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ABSTRACT

Although audio to score alignment is a classic Mu-
sic Information Retrieval problem, it has not been defined
uniquely with the scope of musical scenarios representing
its core. The absence of a unified vision makes it diffi-
cult to pinpoint its state-of-the-art and determine directions
for improvement. To get past this bottleneck, it is neces-
sary to consolidate datasets and evaluation methodologies
to allow comprehensive benchmarking. In our review of
prior work, we demonstrate the extent of variation in prob-
lem scope, datasets, and evaluation practices across au-
dio to score alignment research. To circumvent the high
cost of creating large-scale datasets with various instru-
ments, styles, performance conditions, and musician profi-
ciency levels from scratch, the research community could
generate ground truth approximations from non-audio to
score alignment datasets which include a temporal map-
ping between a music score and its corresponding audio.
We show a methodology for adapting the Aligned Scores
and Performances dataset, created originally for beat track-
ing and music transcription. We filter the dataset semi-
automatically by applying a set of Dynamic Time Warp-
ing based Audio to Score Alignment methods using out-
of-the-box Chroma and Constant-Q Transform extraction
algorithms, suitable for the characteristics of the piano per-
formances of the dataset. We use the results to discuss the
limitations of the generated ground truths and data adapta-
tion method. While the adapted dataset does not provide
the necessary diversity for solving the initial problem, we
conclude with ideas for expansion, and identify future di-
rections for curating more comprehensive datasets through
data adaptation, or synthesis.

1. INTRODUCTION

Audio to Score Alignment (ASA) is a longstanding Music
Information Retrieval (MIR) problem which aims to syn-
chronize a musical score with its audio performance to map
between each instant in a recording and a position in the
score. When conducted in an online (real-time) fashion, it
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is often referred to as Score Following, in which the music
stream to be aligned (MIDI or audio) must be processed as
it is received. When conducted in an offline (non-realtime)
fashion, it is often referred to as simply ASA, in which the
music stream can be processed after it is fully received.
This allows the advantage of looking forward and back-
ward into the input stream [1] before returning the align-
ment result of each fragment.

Often, ASA problems are solved with methods previ-
ously used in audio to audio alignment problems, where
the task becomes aligning the performance audio to a syn-
thesized version of the music score [2±5]. In such methods,
the alignment is conducted by comparing the same features
computed from the synthesized score and the performance
audio. Nevertheless, alignment is sometimes performed
in the symbolic modality by first transcribing the audio
then aligning it with the MIDI score [6±8], and recently
alignments were conducted between audio and sheet music
images directly through devising intermediate representa-
tions allowing both modalities to be compared [9,10]. The
most prevalent approaches through which ASA has been
addressed are Dynamic Time Warping (DTW) [1, 2, 4, 7],
and Hidden Markov Models (HMM) [6,8,11±13], with the
former being a popular choice for alignments conducted
audio to audio.

ASA research usually begins by defining the scope
of the problem and accordingly proposing a system.
The characteristics of the target music (i.e. the instru-
ments, recording conditions, musician proficiency, and
performance conventions) affect the scope, so ideally, re-
searchers should find annotated data representative of such
music. Very often this is not possible, as the datasets avail-
able are small and do not cover a variety of musical sce-
narios. This complicates benchmarking and evaluation be-
cause as a result, researchers tend to vary in their choice
of data, which we believe hinders the movement of ASA
research beyond the typical use-cases. Researchers have
sometimes relied on synthetic data as a low-cost and prac-
tical way to generate relevant alignment data with proper-
ties not found in other datasets. This was done to curate
evaluation data [2, 10], to create ground truth for HMM
training [8], or to induce temporal mismatches and file cor-
ruptions [14].

In our review of prior research (Section 2), we cover
several variants of the family of ASA methods comprised
of audio representation plus DTW, thus showing how each
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alignment scenario is often addressed in an isolated man-
ner. We believe it would be useful to unify such scenar-
ios under one vision, allowing us to expand the defini-
tion of ASA and set clear benchmarking and evaluation
strategies representing each of the scenarios formerly ad-
dressed in isolation. This would enable researchers to com-
pare between systems and identify directions for improve-
ment, but cannot be achieved without enough varied data
to support the development and evaluation of such ASA
systems. Since creating datasets is costly, especially at a
larger scale, we believe that first we must exhaust the abil-
ity to leverage datasets created for tasks other than ASA
whenever possible and then synthesize more data as a com-
pliment. This paper demonstrates an example by reusing
the Aligned Scores and Performances (ASAP) dataset [15]
to generate approximated ground truths for ASA, since it
provides 520 classical solo piano performances (audio and
MIDI) beat aligned with their symbolic MIDI scores. We
thoroughly describe this process in Section 3. In Section
4, we describe the methodology for validating the gener-
ated data and discuss their potential problems and aptness
for ASA, which involves the application of several DTW-
based systems to conduct offline ASA (which, from now
onward, we refer to as just ASA). In Section 5, we explain
how we use the obtained results to filter data for problems
and highlight some limitations of our methods. Although
the adapted dataset alone is not a solution to the aforemen-
tioned bottleneck, especially since it does not possess the
necessary diversity to cover a variety of ASA scenarios, we
conclude in Section 6 with ideas for expansion, to support
the creation of a unified benchmark and the development
of new ideas for ASA research.

2. RELATED WORK

Although this paper concerns ASA, contextualizing its de-
velopments requires references to Score Following, which
has received more attention over the years. Dixon [16] and
Arzt et al. [17] use online versions of DTW suitable for
the real-time nature of Score Following. In later years we
find the work of Duan et al. [11] and Nakamura et al. [8],
both of which propose HMM systems for the same task.
Henkel [27] et al. introduce a different paradigm for Score
Following, where audio is aligned to score images end-to-
end using reinforcement learning. For ASA, recent DTW-
based approaches include [2±4, 7]. Table 1 summarizes
the datasets used in some of the works above, highlight-
ing the variation among researchers in their choices. The
same datasets can be used for the training and evaluation
of Score Following and ASA. Although currently inac-
tive, there was a Music Information Retrieval Exchange
(MIREX) 1 entry for Score Following which can be used
for benchmarking, and it includes several of the datasets
shown in Table 1. But the MIREX datasets are small and
do not represent a wide variety of scenarios. Moreover,
there is no MIREX challenge for ASA.

1 https://www.music-ir.org/mirex/wiki/2021:

Real-time_Audio_to_Score_Alignment_(a.k.a_Score_

Following)

2.1 DTW-based Methods

Given two time series U = u1, ..., un and V = v1, ..., vm,
the goal of DTW is to find a minimum cost path W =
w1, ..., wn where every element in W is an ordered pair
(i, j) indicating that the elements ui and vj have been
aligned. Over the years, researchers have introduced dif-
ferent variants of DTW depending on the specifics of their
target problem. For example, FastDTW [28] is a popular,
more efficient variant of the algorithm. Moreover, there
is the Memory Restricted Multi-Scale DTW (mrmsDTW)
[29], which caps the memory requirements of the DTW
algorithms for large audio files, for which a python imple-
mentation was recently made available in [30]. To the best
of our knowledge, there has not been a thorough compar-
ison of all the DTW methods for ASA, although Agrawal
et al. [3] compare the results of their proposed system with
JumpDTW [31], NWTW [32], and MATCH [16] based
on their ability to handle structural variations in the audio
compared to the score it is to be aligned with. Moreover,
Shan and Tsai [10] compare the alignment results of their
proposed Hierarchical DTW with those of JumpDTW and
subsequenceDTW [33], where they use intermediate rep-
resentations [9, 10] allowing the computation of distances
between audio and score images. In addition to the variants
described above, it is important to note that even within
single DTW variant, performance can vary based on sys-
tem choices such as normalization, the chosen time scales
of the feature sequences, and the use of penalties and path
constraints [14].

2.2 Audio to Score Alignment Features

Classic features used for ASA are Semitone Energy based
features such as Constant-Q Transforms (CQTs) and Pitch
Class Profile based features, more commonly known as
Chroma representations. In a parameter search by Raf-
fel and Ellis [14] the best alignments were attained with
a log-magnitude based CQT. Ewert et al. [21] develop the
DLNCO representation, which balances the tradeoff be-
tween chroma robustness and time resolution. More re-
cent approaches explore the realm of using learned fea-
tures [2, 9], or learned distance measures [3]. In [2], the
authors explore the use of transposition invariant features
learned in an unsupervised way on ASA, thus diverging
from pitch based features. They conduct their experiments
on piano and orchestral data, and report a result improve-
ment in both. However, in [4], the authors claim that such
pitch invariant features underperform in conditions of large
tempo variations. So, in their approach, they use features
learnt directly from music at the frame level by using a twin
Siamese network each containing a Convolutional Neural
Network (CNN), and in addition explore the use of salience
representations proposed by [34]. In recent work, Auto-
matic Music Transcription (AMT) has been used to first
transcribe the target audio before aligning it to the score
notes [6, 7].
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Source Datasets Instruments

[16], [17], [2] The Vienna 4x22 Piano Corpus [18] Piano
[11], [8], [1] Bach10 Dataset [19] Violin, Clarinet, Tenor Sax, Bassoon

[8], [20], [21] RWC Database [22] Polyphonic Multi Instrument
[8] 28 mins of Amateur practice Clarinet

[7], [2], [4] MUS Subset of MAPS Database [23] Piano
[2] Mozart Sonatas [24], Rachnmaninoff Prelude Op. 23 No. 5 [25] Piano
[3] Synthetic dataset based on MSMD [26] and private data Piano

Table 1: Datasets used across audio to score alignment research

2.3 Evaluation

Cont et al. [35] formalize the quantitative performance
metrics of Score Following, forming the basis of the
MIREX challenge for the task. Only a subset of their met-
rics are relevant for ASA since there is no expectation of
real-time execution. They define the error as ei = tei − tri ,
where tei is the estimated time in the score for event i, and
tri is the actual time of event i in the reference. The align-
ment corresponding to an event is considered misaligned
only if it exceeds a time threshold θe, which we call the
misalignment threshold, noting that events could be notes
or other time references (See Thickstun et al. [5] for a dis-
cussion on the difference between temporal and note based
metrics). Accordingly, the following metrics are proposed:
the Standard Deviation of the ei of non misaligned events,
the Misalignment Rate (MR) (percentage of events with
|ei| ≥ θe, and the Average Imprecision (average absolute
error of non misaligned events). For system-wide metrics,
they propose the Piece-wise Precision Rate (PPR) over a
related subset of scores, calculated as the percentage of non
misaligned notes, and the overall precision rate (OPR) cal-
culated similarly to the PPR but over the whole database
instead. In practice, researchers slightly vary in their eval-
uation metrics. They mostly capture the Alignment Rate
(AR), according to a set of θe usually between 50 ms to
300 ms, sometimes using it as an analogue for PPR.

Another commonly used metric is the Average Align-
ment Error (AAE) defined in [11], which is the average
absolute error for each audio frame, distinguishing it from
Average Imprecision, which is calculated for non mis-
aligned events only. AAE can be reported in millisec-
onds or in beats, depending on the end goal in mind [11].
Without using AAE explicitly, Jiang et al. [12] calculate
the proportion of misaligned frames by units expressed in
beats per measure. A metric with the same essence as AAE
is used in [2], where they additionally report the median,
1st, and 3rd quartiles of this difference. In addition to the
aforementioned metrics, some authors conduct an extent of
qualitative analysis in order to make useful insights about
their systems with respect to the scope in which the prob-
lem is defined. This has been done to test robustness to
performance mistakes [8], for error prone scores [20], to
understand the impact of polyphony [11, 19, 20], or the
presence of percussion [20], tempo variations [2, 19], or
skips [8, 10, 12].

3. GENERATING GROUND TRUTHS FROM ASAP

Reusing the ASAP dataset [15] is a reasonable step to ex-
pand the data available for ASA research. First, it offers
beat-level aligned audio and music scores for 520 piano
performances over various composers and styles. Some
pieces are performed by several pianists, and we observe
temporal variation in the different interpretations of one
piece. In addition, we believe that these alignments could
help us create more data by introducing structural varia-
tions within a single piece or across different pieces, de-
pending on the scope of the alignment problem we want
to consider, which we highlight in Section 6 along with
other augmentation ideas to cover a variety of ASA prob-
lems. The rest of this section describes how we create ASA
ground truth approximations from the beat annotations of
ASAP, along with the potential implications and pitfalls of
doing so.

3.1 From beat annotations to full alignments

We use the aligned beat annotations of the perfor-
mance MIDIs and score MIDIs provided by the ASAP
dataset to obtain approximated ground truth alignments
(performance-aligned scores) for score-performance pairs
at a low cost through Piecewise Linear interpolation. Every
beat in the score is mapped to a specific time in the perfor-
mance, yielding an alignment function with which we map
each onset time of the MIDI score file to a time in the per-
formance audio. A schematic is shown in Fig 1a. This
approach does not give an alignment with a note-to-note
resolution. However, we believe it is still usable for eval-
uating methods outputting temporal alignments that inher-
ently do not provide this level of precision, such as warping
paths obtained by DTW alignments, or for training audio to
score alignment systems with methods that tolerate weak-
ness in the reference alignments. To understand the extent
of the error, we investigate the temporal resolution of the
beat annotations (the time distances between consecutive
beats) over the chosen subset of the ASAP dataset. As
shown in Fig. 1b), the majority of such distances fall be-
tween 200 and 1100 ms. Clearly, the faster the tempo of the
performance, the less spaced in time consecutive beat an-
notations are. For context, the distance between two quar-
ter notes in a 120 BPM score is 500 ms.
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(a) (b)

Figure 1: (a) Illustrative snippet of the ground truth alignment from the GuoE01M Prelude BMV883 performance. (b)
Distributions of the time in between consecutive beats for all files in our chosen subset of the ASAP dataset.

3.2 Error Limits

To understand the limits of the error between the ideal
ground truth and the approximated ground truth (ϵgt) we
resort to the definition of Piecewise Linear Interpolation,
shown as follows:

p(x) = yk +
yk+1 − yk

tk+1 − tk
(x− tk), for x ∈ [tk, tk+1], (1)

where x is the time point in the score for which we need
to approximate a corresponding time in the performance, t
are reference points in the score annotation (in the context
of the ASAP dataset, these would be beat times), and y are
time reference points in the corresponding performance an-
notation. This is demonstrated in Fig 1a. In reality, the path
between (tk, yk) and (tk+1, yk+1) can take any shape as
long as it is monotonic (an assumption we can make due to
our data). Taking the extreme unrealistic case where p(x)
takes on either yk+1 or yk, the ground truth approximation
error ϵgt must be:

ϵgt = max(|p(x)−yk|, |p(x)−yk+1|), x ∈ [tk, tk+1]. (2)

If x falls on the midpoint of tk and tk+1, then ϵgt cannot
surpass 1

2
(yk, yk+1), meaning that even for beats highly

spaced apart (1000 ms) the error would be 500ms. More-
over, we would argue that in practice the error would be
even less, because of the musical flow. However, the po-
tential of error is a limitation due to which a decision needs
to be made on which files to discard. Although not much
detail is provided, it is worth noting that Duan and Pardo
[19] mention their use of beat annotations to create ground
truths, meaning that this process has been accepted in past
studies, although it was not discussed elaborately.

4. DATA VALIDATION

The approximated ground truths of our interpolated dataset
can have two problem sources: 1) misalignments within
the generated annotations due to the low resolution of the
score or performance beat annotations (as discussed in
Section 3.2), and 2) annotation problems from the original
dataset. These need investigation before using the dataset,

whether for evaluation or training. We create test audio
for every generated annotation file, where the left channel
includes the performance-aligned score (the approximated
ground truth) and the performance audio on the right chan-
nel. Therefore, by listening to all such test audios, it is
possible to get a sense of both problems above. However,
due to the size of the ASAP subset we reuse, it was not
feasible to listen to all the hours of audio. So, we conduct
a typical ASA experiment to help give clues as to which
files most likely could contain errors and therefore would
need to be examined. The rationale of this selective in-
vestigation is that files with low misalignment rates have
passed an implicit check. Suppose a music score has been
aligned with the performance audio using a process differ-
ent from that with which the ASAP dataset was created. If
this result matched the interpolated ground truth, then it is
improbable that there is a problem with its beat alignment.
Otherwise, there would have been a difference between the
alignment result and the ground truth. Moreover, to de-
termine whether we should discard files with large time
windows between beats, we listened to a selection of the
files with intra-beat annotation time differences of ≈ 1500
ms. They sounded correct for several performances, espe-
cially for files performed without much temporal variation
(such as the Fugue BMV 874 and Prelude BMV 863 per-
formances by Kurz and Shyc, respectively). We decided
to keep all such files and only discard them based on the
results of the alignment experiment.

4.1 Alignment Experiment

To align a performance and its symbolic score, we sonify
the latter using the fluidsynth 2 and conduct DTW-based
audio to audio alignment between the synthesized score
and the audio performance. We use the librosa 3 [36] DTW
implementation, and the distance matrix is computed by
applying the Euclidean distance between the feature vec-
tors.

2 https://www.fluidsynth.org/
3 https://librosa.org/doc/main/generated/

librosa.sequence.dtw.html
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4.1.1 Features

We use the CQT and 5 of the chroma representations com-
pared in [37], which are: a Connectionist Temporal Classi-
fication loss trained chroma extractor (CTC-Chroma) ex-
plained in [38]; Non Negative Least Squares (NNLS)
chroma [39]; the Harmonic Pitch Class Profile (HPCP)
[40]; the Deep Chroma Extractor (DCE) [41]; and the clas-
sic Chroma algorithm implemented in [36]. All these al-
gorithms are easily usable out of the box, and we believe
are appropriate to use for piano data. Details on the param-
eters of each algorithm can be found in the accompanying
repository 4 .

4.1.2 Quantitative Results

Since our focus is on filtering files, we report file-based
metrics rather than global metrics for each DTW system.
Therefore we omit reporting the Overall Alignment Rate
(OAR), the system-wide AR considering the notes over all
scores (or all temporal units). We use the Average Abso-
lute Error (AAE) for each file in the dataset, shown in the
box and whisker plots of Fig. 2 indicating the 1st, median,
and 3rd quartiles per each DTW system. We also main-
tain the AR and the Absolute Errors (AE) for each file. We
use these metrics to identify 1) suspects of files with beat
alignments that are not highly accurate, which should be
discarded, or 2) files for which our ground truth approxi-
mation approach yielded a high ϵgt for annotations within
the beats. Those might still be relevant to keep depend-
ing on how they will be used. We explain this process in
Section 5. However, we must be careful before discarding
any files based on performance metrics to avoid cherry-
picking only the files for which our ASA systems perform
well. This is why we use a variety of audio representations,
knowing that some might not be perfectly suitable for au-
dio to score alignment, and no files are discarded unless
they performed badly using all DTW systems.

5. RESULT INFORMED DATA FILTERING

Although not the core of our work, we observe that the
DTW systems using CQT, HPCP, and Chroma perform
better than the rest. This can be seen from Fig. 2 from
the lower AAE time windows and the compactness of
their distribution, and although we do not show a plot for
OAR, these three systems reach very high OARs within
the 0 - 60ms error thresholds. In fairness, the CQT system
with the best performance is the gold standard obtained by
the Bayesian Optimization of [14], suggesting that before
making any absolute statements about the superiority of
any of the DTW systems, their parameters should be opti-
mized similarly. Besides, comparing such systems or find-
ing the best performing ASA system is not the goal of this
paper, and as we argue earlier, ASA is still missing a clear
methodology and varied data with which qualitative evalu-
ation can be conducted. This hinders the ability to compare
between systems. The ASA results shown are just a means
to an end, which is validating the interpolated dataset as

4 https://github.com/Alia-morsi/asa_benchmarks

described in Section 4, and helping us pinpoint problems
and the potential need to filter some files, as shown in Sec-
tions 5.1 and 5.2.

5.1 AAE based investigation

Without discarding any generated alignments yet, we start
by observing the box-and-whisker plots showing the AAE
for all the 520 usable files of ASAP evaluated over the in-
terpolated ground truth references, shown in Fig. 2a. We
observe files with very high AAEs, most likely signalling
either an annotation or calculation error since they rep-
resent alignment error values that are unreasonably high.
Drawing a threshold at an AAE of 6000 ms (the red line)
allows us to filter those clear outliers, thus arriving at the
second plot shown in Fig. 2b. Then, we decide to conduct
further filtering at a threshold at an AAE of 1000, arriving
at Fig. 2c. We can keep setting lower AAE threshold and
filtering more files for as long as needed. But the idea is
to listen to the test audio described in Section 4 and to ob-
serve the annotations before discarding a file, to make sure
that we are not filtering good ground truth approximations.

5.2 AR based investigation

Files for which the AR is very low (approx 10%) at θe
thresholds between 50 and 100 ms signal the need for fur-
ther investigation. In Section 4 we referred to two prob-
lems: 1) the possibility of a temporal offset in the ground
truth annotation of the original ASAP dataset, and 2) the
possibility of the generated labels being misaligned due
to large temporal distances between consecutive beat an-
notations. If for a file we observe that the 1st quartile,
median, and 3rd quartiles do not progress ascendingly as
expected a (eg. if the 3 values are nearly equal) and are
higher than usual, then this could indicate a temporal off-
set in the ground truth annotation. Through the listening
verification we describe in Section 3, we found that this is
the case for at least 6 score-performance pairs. As for the
latter problem, if we find that if a file has a low AR, and
the 1st, median, and 3rd quartiles of the AE move ascend-
ingly (as expected), then it is a suspect of the low resolution
problem. Examples of such files are the 2 performances of
Prelude BMV 846, and Prelude BMV 867, where it is clear
upon listening that there is a high temporal variation at a
phrase level. When coupled with an insufficient resolution
of the beat annotations, this would certainly cause ground
truth errors. Files of the first category should always be
discarded, but files of the second category could be kept,
depending on the extent of the misalignment introduced
through the ground truth approximation, and the tolerance
allowable by the expected use.

5.3 Limitations

A legitimate criticism of our work would be that ground
truths generated from the ASAP dataset do not live up to
the ambition driving the paper, which is to create a large
benchmark for ASA research covering a variety of musical
use-cases. Although we do not fully dispute this because
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(a) Alignment results for all MIDI score-
audio pairs. Next cutoff threshold = AAE
6000 ms.

(b) Alignment results for MIDI score-
audio pairs with AAE < 6000 ms. Next
cutoff threshold = 1000 ms.

(c) Alignment results for MIDI score-
audio pairs with AAE < 1000 ms. We
do not apply further filtering

Figure 2: Box and Whisker plots showing the Average Alignment Error (AAE) results of the DTW systems using each
of the chroma extraction algorithms, calculated using the approximated ground truths. Lower results are better. The red
horizontal line of a figure indicates the cutoff threshold to be applied for generating the figure to its right.

all the scores of the ASAP dataset are monotonically in-
creasing classical solo piano performances which highly
adhere to their music scores in the performance, our point
is that neither the ASAP dataset nor any other single acces-
sible dataset would possess the level of diversity needed to
move past the bottleneck. The goal is to start accumulat-
ing adapted datasets to eventually arrive at a bigger bench-
mark. For example, a similar process could be applied to
the MazurkaBL dataset [42], and perhaps several others
too, although the data preparation methodology and corre-
sponding discussion are coupled with the specifics of the
chosen dataset. Moreover, as we better explain in Sec-
tion 6, even with the generated ground truth approxima-
tions from ASAP alone, there is room to create interest-
ing data extensions with the approximated beat alignments.
Another drawback of our work could be that the results
informed data investigation described in Section 5 is not
enough, and there should be a more rigorous manual veri-
fication process of the derived ground truths. We agree that
manual verification of the whole datatset would be ideal,
but we also defend that finding compromises for practical
benefit should not be disregarded while being very clear on
where these datasets fail. Moreover, perhaps a confidence
measure can be created based on comparing the correlation
of onsets between the left and right channels of the test au-
dio described in Section 4. Further limitations of this work
are that we do not discuss the computational complexity
of most ASA methods, and rather constrain the use of the
term bottleneck to conceptual hindrances facing ASA.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we argue that ASA research has reached
glass ceiling, and a crucial way to get past it is to unify
what would be considered core to the problem definition
in terms of musical scenarios. For example, what kinds
of structural variations between the audio and score should
be considered, what kinds of instruments should be sup-
ported, what recording quality is expected, etc. We believe

this would not be possible without developing benchmarks
covering such scenarios, which would support a paradigm
shift in how ASA is approached, and would allow us to
compare between the performance of ASA systems devel-
oped by different researchers. To take a first step towards
increasing the size and variety of data, we demonstrate the
reuse of the 520 scores of ASAP dataset for which beat
aligned scores and performance audio pairs are available.
We argue that despite its creation with other MIR research
topics in mind, it still can be a very useful resource for re-
searchers interested in ASA for classical piano music. We
conduct several data validation steps informed by the AAE
and AR from results from a classic DTW pipeline, allow-
ing a selective investigation and filtering of the dataset.

6.1 Future Directions

In addition to adapting more related datasets, we would
like to build on this work by artificially extending the data
to improve its balance. We need to include cases where
the audio performance does not adhere well to the music
score, whether through skips, repeats, or performance mis-
takes. Starting from the generated alignment ground truths
(or alignment references from other datasets) we could cre-
ate semi-artificial data where we shuffle parts of the score,
and concatenate the audio from the real performance to
match this modified score. To avoid these modifications
sounding unnatural, we could try and choose realistic parts
of the piece, referring to works on music structure anal-
ysis to introduce structural repetitions with more musical
sense. Datasets with structural variations would be inter-
esting especially to improve the ability of ASA systems to
recover when lost, which is relevant for real-time audio to
score alignment. Nevertheless, covering a wider range of
instruments still poses a challenge, but this is expected to
become easier as synthesis technologies develop further.
Finally, we conclude with our hope that ASA approaches
would find more inspiration from recent advances in Cover
Song Detection and Natural Language Processing.
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