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ABSTRACT

Song embeddings are a key component of most music rec-

ommendation engines. In this work, we study the hyper-

parameter optimization of behavioral song embeddings

based on Word2Vec on a selection of downstream tasks,

namely next-song recommendation, false neighbor rejec-

tion, and artist and genre clustering. We present new op-

timization objectives and metrics to monitor the effects

of hyper-parameter optimization. We show that single-

objective optimization can cause side effects on the non op-

timized metrics and propose a simple multi-objective opti-

mization to mitigate these effects. We find that next-song

recommendation quality of Word2Vec is anti-correlated

with song popularity, and we show how song embed-

ding optimization can balance performance across differ-

ent popularity levels. We then show potential positive

downstream effects on the task of play prediction. Fi-

nally, we provide useful insights on the effects of training

dataset scale by testing hyper-parameter optimization on

an industry-scale dataset.

1. INTRODUCTION

Modern Recommendation Systems (RS) rely on embed-

ding vectors to represent the latent user and item fac-

tors [1]. They can be employed for several downstream

applications, ranging from song recommendation in ra-

dio stations or playlists [2–7], search [8, 9], tagging [10],

to the generation of artist and genre representations for

annotation and recommendation tasks [11–13]. Embed-

dings are usually generated in the early stages of com-

plex RS pipelines, often through self-supervised meth-

ods like Word2Vec [14], which come with default hyper-

parameters tuned on non-RS tasks (e.g., NLP).

Practitioners and researchers in the field hence need fea-

sible optimization objectives and reliable metrics to com-

pare against when optimizing embeddings. Recent re-

search shows that hyper-parameter optimization can sig-

nificantly improve recommendation quality [15,16]. While

prior work mainly focuses on recommendation tasks, it is
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worth considering other tasks like false positive rejection

and clustering during optimization.

Additionally, embedding spaces are used as a source

of knowledge and interpretation either through visualiza-

tion tools [17,18], or by using relationships between items

from a statistical standpoint or by leveraging information

outside the input data [19–22]. We believe that music-RS

practitioners and researchers could benefit from a deeper

understanding of the behavior of song embedding opti-

mization in relation to important factors such as song pop-

ularity. This could assist them in handling some emerging

algorithmic biases like the popularity bias [23–25].

1.1 Contributions

In this work, we provide a strong framework within which

it is possible to monitor the performance of embedding

models and evaluate the potential of the embedding model

to adapt to new tasks. Our work presents a general method-

ology that can be applied to any embedding system and not

only to Word2Vec. The main contributions are:

• We define metrics and optimization objectives for three

relevant tasks: next-song recommendation, false neigh-

bor rejection, and genre and artist clustering.

• We demonstrate experimentally that single-objective op-

timization can have negative side effects on the non op-

timized metrics and propose a multi-objective optimiza-

tion approach to combine recommendation and cluster-

ing objectives effectively.

• We show that next-song recommendation quality and

song popularity are anti-correlated and reveal that song

embedding optimization can balance performance across

different popularity levels.

• We show the potential positive downstream effects on

the task of play prediction revealing that the benefits of

song embedding optimization extend beyond the tasks

considered during optimization.

• Finally, we study embedding optimization at scale on an

internal dataset of billions of listening events and show

that increasing training dataset size allows for better con-

figurations at the expense of longer optimization times.

2. METHOD

We consider song embeddings based on Word2Vec. This

model was originally created to represent words in an
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English corpus through a self-supervised shallow neu-

ral network trained to learn dense vector representations

of the words from sentences based on the surround-

ing words [14]. The same principle is now commonly

used in recommender systems to compute item embed-

dings from user interaction sequences like site sessions or

playlists [25–28].

We study song embedding optimization with respect to

four main tasks: next-song prediction, false neighbor re-

jection, artist clustering, and genre clustering. We define

in this section the task and metrics that we used both for

embedding optimization and evaluation of its effects on the

resulting embedding space.

2.1 Next-Song Prediction

We choose next-song prediction as our primary target task.

Next-item prediction is a common recommendation task

whose goal is to predict the next item the user will inter-

act with given some context [29]. In music recommenders,

this often translates to predicting the next song given the

history of songs played by the user [30]. To ensure the con-

textual relevance of recommendations, the past play his-

tory is often limited to the past few played songs or ses-

sions, although more flexible solutions that look beyond a

fixed horizon exist [31].

Since our main goal is not to build the most accurate

next-song predictor, but rather to measure effects of opti-

mization on the embedding space as directly as possible,

we simplified next-song prediction to the extreme case of

predicting the next played song based only on the imme-

diately preceding song. For each song in the evaluation

set (the target song henceforth), we consider the song the

user played before it as the query song. For each (query,

target) pair, we simply retrieve the top-100 exact nearest

neighbors of the query and compute the average HitRate

and Normalized Discounted Cumulative Gain (NDCG) on

the top-100 ranked neighbors. HitRate is the fraction of

times the target song is contained in the nearest neighbor

of the query, while NDCG also accounts for the rank of the

correct next-song within the predictions [32].

In order to ensure that improvements are due to true

generalisation and not to overfitting, we split the evaluation

into in-set and out-of-set. In in-set evaluation, we mask the

last song in every training sequence and use second-to-last

song as the query to compute next-song prediction met-

rics. In out-of-set evaluation, we hold-out the whole play

sequences in the validation and test sets, and use every or-

dered pair of songs therein contained to compute the next-

song prediction metrics. We use the average in-set and out-

of-set HitRate and NDCG values in our experiments. The

precise definition of a sequence varies between our exper-

imental datasets and will be discussed in Section 3.

2.2 False Neighbor Rejection

Since high quality nearest neighbors are essential to pro-

viding a good recommendations, we are interested in

evaluating the effectiveness of filtering out spurious song

neighbors, i.e., songs that are in the closest neighborhood

Query song Hard Negative Neighbors

Paradise - Coldplay
Snowman - Sia
Immigrant Song - Led Zeppelin
Basket Case - Green Day

Smells Like Teen Spirit - Nirvana
Power - Kanye West
Ob-La-Di, Ob-La-Da - The Beatles
Rock Your Body - Justin Timberlake

Carry On Wayward Son - Kansas
Natural - Imagine Dragons
Rap God - Eminen
It Ain’t Me - Kygo & Selena Gomez

Table 1: Examples of hard negative neighbors in Stream.

of another song merely by chance and not due to real be-

havioral or metadata similarity.

To this end we define the task of False Neighbor Re-

jection. We used a chi-squared X2 test to identify false

neighbors in the play sequence dataset [33]. The X2 test

compares the observed co-occurrence frequencies of ev-

ery pair of songs in the listening sequences against the ex-

pected co-occurrence frequencies in case of independence.

It is thus suitable to detect pairs of songs that appear in

sequence by chance, and not because they are strongly re-

lated due to behavioral factors or metadata. In practice,

we compute the X2 coefficient for each unordered bigram

of songs in the play sequence dataset. We consider as a

hard negative neighbor of a song any other song having

high co-occurrence but chi-squared statistic below a sig-

nificance threshold 1 .

One limitation of this approach is that it requires a large

number of events to be able to find frequently co-occurring

song pairs by chance. We were therefore able to run this

analysis only on the Stream dataset, from which we re-

trieved 5M hard-negative pairs, with an average of 92 hard-

negatives per song. Some examples of hard negative neigh-

bors are shown in Table 1. We define the HardNeg metric

as the proportion of hard negatives for the top-100 nearest

neighbors of every song (the smaller the better). We will

use it as a safeguard metric agains undesired side effects of

song embedding optimization.

2.3 Artist and Genre Clustering

We are interested in measuring how strongly classes such

as artists and genres cluster together in a given embedding

space. We introduce here the concept of Local Genre Co-

herence of the embedding space as the average fraction of

songs in nearest neighbors set having the same primary

genre as the query song. We similarly define the Local

Artist Coherence as the average fraction of nearest neigh-

bors belonging to the same artist as the query song. For

example, an embedding space has Local Genre Coherence

= 0.5 if on average 50% of the nearest neighbors of each

song have its same primary genre.

Computing Local Coherence metrics is a costly opera-

tion since it requires us to inspect the nearest neighbors of

every embedded song. We instead propose to use as proxy

metric during optimization the much cheaper Caliński-

1 We empirically chose 10−7 times the sum of all song occurrences in
the dataset as threshold.
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Dataset Stream Stream-1% LFM-1b

Songs 66M 17M 31M
Events 255B 2.6B 1B
Sequences 0.9B 9.3M 120K
Sequence length: mean 277 276 9044
Sequence length: 25th percentile 16 16 1138
Sequence length: median 29 27 3930
Sequence length: 75th percentile 58 57 16155

Table 2: The statistics of the datasets.

Harabasz index or Variance Ratio Criterion (VRC) [34]

over artist and genre clusters in the embedding space. The

VRC is the ratio of the sum of between-clusters disper-

sion and of within-cluster dispersion for all genre clusters,

where dispersion is the sum of squared distances. Higher

VRC values correspond to better separation among clus-

ters, which is a desirable property because it reduces the

chances of uncontrolled, cross-artist and cross-genre pol-

lution in recommendations.

We study the optimization of embedding spaces with

respect to clustering metrics and their relation to recom-

mendation quality in Section 4.3 and 4.4.

3. DATASETS

We run our experiments on two datasets. The first is a

large-scale proprietary dataset of anonymized streaming

listening sequences and playlists. We call this dataset

Stream. The second is the LFM-1b dataset which con-

tains 1B time-stamped listening events collected from

Last.fm [35].

The main statistics of each dataset are shown in Table 2.

The sequence length distribution differs significantly be-

tween the two datasets. Stream contains large numbers of

both long listening suquences and short playlists (the me-

dian length is 58, but mean is 277), while LFM-1b con-

tains mainly long listening sequences (the median length

is 3930). This will have an impact on the optimal hyper-

parameters discovered for each dataset.

In order to compute artist and genre clustering met-

rics we need song-level artist and genre annotations. For

the Stream dataset, each song in is mapped to the cor-

responding primary genre and artist through an internal

auto-tagging pipeline. LFM-1b already comes with song

to artist mappings, however song-level genre annotations

are not directly available. We hence mapped each song

to the first Freebase artist genre from the LFM-1b User

Genre Profile dataset [36]. We are aware of the noise in-

troduced by this approximation, yet we believe it provides

a useful contribution towards the reproducibility of our ex-

periments.

We partition both datasets by randomly sampling se-

quences without replacement with proportions 98/1/1 for

training, validation and test respectively. However, Stream

still contains 7500 times more sequences than LFM-1b,

which makes optimization at full-scale impractical. We

hence downsample the sequences in the dataset using a

1% rate. We will refer to this subsampled dataset to as

Stream-1%. We will investigate how to scale the optimiza-

Parameter Default Range Description

d 100 [25, 200] Embedding vector dimension
L 5 [1, 40] Sliding window max length
α 0.75 [−1.0, 1.0] Negative sampling exponent
N 5 [1, 100] Number of negative samples
λ 0.025 [0.001, 0.1] Initial learning rate

Table 3: Default Word2Vec hyper-parameters and their re-

spective optimization ranges.

tion up to the full dataset in more detail in Section 4.7.

4. EXPERIMENTS

We report here the optimization of song embeddings for

the tasks defined in the previous section. We optimize

the hyper-parameters of skip-gram Word2Vec by running

Bayesian Hyper-Parameter Optimization (HPO) [37], ini-

tialized with 10 iterations of Random Search [38] before

running Bayesian Search until convergence. Similarly to

previous work, we constrained all training times to be

approximately equal to the default Word2Vec configura-

tion [16]. This ensures a fair comparison among trials,

and prevents the optimizer from discovering configurations

that are impractical to train at large scales.

4.1 Background on Word2Vec

Both variants of Word2Vec, Skipgram and the Continuous

Bag of Words (CBOW), are self-supervised shallow neu-

ral network models trained by minimizing the categorical

cross-entropy loss with approximation softmax [14]. Here

we consider Skipgram with negative sampling for its supe-

rior computational efficiency [39].

The hyper-parameters of Word2Vec, their defaults and

optimization ranges are detailed in Table 3. In short, d is

the embedding size, L is the maximum window length, α

controls the negative sampling (uniform sampling for α =
0, popularity sampling α > 0, inverse popularity sampling

for α < 0), N is the number of negative samples used to

approximate the softmax and λ is the learning rate.

4.2 Optimizing for Next-Song Recommendation

We first analyze the optimization of next-song recommen-

dation quality by running HPO with the HitRate objec-

tive. In line with previous works, we observe significant

improvements with respect to the default configurations

on both the tested datasets (second line of Table 4). On

Stream-1%, HitRate improves by 5% and NDCG by 7%,

while HardNeg reduces drastically by 40%. The reduction

in HardNeg ensures that the improvement in recommen-

dation accuracy does not comes at the expense of more

false positive neighbors. On LFM-1b we similarly observe

+19% HitRate and +31% NDCG. The results on this task

are in line with previous findings [15, 16].

We are now also able to monitor the effects of opti-

mization on Genre and Artist Clustering metrics. While,

VRCGenre and VRCArtist slightly increase on Stream, they

both reduce on LFM-1b. This suggests that recommenda-

tion and clustering metrics may be slightly anti-correlated
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Stream-1% LFM-1b

Opt. Type Objective HitRate NDCG HardNeg VRCGenre VRCArtist HitRate NDCG VRCGenre VRCArtist

N/A N/A 0.3538 0.1378 0.0180 927 3.373 0.3771 0.1562 520 4.141

Single-obj
HitRate 0.3725↑ 0.1482↑ 0.0108↑ 1033 4.437 0.4492↑ 0.2050↑ 382 3.457
VRCGenre 0.3000 0.1218 0.0146 2006 5.521 0.3776 0.1609 1293 8.603
VRCArtist 0.3402 0.1336 0.0175 1397 34.347 0.3532 0.1488 1444 94.476

Multi-obj

λGenre(0.01) 0.3772↑ 0.1586⇑ 0.0084↑ 1495 5.216 0.4428↑ 0.2092↑ 623 5.955

λGenre(0.1) 0.3742↑ 0.1515⇑ 0.0096↑ 1617 5.771 0.4067↑ 0.1698↑ 997 7.298

λArtist(0.01) 0.3699↑ 0.1520⇑ 0.0057⇑ 1166 4.580 0.4458↑ 0.1883↑ 487 5.469

λArtist(0.1) 0.3331 0.1332 0.0093 ↑ 2233 7.422 0.4537↑ 0.1998↑ 619 6.022

Table 4: Results of hyper-parameter optimization on both datasets. The first line reports the metrics for the default config-

uration. Best results are in bold. For HR/NDCG/HardNeg only: ↑ and ⇑ denote stat. sig. improvement over the default and

the best single-objective configurations respectively (paired t-test at p < 0.01 with Bonferroni correction).

for this dataset. We will investigate this effect further in

Section 4.3 and 4.4.

4.3 Optimising for Genre and Artist Clustering

We now analyze the optimization of embeddings with re-

spect to the Local Genre and Artist Coherence by using the

Variance Ratio Criterion as a proxy objective.

We first show that VRC is a suitable proxy by compar-

ing it against Local Coherence metrics on Stream-1%. We

computed Local Genre Coherence on 500 songs with at

least 10k plays selected using stratified sampling across

the top-10 played genres and using 50 nearest neighbors

per song. Figure 1 (left) shows strong positive correlation

between average Local Genre Coherence and VRCGenre

of 5 embedding spaces generated with different hyper-

parameters. We similarly computed Local Artist Coher-

ence by sampling 125 artists having at least 25 songs us-

ing stratified sampling by artist popularity to account for

popularity biases. We then average artist coherence score

over 5 songs per artist and 50 nearest neighbors per song.

Figure 1 (right) shows positive correlation between Lo-

cal Artist Coherence and VRCArtist of 5 embedding spaces

generated with different hyper-parameters.

Table 4 shows that the optimal configuration for genre

clustering on Stream-1% doubles the VRCGenre score com-

pared to the default hyper-parameters, but with a signifi-

cant reduction in terms of HitRate and NDCG. The next-

song recommendation quality is thus badly affected by the
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Figure 1: Local Coherence for genres (left) and artists

(right) on Stream-1%. Means and 95% Confidence Inter-

vals are shown.

myopic optimization of genre coherence. This effect is

slightly less evident for artist clustering optimization, in

which we were able to obtain 10 fold greater VRCArtist with

negligible decrease in HitRate and NDCG. In both cases,

HardNeg is not significantly affected.

We observe similar effects on LFM-1b, where signifi-

cant improvements in VRCGenre and VRCArtist correspond

to non significant improvement (genre clustering) or sig-

nificant deterioration (artist clustering) of next-song rec-

ommendation metrics.

For both datasets, the optimal configurations have sig-

nificantly worse next-song recommendation quality than

the optimal one found by single-objective next-song rec-

ommendation. This suggests that optimizing embeddings

for clustering alone can seriously harm the recommenda-

tion quality. In the next section we tackle the problem of

optimizing both objectives simultaneously.

4.4 Multi-objective Optimization

High quality next-song recommendation and genre/artist

clustering are both desirable properties of the embedding

space but, as we have just observed, optimizing for a sin-

gle objective can harm others. We investigate here the si-

multaneous optimization of both objectives through Multi-

Objective Hyper-parameter Optimization (MOHPO).

The simplest approach to MOHPO is scalarization,

which transforms a multi-objective goal into a single-

objective one. Examples of scalarization are the weighted

sum, Tchebycheff or ǫ-constraint approaches [40]. Ad-

vanced MOHPO techniques extend evolutionary algo-

rithms and Bayesian Optimization to explicitly handle dif-

ferent trade-offs between the multiple objectives [40]. The

choice of the optimal MOHPO method is beyond the scope

of this work, hence we opted for Bayesian Optimization

with scalarization since it fits easily into our existing opti-

mization framework.

We focus on the joint optimization of HitRate and

VRCGenre. The same reasoning holds for HitRate and

VRCArtist and it is omitted for space reasons. Since these

metrics have widely different scales, we first define the rel-

ative improvement in VRCGenre of a new hyper-parameter
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configuration t with respect to the default configuration:

rVRCGenre
(t) =

VRCGenre
(t)

− VRCGenre
(def)

VRCGenre
(def)

(1)

where VRCGenre
(def) is the VRCGenre for the default con-

figuration. The new scalarized objective is the simple con-

vex combination of the two objectives:

λGenre(α) = αHitRate(t) + (1− α)rVRCGenre
(t) (2)

where α controls the relative weight of next-song recom-

mendation and genre clustering objectives in the optimiza-

tion.

We tried values of α = 0.01 and 0.1. Results shown

in Table 4 highlight the effectiveness of this approach on

Stream-1%. While there is not a single solution that per-

forms best on all metrics, the configuration found with ob-

jective λGenre(0.01) dominates the best solution discovered

by next-song optimization on all metrics, with statistically

better NDCG (+7%). The configuration found with objec-

tive λArtist(0.01) also achieves statistically better HardNeg,

with a reduction of 68%, at the expense of lower clustering

scores. In both cases increasing the value of α to 0.1 we

can effectively trade some next-song prediction accuracy

for better genre and artist clustering quality. The optimal

setup depends on the final application.

Similarly, on LFM-1b we observe that the best next-

song recommendation strategies are found through multi-

objective optimization, although no solution entirely domi-

nates any single-objective this time. This fact can be partly

attributed to the noisy genre annotations we have available

for this dataset.

These results highlight the effectiveness of combining

recommendation and clustering objectives, which can mu-

tually benefit from each other if combined properly.

4.5 Insights on Song Popularity

The effects of popularity on recommendations are subject

of intense research activity within the research commu-

nity [23–25]. We contribute here by studying the effects

of next-song recommendation HPO on (query, target) song

pairs belonging to various buckets of popularity.

We first categorize songs into buckets of popularity,

each of which comprises 20% of the total listening events

in the dataset, being 0 the smallest bucket with most popu-

lar songs and 4 the largest bucket containing the least pop-

ular ones 2 . We randomly sample 1k songs per bucket

pair and the aggregate HitRate based on query and tar-

get bucket. For the sake of space, we analyze the Stream

dataset only here. The results on LFM-1b are available in

the Supplementary Material.

Figure 2a shows the values of HitRate by bucket pair

for the default configuration of Word2Vec. We first ob-

serve that the recommendation quality is localized to the

same or nearest popularity bucket to which the query song

2 The songs that account for the top-20% of all plays end in bucket 0,
the ones for the top-20% to 40% end in bucket 1, etc.
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Figure 2: Query-target popularity analysis for

Stream: HitRate by popularity bucket for the default con-

figuration (a) and the optimized one (b), and HitRate for

song pairs in the same popularity bucket (c). Bucket 0
contains the most popular songs.

belongs. As the query and target begin to differ in popu-

larity, HitRate drops. We clearly see that HitRate is anti-

correlated with popularity. One possible explanation is that

popular songs by definition give less information about the

user tastes and hence have larger sets of plausible “next-

songs”. On the other hand, the less popular songs often

belong to taste “niches” and are thus easier to model.

Figure 2b shows the values of HitRate by bucket pair for

embeddings for the optimal λGenre(0.01) multi-objective

configuration. The behavior of localized performance and

anti-correlation observed using the default configuration is

still visible. However, we notice a significant difference

between the two configurations across the main diagonal.

We have highlighted this difference in Figure 2c. We can

see that tuning brings significant gains in HitRate at all

buckets except for the least popular songs in 4. On both

datasets 3 optimization seems to balance recommendation

accuracy more across popularity buckets, which is a desir-

able effect.

4.6 Insights on Play Prediction

As song embeddings are usually used as inputs to other

pipelines, we wanted to explore whether embedding op-

timization had beneficial effects on a different task from

the one it was originally run on. For the sake of this ex-

periment, we considered the problem of Play Prediction in

seeded radio and autoplay. In seeded radio, the user se-

lects a seed, e.g., an artist or a song, and the recommender

generates an endless sequence of songs that are related to

that seed. Similarly, autoplay generates a stream of music

starting from the last played song in an album or a playlist.

Seeded radio and autoplay are two prominent product fea-

tures that allow users to generate streams of songs that are

fully machine-learning driven. In both cases, the user or-

ganically selects only the seed or the collection from which

to start the stream of music, and everything else is left to

the recommendation algorithm to decide.

In this context, we study the reaction that users have on

the first recommended song, since it is where the transition

from organic to algorithmic selection happens. A bad lis-

tening experience at this point could easily induce users to

stop listening entirely. We thus consider the task of pre-

3 Figures for LFM-1b omitted to fit within space limits.
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Figure 3: Visualization of the positive correlation between

Relative Play Rate and cosine similarity on default em-

beddings (similarities quantized to the first decimal). Play

Rates are scaled relative to cosine similarity = 0.0 to pre-

serve business sensitive values.

Default Single-obj Multi-obj

All pairs 0.2055 0.2140 0.2304
Frequent pairs 0.3335 0.3480 0.3717

Table 5: Pearson’s correlation between Play Rate and co-

sine similarity for default and optimized embeddings.

dicting whether the first song generates a play event that

lasts at least 30 seconds. We call this task Play Prediction.

Building an accurate predictor is beyond the scope of

this paper. We instead measure the correlation between

the Play Rate, i.e., the average number of times one or-

ganic play is followed by a successful algorithmic play,

and the cosine similarity between the embeddings of the

recommended and the seed songs. We use Word2Vec em-

beddings trained on the full Stream dataset. We com-

pare default hyper-parameter configuration to the single-

objective and multi-objective configurations having the

highest HitRate on this dataset. We compute Play Rates

on a proprietary dataset composed of 4.2M song pairs ex-

tracted from 184M listening sessions.

Figure 3 shows that there is a strong positive correlation

between Play Rate and cosine similarity between embed-

dings. We observe positive correlation for both the default

and optimized embedding spaces (Table 5). The correla-

tion is stronger for the most frequent pairs (≥ 100 occur-

rences). However, the correlation is stronger for the op-

timized embeddings than the default ones, +4% for the

best single-objective configuration and +12% for the best

multi-objective configuration. This suggests that embed-

ding optimization can have beneficial effects on tasks dif-

ferent from the one it was initially designed to address.

Furthermore, it provides additional evidence on the supe-

riority multi-objective optimization over single-objective

one.

4.7 Optimization at Scale

To the best of our knowledge, there exists little literature on

hyper-parameter optimization over massive datasets with

billions of sequences and events. Previous work on the

topic either optimize directly on the full dataset, which is

unfeasible at scales like our Stream dataset, or consider a

fixed subsample rate [16]. However, it is unclear which

subsample rate would lead to results that are representative

of performance at full-scale.

Sampling Opt. time HitRate NDCG HardNeg VRCGenre VRCArtist

N/A N/A 0.3079 0.1217 0.0126 7229 3.266
1% 28h 0.3432 0.1378 0.0109 7367 3.780
2% 47h 0.3499 0.1421 0.0063 6886 3.374
5% 83h 0.3729 0.1506 0.0167 10410 3.992

Table 6: Results of multiple scale HPO on Stream, with

the total optimization time and the best metrics obtained

full scale (first line refers to the default configuration).

Better performance is obtained at the largest subsample

rates at the expense of longer optimization times. All pair-

wise comparisons on HitRate, NDCG and HardNeg are

stat. sig. at p < 0.01 using Bonferroni correction, except

for HardNeg between default and 1% sampling.

We explore this aspect by running Hyper-Parameter Op-

timization at increasing training dataset scales. The best

hyper-parameters found at each data scale are then used to

train the model at full-scale. We limit training time to stay

within 25% more the time of training runs with the default

hyper-parameters. This allows us to identify the best repre-

sentative subsample rate while keeping optimization times

within reasonable limits.

We split the Stream dataset into 4 overlapping train-

ing sets containing 1%, 2%, 5% and 98% of randomly

selected sequences respectively, We run Bayesian hyper-

parameter search on the first 3 splits and use the best hyper-

parameters from each run to train Word2Vec at full 98%

scale. For simplicity, we consider just single-objective

HitRate optimization. Table 6 shows that there is signifi-

cant correspondence between the sampling rates used dur-

ing optimization and the final performance on the full scale

dataset. The optimal configuration found at 5% scale is

by far the best when evaluated at full-scale on all met-

rics. However, the total optimization time increases sig-

nificantly when larger subsamples are used.

5. CONCLUSIONS

In this paper we analyzed the offline optimization of song

embeddings through the lens of the tasks they are often

employed on downstream. We proposed an effective way

to optimize Word2Vec hyper-parameters on recommenda-

tion and clustering tasks jointly, with substantial bene-

fits over their respective single-objective optimization vari-

ants. We investigated the interactions between next-song

recommendation and song popularity. Our results suggest

that careful optimization has the desirable property of bal-

ancing algorithm performance across popularity buckets.

We showed the potential positive effects of optimization

on the downstream task of Play Prediction, which provided

further evidence on the superiority of multi-objective op-

timization over single-objective one. Finally, we investi-

gated the effects of optimization at scale, which is particu-

larly relevant for industrial applications.

As future work, we plan to validate these insights with

online A/B testing. Our approach can be extended to other

tasks, like diversity and fairness, and to the latest findings

in Multi-Objective Hyper-parameter Optimization [40,41].
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