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ABSTRACT

Music style translation aims to generate variations of ex-

isting pieces of music by altering the style-related char-

acteristics of the original piece while content, such as the

melody, remains unchanged. These alterations could in-

volve timbre translation, re-harmonization, or music rear-

rangement. Previous studies have achieved promising re-

sults utilizing time-frequency and symbolic music repre-

sentations. Music style translation on raw audio has also

been investigated and applied to single-instrument pieces.

Although processing raw audio is more challenging, it pro-

vides richer information about timbres, dynamics, and ar-

ticulations.

In this paper, we introduce Music-STAR, the first audio-

based translation system that translates the existing instru-

ments in a piece into a set of target instruments without

using source separation. To conduct our experiments, we

also present an audio dataset that contains two-track pieces

performed by two instrument sets alongside their stems.

We carry out subjective and objective evaluations to com-

pare Music-STAR with a variety of baseline methods and

demonstrate its superiority.

1. INTRODUCTION

Music style translation is defined as transforming the style-

variant components of a music piece to create variations

that preserve the content. This can take several forms de-

pending on how ªmusic styleº is characterized. Dai et

al. [1] classify style into three categories: composition,

performance, and timbre. Recent works have mainly fo-

cused on timbre translation [2±7] and composition style

translation [8±12].

Timbre translation aims to alter the timbre informa-

tion, which typically results in a change in instrumentation.

Timbre translation models mostly use time-frequency rep-

resentations [2±6]. Some of these [4±6] treat the spectro-

grams as images and apply GAN-based models [13,14] de-

signed for image-to-image translation [15]. Timbre trans-

lation has also been explored by integrating classic signal

processing and deep learning methods [16, 17].
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The universal translation network [7] is the only model

that works with audio waveforms directly. Inspired by

the WaveNet autoencoder [18], it translates an arbitrary

source piece to several specific timbre domains. Although

one universal encoder is used to encode the domain-

independent features, every domain needs to have a spe-

cific conditional WaveNet [19] decoder.

On the other hand, composition style transfer attends

to tasks such as re-harmonization and music rearrange-

ment. [1] Almost all works on composition style transla-

tion exploit symbolic representations, i.e., MIDI and piano

rolls. Some of these models focus on music rearrangement

by altering the accompaniments [8±10] where the style is

associated with the genre. MIDI-VAE [9] is among the

few cases that do not overlook the dynamics and account

for note velocities. Wang et al. [11] has introduced the

only GAN-based model that operates on symbolic repre-

sentation to perform genre transformation. Hung et al. [12]

approach music rearrangement by modifying the instru-

mentation, where they establish a correlation between rear-

rangement and transforming multiple timbres in a musical

piece.

In this paper, we explore music re-instrumentation

of audio waveforms that contain more than one in-

strument. We present several baseline solutions and

then propose Music-STAR, a system designed explic-

itly for audio-based translation, which is built upon

the WaveNet autoencoder [18]. To conduct our ex-

periments, we also present a dataset called StarNet,

in which every piece of music is performed by two

different sets of instruments. The source code, audio

samples, and supplementary materials are available at

https://mahshidaln.github.io/Music-STAR.

2. DATASET

In order to train and evaluate Music-STAR and the baseline

models, we need an audio dataset that contains multi-track

pieces played with different sets of instruments alongside

their stems. For this purpose, we have created the StarNet

dataset, in which every piece is composed of two instru-

ment tracks from two domains: strings-piano and clarinet-

vibraphone. In other words, for every piece, the dataset

includes strings-piano and clarinet-vibraphone mixtures as

well as their corresponding isolated tracks.

We have chosen piano ↔ vibraphone and strings ↔

clarinet translations to preserve the type of excitation in
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Figure 1. An example of multi-instrument translation

where the timbre components of strings (Tstrings) and pi-

ano (Tpiano) are translated into clarinet (Tclarinet) and vi-

braphone (Tvibraphone), respectively, while retaining the

corresponding pitch components (Pstrings = Pclarinet

and Ppiano = Pvibraphone).

the source/target instruments (discrete excitations in piano

and vibraphone versus continuous excitations in clarinet

and strings).

Accessing recorded music stems is often hard due to

copyright limitations. Therefore, we select a variety of

music pieces from MusicNet [20] and other freely avail-

able classical music MIDI collections. Instead of us-

ing their original instruments, we apply virtual instru-

ments for the aforementioned combinations. The result-

ing dataset contains two domains, one for each instru-

ment combination, adding up to roughly 11 hours of au-

dio for each domain. The StarNet dataset is available at

https://zenodo.org/record/6917099.

To conduct our experiments, we use two versions of

StarNet:

1. Preprocessed StarNet: The preprocessed version of

StarNet includes uncompressed stereo WAV files

with a sample rate of 44.1 kHz and a bit depth of

16 bits. The preprocessing step includes detecting

and removing the intervals where one or both instru-

ments are silent to ensure their simultaneous pres-

ence for a considerable amount of time. After the

silence removal, the dataset size shrinks to roughly

9 hours. Silence detection is done by indicating the

minimum loudness and minimum silence duration.

2. Reduced StarNet: The reduced version of StarNet is

obtained after resampling the preprocessed version

at 16 kHz, merging the two audio channels and out-

putting mono audio, and finally quantizing the audio

by 8-bit mu-law encoding.

3. METHODOLOGY

Pitch and timbre are among the fundamental acoustic prop-

erties of every audio track in a recorded mixture. As we

address instrumentation changes in our work, timbre is re-

garded as the style component, while pitch constitutes the

content we intend to preserve. Based on this definition, we

introduce the following notation of a piano track and its

style and content components:

Apiano := Tpiano + Ppiano

where A is an audio signal, T is the timbre component, and

P is the set of pitch components and their embodied dura-

tions in that signal. Separating style and content compo-

nents, also known as disentanglement, has been leveraged

in previous music translation studies [7,9,12] and is mostly

addressed by adversarial learning in encoder-decoder ar-

chitectures. Note that T and P in the notations are concep-

tual terms, and the corresponding features will be extracted

by the autoencoders and represented by the embeddings.

An example of single-instrument translation is shown

below, where a piano track is translated to vibraphone in

a way that the pitch component is retained, and the timbre

component alters:

1. Input = Apiano := Tpiano + Ppiano

2. Output = Avibraphone := Tvibraphone + Ppiano

Our task is to tackle a more complex problem, i.e., deal-

ing with multi-instrument pieces (Fig. 1). In the case of our

dataset, the input audio signal will be one of the following:

1. Amix1 = Astrings +Apiano :=
Tstrings + Pstrings + Tpiano + Ppiano

2. Amix2 = Aclarinet +Avibraphone :=
Tclarinet + Pclarinet + Tvibraphone + Pvibraphone

As a result, pitch-timbre disentanglement does not suffice

here as we need to isolate two sets of timbre and pitch com-

ponents.

In this section, we first introduce the baseline methods

for performing multi-instrument translation, i.e., single-

instrument translation pipeline and separation-based trans-

lation pipeline. Then we present our proposed methods,

i.e., the embedding-supervised method and Music-STAR.

3.1 Single-instrument Translation Pipeline

The most simplistic approach to multi-instrument transla-

tion is to translate each instrument track separately and ob-

tain the final output by mixing them. However, this is only

possible when the music stems are available.

In order to implement this method, we employ an ex-

isting audio-based translation model [7], which is built

upon the WaveNet autoencoder [18]. This model consists

of a universal encoder and six decoders corresponding to

six target domains, all collected from the MusicNet [20]

dataset.

In this universal network, the temporal encoder maps

the pitch components into an embedding space utilizing a

WaveNet-like architecture. The decoders are conditioned

on the pitch embeddings and generate audio samples that

entail the specific timbre they have been trained for in an

autoregressive manner. A domain confusion network is

employed during training to ensure that no domain-specific

information is included in the embeddings by imposing do-

main confusion loss [21]. The authors also emphasize the

role of distorting the input by modulating the pitch locally
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Figure 2. The embedding-supervised encoder is trained to

generate the same embeddings as the universal encoder for

every instrument i present in an audio mix (Amix).

in every audio segment while training. This way, they en-

sure that the encoder does not memorize the content and

drive it to capture meaningful features. In other words, the

network is trained as a denoising autoencoder that learns to

recover the original input by applying teacher forcing [22]

while training the decoders. The teacher forcing technique

is carried out by feeding the original input audio segment

to the decoder instead of the generated samples.

3.2 Separation-based Translation Pipeline

The previous method does not apply to use cases where the

instrument tracks are not available separately and where

the system must take the audio mixture as input. One way

to tackle this is to adopt a pipeline of audio source sepa-

ration and single-instrument translation. The source sepa-

ration module isolates each of the tracks so that a single-

instrument translation model can transform each of them

into a target instrument.

To perform source separation, we adopt Demucs [23],

a state-of-the-art music source separation model that oper-

ates in the waveform domain, taking an audio mixture and

outputting isolated audio tracks. These stems are then fed

into the universal network described in Section 3.1 for the

translation phase.

3.3 Embedding-supervised Method

Training source separation models to separate every instru-

ment in a mixture is a demanding task, and thus we favor

solutions that do not depend on it. We have investigated

a potential solution that we refer to as the embedding-

supervised method, which performs a semi-separation task

through the encoding process. In this case, the embedding-

supervised encoder learns to capture the pitch-related fea-

tures of one of the two instruments in the mixture. In or-

der to achieve this, we need a pre-trained encoder that can

provide the desirable pitch embeddings for a single instru-

ment and assist the embedding-supervised encoder in dis-

tinguishing between the instruments throughout the train-

ing step. Recall that the universal encoder in our base-

line model learns to extract pitch-related information from

the input. Thus the output of such an encoder can provide

the embeddings we seek. Based on this, we can train the

embedding-supervised encoder to mimic the output of the

universal encoder when given a mixture as the input. (Fig.

2)

For instance, if we have the mixture as:

Amix = Astrings +Apiano

we feed the piano track Apiano:

Apiano := Tpiano + Ppiano

into the universal encoder, and its output will represent pi-

ano track pitch information (Ppiano). We then input the

mixture Amix to the embedding-supervised encoder and

train it to output the same code, i.e., the embeddings for

Ppiano. Consequently, we have a piano-specific encoder

to extract the piano pitch content from any mixture. Note

that for such training, existence of the stems in the dataset

is necessary. We can isolate the information correspond-

ing to one instrument via this approach without applying

actual source separation. We can train one encoder per in-

strument with the help of the universal encoder. The model

strives to minimize the loss function below:

L(Ei
es(mix), Eu(x

i)) (1)

where Ees is the embedding-supervised encoder, mix is

the audio segment from the input mixture, Eu is the uni-

versal encoder, xi is the fragment of the instrument track i

that we want to extract from the mixture, and L is L1 loss.

During inference, a pre-trained WaveNet decoder can

also be engaged to translate the code to an arbitrary target

instrument.

3.4 Music-STAR

Our ultimate goal is to realize the idea of multi-instrument

translation where we do not need to engage source sep-

aration modules or additional encoders, and in general re-

move the restrictions of the aforementioned techniques. To

this end, we introduce Music-STAR, designed explicitly

for audio-based multi-instrument translation as described

below.

As mentioned in Section 3.1, the universal network is

trained using a random local pitch modulation that dis-

torts the input to ensure that the encoder does not mem-

orize the input content. Since the encoder learns to extract

pitch-related information, we expect the code to embody

data from the distorted segments. However, the decoder is

trained using the teacher forcing technique, where the orig-

inal audio segment is fed into the decoder alongside the

embeddings produced by the encoder. The benefits of this

approach are two-fold. First, the decoder learns the tim-

bre of the original segment that is not present in the latent

space. Second, for the decoder to reconstruct the original

audio with the right pitch, it forces the encoder to repre-

sent the original segment in the latent space by removing

the distortion. We will employ a similar idea below.

To begin, we represent our input audio as:

Ainput = Astrings +Apiano :=
Tstrings + Pstrings + Tpiano + Ppiano
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Figure 3. Training Music-STAR using (a) the mixture-

supervised method to generated the target mixture, (b) the

stem-supervised method to generate a single target stem.

The modules subscripts sp, cv, p, and v corresponds to

string-piano, clarinet-vibraphone, piano, and vibraphone,

respectively.

The output we are looking for is:

Aoutput = Aclarinet +Avibraphone :=
Tclarinet + Pclarinet + Tvibraphone + Pvibraphone

where Pstrings = Pclarinet and Ppiano = Pvibraphone.

To obtain this output, we should make sure that:

1. The encoder includes only the representations of

Ppiano and Pstrings in the embeddings, removing

the information related to the other components of

Ainput (Tpiano and Tstrings), which has been proven

possible when removing the distortion in [7].

2. The decoder generates the output signal by applying

the target timbres that it has learned from the audio

segments used for teacher forcing.

Accordingly, we conclude that the autoencoder will be

able to extract the pitch-related features of the input mix-

ture and translate it into target timbres if we train the model

by:

1. Using the strings-piano mixture as the encoder’s in-

put, and

2. Using the clarinet-vibraphone counterpart of the in-

put to apply teacher forcing to the decoder.

When the decoder is learning to translate the encoder’s

output to generate the clarinet-vibraphone segment, it in-

evitably guides the encoder to hand in helpful information

for the task, which should be strings and piano pitch rep-

resentations (see Fig. 3(a)). Since we train the model us-

ing the source and target audio mixtures, we name this ap-

proach the mixture-supervised method. The loss function

for the mixture-supervised method is formulated as

∑

j

L(D(E(mix), tj), tj) (2)

where L is the cross-entropy loss, D is the decoder, E rep-

resents the encoder, mix is the input mixture segment, and

tj is the jth sample from the target mixture used for teacher

forcing.

In our experiments, we also account for a variation

of the mixture-supervised method where the target mix-

ture (used in teacher forcing) is replaced by only one of

its instrument tracks. We call the resulting method stem-

supervised, in which we employ two autoencoders, each

for translating one of the instruments in the mixture, and

combine their outputs in the end to obtain the final mix

(see Fig. 3(b)).

4. EXPERIMENTS

4.1 Single-instrument Translation Pipeline

We employ the universal network [7] to perform single-

instrument translation. The network is originally trained

on six classical music domains from the MusicNet dataset

that includes mono audio segments with a sample rate of

16 kHz, which are later quantized by 8-bit mu-law encod-

ing. The input files are randomly selected, and then a 0.75-

second audio chunk is randomly segmented out of the file

for every training input. A duration between 0.25 to 0.5

seconds of that segment is then selected for applying dis-

tortion by modulating the pitch.

In order to use this architecture as a baseline, we need

to make sure that the decoders can generate the timbres

included in the StarNet dataset. Therefore, we use the pre-

trained universal encoder and finetune the decoders on the

reduced StarNet dataset. Note that the data in reduced Star-

Net has the same properties as the data used for training

the original model in terms of sample rate, bit depth, and

the number of channels. Since the universal encoder has

been trained using substantial computational resources on

six domains and captures domain-agnostic features, it is

powerful enough to successfully encode inputs from other

domains. We finetuned the decoders with a batch size of

16, a learning rate of 1e−3, and a decay factor of 0.98 for

100 epochs.

4.2 Separation-based Translation Pipeline

We adopt Demucs [23] as the music source separation

model, which is trained originally on MuseDB [24]. It is

vital for our experiment that the network separates the two

instruments present in the mixtures. Therefore, we train

Demucs on preprocessed StarNet from scratch. We use the

original learning rate of 3e−4 and Adam optimizer with

a batch size of 32 for 250 epochs. The resulting model

can take an arbitrary length of an input mixture and suc-

cessfully separate the strings track from the piano or the

clarinet track from the vibraphone.

The separated audio tracks are then post-processed to

comply with the data configuration in reduced StarNet and

fed into the finetuned models from Section 4.1 that corre-

spond to their target instruments.
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Figure 4. (a) The architecture of the universal encoder.

(b) The architecture of the encoders used in the

embedding-supervised and Music-STAR models.

4.3 Embedding-supervised Method

An autoencoder architecture builds the backbone of the

model. This method focuses on training the embedding-

supervised encoder with the help of the universal encoder.

The architecture of the universal encoder is depicted in

Fig. 4(a). Since the embedding-supervised encoder should

learn to extract the same information as the universal en-

coder from a mixture rather than a stem, one would expect

that a more complex architecture would be required for it.

This was indeed confirmed by our pilot experiments.

The architecture we use as the embedding-supervised

encoder is shown in Fig. 4(b). Similar to the universal

encoder, it starts with a non-causal non-dilated convolu-

tion. The encoder consists of four blocks of 14-layer resid-

ual networks composed of non-causal dilated convolutions

with a kernel size of 3, followed by ReLU nonlinearity and

a 1x1 convolution. A GLU activation function follows the

1x1 convolution, and the output is summed with the input

to form the residual connection. The result of this connec-

tion is then fed into the next layer of the encoder. The dila-

tion increase factor of 2 and the 128 channels are identical

to the universal encoder.

Unlike the baseline model that trains a universal en-

coder for all the domains in the training set, we need to

train a single encoder for each instrument to extract content

information from a mixture. The embedding-supervised

encoders are trained on 0.75-second audio chunks ran-

domly segmented out of the mixture files from reduced

StarNet, and the same segments are extracted from the in-

strument tracks to be fed into the universal encoder. We

adopt Adam optimization and exponential learning decay

with a learning rate of 3e−4, a decay factor of 0.98, and a

batch size of 16 for a total of 100 epochs.

The finetuned WaveNet decoders described in Section

4.1 are then attached to the embedding-supervised en-

coders during inference to translate the code into the target

instruments.

4.4 Music-STAR

We employ the WaveNet autoencoder architecture in the

mixture-supervised method as well. The encoder we use

for this method has the same architecture as the one used

in the embedding-supervised method (Fig. 4(b)). The de-

coder’s architecture is identical to the WaveNet decoders

described in [7].

We train the models on the reduced version of StarNet.

We pick random one-second audio segments of the input

mixture and extract the same segment in the target mixture

to apply teacher forcing to the decoder. Training is done

using the Adam optimizer and exponential learning decay,

where a learning rate of 3e−4 and a decay rate of 0.99 are

applied. The model is trained for a total of 100 epochs with

a batch size of 16.

We use the same training configuration as above for the

stem-supervised setting, except that two autoencoders are

involved, each for transforming the source mixture into one

of the target instruments.

5. EVALUATION

We conduct subjective and objective evaluations of the ob-

tained audio and compare the re-instrumentation methods

on three criteria:

1. Content preservation: how much of the pitch content

of the input is retained in the output.

2. Style fit: How well the output presents the target tim-

bres.

3. Audio quality: How clean and distortion-free the

generated audio is.

5.1 Subjective Evaluation

The subjective evaluation provides a qualitative assessment

of our models based on how users perceive the generated

outputs. We carry out the subjective evaluation by dis-

tributing a survey among 30 participants, some of whom

have a musical background. Each survey contains two

different pieces, one from each domain (strings-piano and

clarinet-vibraphone) selected out of 10 pieces in total. The

target mixture is provided for each piece to demonstrate the

gold standard, followed by corresponding translation out-

puts resulting from the five methods. The order of outputs

is different for the two pieces, and the participants have no

prior knowledge of the order.

Every piece in the survey is evaluated through three

questions asking the participants to rank the five outputs

based on:

1. How well they preserve the target musical content,

which accounts for content preservation.

2. How well they present the instruments’ tone colors

(timbre) of the target piece, corresponding to style

fit.

3. How clean and distortion-free they are, presenting

the audio quality.
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Method
Subjective Objective

Content Style Quality Content

(Jaccard)

Style

(Cosine)

Single-instrument 166 150 153 0.371 0.483

Separation-based 165 147 159 0.392 0.474

Embedding-supervised 161 157 149 0.350 0.472

Stem-supervised 154 190 183 0.323 0.699

Mixture-supervised 254 256 256 0.426 0.698

Table 1. Evaluation results on the three criteria of content

preservation, style fit, and audio quality. The results from

the subjective evaluation show the scores for each model

according to the rankings provided by the surveys. Objec-

tive evaluation reports Jaccard similarity and cosine simi-

larity for the first two criteria, respectively.

After collecting the surveys, we concluded the rankings

for each question by scoring the models. For each crite-

rion, the methods receive a score of 5 if one of their gener-

ated outputs is ranked first, a score of 4 if ranked second, a

score of 3 if ranked third, a score of 2 if ranked fourth, and

a score of 1 if ranked last. The aggregate scores are shown

in Table 1. More detailed analysis is available online 1 .

5.2 Objective Evaluation

We aim to provide a quantitative quality assessment on

content preservation and style fit using techniques em-

ployed in previous studies.

5.2.1 Content Preservation

Following the work by Cífka et al. [3], we assess the

models on content preservation by calculating the Jac-

card similarity between the pitch contours of the outputs

and their corresponding gold standards. Since we are ad-

dressing multi-instrument music in our study, we extract

the pitch contours using the multi-pitch Melodia algorithm

[25] which provides the existing pitch frequencies in Hz.

We round the frequency values to the nearest semitone.

Then we express the similarity of the pitch sets of each

time step in terms of the Jaccard index. Higher Jaccard

similarity between the output and the gold standard signi-

fies better content preservation.

5.2.2 Style Fit

We evaluate the style fit factor using the deep metric triplet

network offered by Lee et al. [26]. The network consists of

a backbone model, which provides embeddings for three

inputs, and a triplet model that outputs a similarity score

between those embeddings. The three inputs are called

the anchor, the positive, and the negative. The network is

trained to generate the embeddings in a way that the posi-

tive is closer to the anchor than the negative. During infer-

ence, a similarity score between the anchor and the other

two will be reported.

Following Cífka et al. [3], we use MFCCs as the in-

put features as they provide timbre-related information.

We train the triplet network using the mixtures in the pre-

processed StarNet dataset. For instance, the MFCCs of

1 https://mahshidaln.github.io/Music-STAR

eight-second clarinet-vibraphone audio segments are used

as both the anchors and the positive inputs in the train-

ing phase. At the same time, their counterparts from the

strings-piano domain are regarded as negative inputs.

During inference, we presented the translation outputs

from the five methods as the anchors, their corresponding

gold standard as the positive, and the performance from

the other domain as the negative. We report the average

cosine similarity between the outputs of each translation

method and their corresponding gold standards. Higher

cosine similarity denotes more likeness to the target timbre

and a better style fit.

5.3 Discussion

All evaluation results are presented in Table 1. The scores

reported by the subjective evaluation are the total sum

of the models’ scores on both Clarinet-Vibraphone ↔

Strings-Piano translations. Objective evaluation reports

the average performance of models in translating the two

domains. Both objective and subjective evaluations con-

clude that mixture-supervised Music-STAR is the predom-

inant model in performing multi-instrument music trans-

lation. The mixture-supervised method outperforms the

other methods in all the assessments except for objective

style fit, where it reaches an almost equal cosine similar-

ity with the stem-supervised method. An advantage that

it has over the other methods is that the presence of the

stems is not necessary for training the model. Mixture-

supervised Music-STAR is, to the best of our knowledge,

the only model capable of performing timbre translation on

multiple instruments in a mixed signal.

The embedding-supervised method is, on average, the

worst-performing model. The encoder used in this model

is trained based on the universal encoder’s outputs to ex-

tract the pitch information of one instrument out of a mix-

ture. An imperfect ground truth places the model at the dis-

advantage of even more unsatisfactory performance. Also,

the performance of single-instrument and separation-based

translation models on different criteria are very similar.

6. CONCLUSION

This paper introduced Music-STAR, the first audio-based

multi-instrument music translation system. Music-STAR

tackles multi-instrument translation without applying ex-

plicit source separation to the input mixtures. We also in-

troduce the StarNet dataset that includes two-instrument

pieces performed in two domains alongside their stems.

We explored a variety of possible solutions based on the

WaveNet autoencoder, and finally reached a successful

mixture-supervised method capable of performing simul-

taneous source separation and pitch-timbre disentangle-

ment for two instruments.

Future work will target increasing the number of instru-

ment tracks in the mixtures, and adding to the variety of

instrument combinations. We also plan to develop a more

ornate dataset in terms of the details on articulations and

dynamics.
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