the drumless

VQ-VAE encoder and the drum VQ-VAE encoder would

convert xm and x
d into {zmt ∈ Z1:Km , t = 1, ..., T} and

{zdt ∈ Z1:Kd , t = 1, ..., T} separately. Assuming that the

drumless tracks are more diverse, we suggest use a larger

codebook size for the drumless sounds codebook than the

drum sounds codebook, namely Km ≥ Kd.

Mel VQ-VAE & Vocoder. To reduce computational

cost, we build VQ-VAEs that take Mel-spectrograms as

the input and target output. Specifically, we use the con-

volutional blocks of UNAGAN [5] to build a pair of VQ-

VAE encoder and VQ-VAE decoder that has symmetric ar-

chitectures (one downsampling and the other upsampling).

We omit the details of UNAGAN due to space limit. Our

Transformer accordingly learns the LM for codes of the

Mel-spectrograms. Once a novel sequence of (drum) codes

is generated by the Transformer, we use our (drum) VQ-

VAE decoder to convert the codes into a Mel-spectrogram,

and then use a neural vocoder [42] to convert the Mel-

spectrogram into the corresponding waveform. While the

latent vector ht (and accordingly zt) corresponds to a slice

of waveform in the original Jukebox, here the latent vectors

h
m
t and h

d
t (and zmt , zdt ) both correspond to a fixed number

of L frames of the short-time Fourier Transform (STFT)

while computing the Mel-spectrograms.

Seq2seq Transformer. While the Jukebox model uses

a Transformer decoder to model the sequences {zt, t =
1, ..., T} corresponding to mixtures of sounds, in our case

we need a dedicated Transformer encoder to take the se-
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Figure 4: Details of the proposed beat-aware module that extracts beat condition embeddings from the drumless audio.

quence {zmt , t = 1, ..., T} corresponding to a drumless

audio as the input, and a Transformer decoder to gen-

erate the sequence {zdt , t = 1, ..., T} corresponding to

the accompanying drum audio as the output, leading to

a sequence-to-sequence (seq2seq) architecture. Following

Jukebox, we use the attention mechanism of the Scalable

Transformer [15] in our Transformer encoder/decoder. As

depicted in Figure 3, to determine its output zd
i

at each

i, our Transformer decoder uses factorized ªin-chunk,º

ªcross-chunkº and ªprevious-chunkº attention layers to at-

tend to the drum codes it generates previously, namely

zd
<i

= {zdt , t = 1, ..., i − 1}, to maintain the coherence of

its output. A ªchunkº here is a slice of the corresponding

sequence. Moreover, the Transformer decoder uses ªen-

coder/decoder attentionº to attend to the final layer of the

Transformer encoder to get contextual information from

the drumless code sequence {zmt , t = 1, ..., T}. To better

synchronize the input and output, position embeddings are

used. We refer readers to [7, 15] for details.

Beat-Aware Module. Figure 3 also shows that we use a

novel ªbeat-aware moduleº (after the position embedding)

in both Transformer encoder and decoder. We note that the

code zmt is trained to provide essential information needed

to reconstruct the drumless audio x
m
t , so the information

carried by zt might be mixed, covering different musical

aspects including timbre, style, rhythm, etc. To supply the

Transformer with clear rhythm-related information of xm,

we might need such a dedicated beat-aware module.

As depicted in Figure 4, the beat-aware module consists

two sub-modules, the ªbeat information extractorº and the

ªbeat conditioner.º The former extracts beat-related infor-

mation per frame from x
m using an existing beat/downbeat

tracker [19], while the latter incorporates that beat-related

information for each t as a beat condition embedding c
m
t ∈

R
dmodel that has the same length dmodel as the token embed-

ding of the Transformers, and adds together the beat con-

dition embedding and token embedding per t to serve as

the input to the subsequent attention layers.

Despite that deep learning-based beat/downbeat track-

ers such as those proposed by Böck et al. [43±45] have

achieved excellent performance for mainstream pop, rock

or dance music, their performance and behaviors are in-

fluenced by the sound source composition (i.e., drum/non-

drum sounds) of their training data [19, 46]. Considering

that our input music is drumless, which is quite different

from the music that existing common beat/downbeat track-

ers [44, 45] are trained with and trained for, we use in our

beat information extractor the ªnon-drum trackerº devel-

oped by Chiu et al. [19] exclusively for drumless stems. In

Section 4, we describe three ways to extract different levels

of beat information feature from the non-drum tracker.

4. BEAT CONDITION EMBEDDING

As shown on the left of Figure 4, following the common

design [44], the beat/downbeat tracker [19] uses BLSTM

layers to get 50-dimensional ªtracker embeddingsº from

x
m, and then uses fully-connected (FC) layers to compute

3-dimensional ªactivation functionsº indicating the likeli-

hood of observing a beat, downbeat, or non-beat at each

frame. Finally, either a simple peak-picking or a hidden

Markov model (HMM)-based algorithm [44] can be used

to finalize the beat and downbeat time positions from the

activation functions. We accordingly investigate extracting

features from different stages of this processing pipeline.

Low-level (tracker) embeddings. We simply use the

high-dimensional tracker embeddings, resampling it tem-

porally, pooling them every L frames, and converting each

of them to the desired length dmodel with an FC.

High-level beat/downbeat positions. From the beat

and downbeat time positions estimated by HMM, a frame

can be labeled as either a beat, downbeat, or non-beat. We

learn three dmodel-dimensional embedding vectors corre-

sponding to each case, and represent every L frames with

one of the three vectors according to the frame labels.

Mid-level activation peaks. As the beat/downbeat po-

sitions are sparse over time, we consider a ªdenserº version

by simply picking the peak positions of the activation func-
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tions by scipy.signal.find_peaks [47] and simi-

larly learning embedding vectors that are assigned to the

frames according to whether a frame corresponds to a peak

or not. Such a peak might represent a musical onset.

5. EXPERIMENT SETUP

Multi-track datasets for research on musical source sep-

aration [17] usually host recordings that each consists of

an isolated drum stem along with stems corresponding to

other instruments. We can simply take the drum stem as

the target drum track, and the summation of the remaining

stems as the input drumless track. In our implementation,

we used the multi-track recordings from three datasets.

MUSDB18 [17] contains 150 recordings, each of which

has four stems corresponding to vocal, drums, bass, and

ªothers.º It is commonly used in source separation. Med-

leyDB [48] contains 196 multi-track recordings, each of

which includes a drum stem along with many other stems.

MixingSecret [49] has 257 multi-track recordings with var-

ious instruments, all including drums. We removed the 46

duplicate recordings between MUSDB18 and MedleyDB

and the 100 duplicate recordings between MUSDB18 and

MixingSerect, leading to 457 recordings to be used in our

work. We randomly split the recordings into 80%, 10%,

10% as the training set, validation set (for parameter tun-

ing), and testing set (for objective and subjective evalu-

ation) at the ªrecording-level,º ensuring that a recording

does not appear in different splits.

All the recordings are sampled at 44.1 kHz and the

stems are all monaural. Following Jukebox [7], we used

24-second audio clips in our work. We sliced each record-

ing (and accordingly the stems) to 23.8-second audio clips

with 50% temporal overlaps (as 220/44100 = 23.8), and

discarded the clips that do not contain any drum sounds.

We then computed the Mel-spectrograms of each clip with

PyTorch v1.7.1 with a Hann window of 1,024 samples for

STFT, a hop size of 256 samples and 80 Mel-filter banks.

To evaluate the performance of the proposed JukeDrum-

mer and validate the effectiveness of model components,

we adopted the following variants in our experiments. 2

• seq2seq+beat(low): given a drumless clip x
m,

we computed the drumless codes {zmt } and the low-

level beat/downbeat tracker embeddings {cmt } as the

model input, to predict the drum codes {zdt } that

eventually lead to the generated drum clip x
d, using

the proposed seq2seq Transformer.

• seq2seq+beat(mid): using the beat condition

embeddings computed from the mid-level activation

peaks (see Section 4) for {cmt } instead.

• seq2seq+beat(high): using the beat condi-

tion embeddings from the high-level beat/downbeat

positions as {cmt } instead.

2 A reviewer suggested that we should have compared our model with
other accompaniment generation models that operate in the symbolic do-
main such as [20] and [21], saying that we can use existing audio sam-
ples or drum synthesis models to render their output to audio. However,
the problem is that such a symbolic-domain accompaniment generation
model also requires its input to be a MIDI file rather than audio.

• seq2seq w/o beat: to study the usefulness of

the beat conditioning, we predicted {zdt } from {zmt },

not using any beat-related conditions at all.

• decoder+beat(low): to study the usefulness

of the drumless codes {zmt }, we used only the low-

level beat condition embeddings {cmt } as input to

predict {zdt }, via a Transformer decoder-only archi-

tecture (i.e., not seq2seq Transformer).

• decoder w/o beat: this is the baseline drum-

mer that ªplays its own,º generating {zdt } autore-

gressively via a Transformer decoder without taking

any information (neither {zmt } nor {cmt }) from the

drumless clip x
m it is supposed to play along to.

While the Mel-spectrogram for a clip in our case has

4,096 frames, the VQ-VAE encoder downsamples it to a

sequence of T = 1,024 latent vectors, namely each cor-

responding to L = 4 frames. For VQ-VAE, we set the

codebook size of drumless sounds Km = 1,024 and that of

drums Kd = 32 (so Km ≫ Kd), and the dimension of the

latent vectors D = 64. The VQ-VAE encoders/decoders

for both drumless and drums all have two layers. For those

models employing a seq2seq LM, the Transformer encoder

has 9 layers and the Transformer decoder has 20 layers. 3

At inference time, we used the drum VQ decoder to

convert the drum codes {zdt } to a Mel-spectrogram, which

is then turned into the waveform of the drum clip x
d by a

HiFi-GAN V1 vocoder [42]. We trained the vocoder from

scratch with audio of drum sounds from our dataset for 2.5

days, and then, inspired by [50,51], fine-tuned it on the re-

constructed Mel-spectrograms of the Drum VQ decoder.

6. OBJECTIVE EVALUATION

As audio-domain drum accompaniment generation is new,

we propose customized metrics. Specifically, we use the

ªdrum trackerº trained exclusively for drum stems by Chiu

et al. [19], which follows exactly the same pipeline as

the non-drum tracker (cf. Figure 4), to extract rhythmic

features at three different levels for the ground-truth and

generated drum sounds for the test split. We then com-

pare the rhythmic features of the ground-truth and the gen-

erated in such three levels, using the mean square error

for the low-level tracker embeddings (TrackEmb-MSE),

cross entropy for the mid-level activation functions (Act-

Entropy), and the F-measure for beat/downbeat estimation

(B/DB-F1). The last one, computed by mir_eval [52],

uses the beat positions of the ground-truth drums as the

reference and those of the generated drums as the esti-

mated beats. These metrics evaluates only the rhythmic

consistency between the generated drums and the drum-

less audio (using its human-made drum track as a proxy),

not other aspects such as stylistic consistency and audio

quality, which will be evaluated subjectively in Section 7.

3 We used Adam as our optimizer with a learning rate of 0.0003 for
both VQ-VAE and Transformer LM. We trained our LM with a batch
size of 16, input feature dimension dmodel = 512, two heads for multi-
head attention, and the chunk size for factorized attention being 16. For
those employing a decoder-only architecture, the number of layers of the
Transformer decoder reduces to 15 because 5 of the layers corresponding
to the ªencoder/decoder attentionº are removed.
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Model
Objective metrics Subjective MOS (∈ [1, 5])

TrackEmd-MSE↓ Act-Entropy↓ B/DB-F1↑ Rm/d Sm/d Qd Rd Od

seq2seq+beat(low) .068±.023 .928±.189 .340 3.27 3.44 3.39 3.37 3.20

seq2seq+beat(mid) .077±.022 .963±.200 .212 Ð Ð Ð Ð Ð

seq2seq+beat(high) .080±.024 .938±.160 .132 Ð Ð Ð Ð Ð

seq2seq w/o beat .081±.022 .968±.233 .110 1.78 2.34 2.95 2.58 2.05

decoder+beat(low) .068±.023 .931±.200 .339 3.05 3.34 3.33 3.07 3.17

decoder w/o beat .087±.025 .987±.240 .114 1.59 1.83 2.56 1.88 1.73

Real data (not vocoded) Ð Ð Ð 4.39 3.95 3.85 4.61 4.17

Table 1: Results of objective and subjective evaluation of variants of the proposed JukeDrummer model. The metrics

are (from left to right): beat/downbeat tracking embedding MSE, beat/downbeat activation entropy, beat/downbeat F1,

Rm/d (rhythmic consistency), Sm/d (stylistic consistency), Qd (audio quality), Rd (rhythmic stability), Od (overall). ↓ / ↑:

the lower/higher the better; best two results (among the six model variants) per column highlighted in bold.

Result shown in the middle of Table 1 clearly shows

that the models with low-level beat information achieve

lower MSE, cross entropy, and higher F1, suggesting the

usefulness of the low-level beat information for rhythmic

consistency. The mid-level and high-level ones seem less

effective (possibly because they are relatively monotonic),

so we did not evaluate them further in Section 7. The ob-

jective scores also suggest that the Transformer encoder

does not contribute much to rhythmic consistency.

7. SUBJECTIVE EVALUATION

With an online study, we solicited 22 anonymous volun-

teers to rate the result for 3 out of 15 random drumless

tracks (each 23.8 seconds) from the test split. Each time, a

volunteer listened to a drumless tracks (xm
∗
) first, and then

(in random orders) the mixture (i.e., xm
∗
+ x

d
∗
) containing

drum samples generated by four different models, plus the

real human-made one (to set a high anchor). The volun-

teer then rated them in the following aspects on a 5-point

Likert scale: rhythmic consistency between the drumless

input and generated drums; stylistic consistency concern-

ing the timbre and arrangement of the drumless input and

generated drums; audio quality and rhythmic stability

(whether the drummer follows a steady tempo) of the gen-

erated drum; and overall perceptual impression.

The mean opinion scores (MOS) in Table 1 show that

seq2seq+beat(low) consistently outperforms the

others, validating the effectiveness of using both the drum-

less codes and beat conditions. decoder+beat(low)

performs consistently the second best, outperforming the

two models without beat information significantly in three

aspects according to paired t-test (p-value< 0.05), val-

idating again the importance of the beat-aware module.

Complementing Section 6, the MOS result suggests that

the beat conditions seem more important than the drum-

less codes, though the best result is obtained with both.

Figure 5 further demonstrates that, given the same in-

put, our model can generate multiple accompaniments with

diversity in both beat and timbre. Diversity is an interest-

ing aspect that is hard to evaluate, but it is desirable as there

is no single golden drum accompaniment for a song. This

may also explain why the F1 scores in Table 1 seem low.

Figure 5: Two sets of three different generated samples by

the same model given the same beat condition embedding.

Verbal feedbacks from the subjects confirm that our best

model generates drum accompaniment that is rhythmically

and stylistically consistent with the input, especially for

band music or music with heavy use of bass. However,

the model still has limits. At times the model generates to-

tal silence, though it can be avoided by sampling the LM

again. The model may struggle to change its tempo going

through different sections of a song. Moreover, the gener-

ation might be out-of-sync with the input in the beginning

few seconds, until the model gets sufficient context. Please

visit the demo page for various examples.

8. CONCLUSION

We have presented JukeDrummer, a novel audio-to-audio

extension of OpenAI’s JukeBox model capable of adding

the drum part of a drumfree recording in the audio domain.

To our knowledge, this represents the first attempt to audio-

domain generation conditioned on drumless mixed audio.

With objective and subjective evaluations, we validated the

effectiveness of the customized VQ-VAE plus the seq2seq

Transformer design, and the proposed beat-aware module.

Among the beat conditions, we found that the low-level

embeddings work the best. Future work can be done to

further improve the language model (LM), and to extend

our work to other audio-to-audio generation tasks.
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