
CHECKLIST MODELS FOR IMPROVED OUTPUT FLUENCY
IN PIANO FINGERING PREDICTION

Nikita Srivatsan

Carnegie Mellon University

nsrivats@cmu.edu

Taylor Berg-Kirkpatrick

UC San Diego

tberg@eng.ucsd.edu

ABSTRACT

In this work we present a new approach for the task of

predicting fingerings for piano music. While prior neural

approaches have often treated this as a sequence tagging

problem with independent predictions, we put forward a

checklist system, trained via reinforcement learning, that

maintains a representation of recent predictions in addi-

tion to a hidden state, allowing it to learn soft constraints

on output structure. We also demonstrate that by modi-

fying input representations Ð which in prior work using

neural models have often taken the form of one-hot encod-

ings over individual keys on the piano Ð to encode rela-

tive position on the keyboard to the prior note instead, we

can achieve much better performance. Additionally, we re-

assess the use of raw per-note labeling precision as an eval-

uation metric, noting that it does not adequately measure

the fluency, i.e. human playability, of a model’s output.

To this end, we compare methods across several statistics

which track the frequency of adjacent finger predictions

that while independently reasonable would be physically

challenging to perform in sequence, and implement a re-

inforcement learning strategy to minimize these as part of

our training loss. Finally through human expert evaluation,

we demonstrate significant gains in performability directly

attributable to improvements with respect to these metrics.

1. INTRODUCTION

While sheet music is often very specific as to what notes a

musician must play, it can also be vague about how to play

them. Composers generally write notation that focuses

on describing the desired musical output, but leave the

specifics of how to achieve this with their instrument up to

the performer, as these details are outside the scope of their

role in the creative process or in some cases beyond their

expertise. The piano is an instrument which requires an

extensive amount of decision-making on the performer’s

part. In order to perform a piece of music, a pianist must

either consciously or intuitively select which finger to use

to play every note in the song. Notes may overlap in du-

© N. Srivatsan and T. Berg-Kirkpatrick. Licensed under a

Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: N. Srivatsan and T. Berg-Kirkpatrick, ªChecklist Models

for Improved Output Fluency in Piano Fingering Predictionº, in Proc. of

the 23rd Int. Society for Music Information Retrieval Conf., Bengaluru,

India, 2022.

Bi-LSTM

MLP

I II III
Checklist

Past Finger
Predictions

Song in
MIDI

Current 
Prediction

Linearized
Input Seq

Figure 1. Visualization of the checklist model. Notes are

embedded and then passed to a Bi-LSTM which outputs

contextualized embeddings at each timestep. A checklist

encodes where the fingers that have recently been used are

located based on prior predictions. These are both fed into

an MLP which predicts the next finger.

ration or even have simultaneous onsets. Since any key

on the piano can potentially be played by any finger, there

are an exponential number of ways one could perform any

given piece; of these however, the majority would be un-

comfortable, difficult to play at full tempo, or even phys-

ically impossible [1]. The challenge of deciding the most

ergonomic fingering to use can be nontrivial for less ex-

perienced pianists, who would not yet have the ability to

quickly map common musical patterns to conventional fin-

gering strategies, and might produce more consistent and

accurate performances if provided with them [2].

However recent work has shown that the use of ma-

chine learning techniques may be able to assist in this re-

gard [3±6]. Automatic piano fingering prediction is the

task of inferring finger assignments for each note in a sym-

bolic representation of a piano song, given knowledge of

which hand is meant to play each note. Human players

generally prefer fingerings that balance physical comfort

and efficiency [2], yet these criteria are difficult to quan-

tify and highly subjective [7]. Decisions are simultane-

ously constrained by the current placement of the musi-

cian’s fingers, and by how that decision may in turn affect

possible options for the notes that follow. And while the

spatial location of the notes on the keyboard is arguably

the most salient factor, timing is also crucial; certain fin-

gerings might be easy for a set of consecutive notes, but

impossible if the same notes are in a chord.

525



Prior approaches to this task have largely treated it as a

sequence tagging problem, where the input at each step is

simply the pitch of the note and the output is a softmax over

indices corresponding to each finger, and have employed

methods analogous to those used for part of speech tagging

such as LSTMs and HMMs. However, these techniques are

limited in their capacity to model output dependencies, and

also disregard the amount of elapsed time between notes

which can greatly affect a prediction’s performability.

We propose an autoregressive approach, where prior

predictions are fed back into the network in order to en-

courage the model to produce fingerings that are not just

accurate on average, but also locally fluent and therefore

playable. We do this using a checklist which indicates

which fingers have either recently been or are currently

in use, and where they are on the keyboard relative to the

note at the current timestep. By directly exposing this in-

formation, the model can more easily learn to restrict its

predictions to fingers that are actually free, and also make

decisions more directly influenced by the hand’s physical

placement. We also experiment with an approach that only

feeds back in the most recent prediction, as well as an au-

toregressive tagger which maintains a neural representa-

tion of prior predictions using an encoder network.

Furthermore, the evaluation metrics used in prior work

do not always correlate with what a pianist might intu-

itively perceive as ªgoodº predictions. In fact there are

many types of desirable (or undesirable) patterns that may

emerge in a model’s output, which a simplistic metric such

as labeling precision may not actually reflect. We demon-

strate that it is possible for two models with nearly iden-

tical labeling precision to differ dramatically in the fre-

quency of specific types of output subsequences that are

physically challenging to play. Therefore, we evaluate on

a battery of metrics that collectively convey a more holistic

and interpretable overview of fingering quality.

Since these metrics are not always correlated with the

labeling precision that a cross entropy loss optimizes,

we also investigate incorporating them explicitly into

our loss function at train time. While these scores are

non-differentiable, we show that reinforcement learning

techniquesÐwhich have previously seen success in se-

quence generation tasks outside of musicÐcan success-

fully optimize them. This, in conjunction with our check-

list approach, ensures that the model not only has direct

access to the information it would need to avoid undesir-

able output patterns, but is also encouraged to do so.

Finally, we conduct human evaluations and qualitative

analysis which confirm that our approach improves pre-

dicted fingerings in ways consistent with our modeling

choices, and also suggest directions for future work.

In summary our contributions are as follows: (1) We

provide a comparison of various input representations for

LSTM models (2) We put forward checklist based ap-

proaches which directly incorporate information from pre-

vious decisions (3) We introduce several additional met-

rics which track fluency of output, and demonstrate how to

train directly on them using reinforcement learning.

2. RELATED WORK

While constraint-based models for automatic piano finger-

ing have long existed [1], the standardization as a ma-

chine learning task which we follow was formalized by [3],

which introduced the PIano fingerinG (PIG) dataset, put

forward LSTM and HMM baselines (following prior work

using HMMs [8,9]), and has since been followed up on by

others. [4] demonstrated the value of pretraining on even

a noisy automatically annotated dataset, although they fo-

cused on basic LSTM models and evaluated exclusively on

labeling precision. [5] put forward the idea of representing

inputs based on relative difference in pitch rather than ab-

solute pitch, and also showed improvements from the use

of a constrained transition matrix, albeit one that was built

off of prior knowledge of the task. [6] recast fingering as

an information retrieval problem, although they focused on

the Czerny corpus instead of the PIG dataset.

Our work also draws from research into implicitly

learning output structure by feeding prior decisions into

the computation of future predictions. There are classic

examples of graphical models that condition predictions

both on inputs at the current timestep and outputs at the

previous [10]. Recent work on explicit checklists in neural

settings, such as by [11] found success using a structured

agenda that tracked ingredient usage in conditional cook-

ing recipe generation. Our checklists are however more

transient; outputs can be removed from the checklist if

enough time has passed. We also track not just the pres-

ence of outputs, but information about how they were used.

There is also much work on the use of REIN-

FORCE [12] for sequence generation tasks. While [13]

performed several tasks including summarization, transla-

tion, and image captioning, but required a critic model for

stabilization, [14] developed a self-critical method for cap-

tioning that did not require this additional network. [15]

applied a similar technique to abstractive news summa-

rization. Reinforcement learning has also been applied in

a musical setting [16], including the REINFORCE algo-

rithm specifically [17, 18], but most of these have focused

on music generation rather than downstream prediction of

performance-oriented attributes such as fingerings.

3. MODEL

We now describe the basic layout of the models we com-

pare, and detail the specific variations between them. First,

we will formalize the basic model contract and explain the

basic architecture components that most of them share.

At a high level, each model takes in a MIDI-derived

representation of either the left or right hand of a com-

plete piano song, and outputs a predicted finger for each

note. More formally, we are given an input sequence of

notes x = {x1, ..., xN}, where each xi = (pi, t
−
i , t

+

i )
is a tuple consisting of a pitch pi ∈ {1, ..., 88} as well

as a corresponding onset time t−i ∈ R≥0 and offset time

t+i > t−i . From x we must predict a corresponding se-

quence y = {y1, ..., yN} where each yi ∈ {1, 2, 3, 4, 5}
is an index representing the finger used to play xi from

thumb to pinky respectively.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

526



Raw Pitch 55
Note 

Octave 3

G Note 
Distance +4

G
Lattice

+2

-1

Figure 2. Examples of the input representations we com-

pare. Note that the labels on the vectors are indices corre-

sponding to sub-embeddings shared across notes.

To this end, each predictive model defines a distribu-

tion p(y|x; θ), generally parameterized by an LSTM vari-

ant. Under our non-checklist simple Bi-LSTM baseline,

the individual yi are conditionally independent given x:

p(y|x; θ) =
∏N

i=1
p(yi|x; θ). However for our autoregres-

sive models, the likelihood factorizes according to chain

rule: p(y|x; θ) =
∏N

i=1
p(yi|y<i,x; θ)

As shown in Figure 1, the notes are first embedded, and

then passed to a Bi-LSTM which outputs a contextualized

representation. This contextualized representation is op-

tionally concatenated with a d dimensional vector repre-

sentation of the checklist c ∈ R
N×d before being passed

to an MLP which outputs a softmax distribution over finger

indices. We can think of the checklist as a function of the

past and current notes as well as the past finger predictions

ci(x≤i, ŷ<i). The model is trained to optimize the cross

entropy loss between this distribution and the true labels.

3.1 Input Representations

We now discuss four different strategies to encode the song

into an input sequence of vector embeddings (illustrated in

Figure 2). These each expose different information to the

model which can significantly affect performance.

Raw Pitch: This approach simply represents each note

by its pitch pi, assigning a learnable embedding to each

value. This was done by most previous neural implemen-

tations [3, 4], and requires learning 88 vector embeddings.

Note ⊕ Octave: Given the fact that a piano keyboard’s

layout is identical across octaves, we might believe that

more important than the exact key being played is the

named note itself (e.g. knowing that the next note is a G#

might be more useful in predicting which finger to use than

knowing that it is the MIDI pitch 68). To this end we also

evaluate the use of an input representation that consists of

an embedding corresponding to the named note concate-

nated with an embedding corresponding to the octave.

Note ⊕ Relative Distance: If finger choice is primar-

ily a function not of the note’s pitch but of its location on

the keyboard relative to the other notes in the song, then

directly exposing that information saves the model from

having to infer it. For this representation, we concatenate

an embedding for the named note with one correspond-

ing to the change in pitch pi − pi−1 (see Figure 2). Since

large distances between notes require physically lifting the

hand from the keys, an act which eliminates any sequential

constraints, we cap step sizes at 15 semitones. [5] used a

similar approach without the named note embedding.

Lattice: We finally evaluate a ªlatticeº representation

based on the one introduced by [3] (note that this was

only used in that work for HMMs and not neural mod-

els). As shown in Figure 2, we can think of this as a two-

dimensional encoding of relative position, where the first

dimension corresponds to the number of white keys be-

tween notes (i.e. the horizontal distance), and the second

dimension indicates if we have moved from a white key to

a black key or vice versa (i.e. the vertical distance). These

dimensions are each embedded with corresponding vector

embeddings, with a horizontal cutoff of 9 steps. This is the

default representation where not otherwise specified.

3.2 Checklist Formulation

To encourage the model to produce fluent predictions,

rather than simply choosing the most likely finger at each

timestep independently, we also consider a series of exten-

sions that feed recent predictions into the MLP alongside

the contextualized embeddings produced by the LSTM, in

the form of a vector embedding ci(x≤i, ŷ<i) ∈ R
d.

Autoregressive Tagger: We start with a baseline au-

toregressive variant of our simple Bi-LSTM model in

which the forward half of the Bi-LSTM acts as an encoder

over prior predictions as well as notes. In this setup, we do

away with the Bi-LSTM over notes x, and instead replace

it with a forward LSTM f(x, ŷ), and a backward LSTM

b(x). At each timestep i, the MLP is fed the concatenated

output of both LSTMs fi(x<i,y<i)⊕ bi(x≥i).

Prev Finger Embedding: As a precursor to a full

checklist, we also experiment with a neural variant of a

Maximum Entropy Markov Model (MEMM) [10]. Un-

der this setup, we map the predicted label of the previous

timestep ŷi−1 to a corresponding vector embedding, and

concatenate this with the contextualized embedding of xi

produced by the Bi-LSTM, before passing the result to the

MLP. This approach only takes into account the most re-

cently used finger and ignores timing, but also requires the

fewest additional model parameters.

Binary Checklist: This checklist embedding is a 5 di-

mensional vector, where each dimension corresponds to a

finger. The ith dimension is set to 1 if that finger has re-

cently been predicted for a note of a higher pitch than the

current, a −1 if it has recently been predicted for a lower

note, or a 0 otherwise. We empirically find that ªrecentº is

best defined as within 100 milliseconds.

Distance Checklist: This representation is a concate-

nation of 5 vector embeddings, one for each finger. These

finger embeddings use the lattice input representation strat-

egy, where the first half corresponds to the horizontal dis-

tance between the note that that finger was recently pre-

dicted for and the current one, and the second half corre-

sponding to the vertical distance. If a finger has not re-

cently been used, its section in the checklist vector will be

filled by a learnable ªdummyº embedding.

4. LEARNING AND EVALUATION

Next we will detail the additional metrics that we intro-

duce, and show how by using reinforcement learning we

can train our model to optimize some of them directly.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

527



III II

III I
I

II III IV
V

I I

Thumb
Cross

Thumbless
Cross

Smear

III III
Hop

I III

Crossed
Chord II

I IV

Step 
Spread

 = 6/3
I IV

Chord 
Spread

/(IV-I)

Figure 3. Fingering patterns tracked by our fluency met-

rics. Arrows and shading indicate sequential notes.

4.1 Fluency Metrics

We now describe the metrics we use to measure model per-

formance. While research into pianists’ fingering strate-

gies shows that decisions are mostly motivated by min-

imizing ergonomically unfavorable patterns [2, 7], prior

work has primarily evaluated on per-note labeling preci-

sion averaged over annotators, referred to as Mgen (albeit

with some different strategies for handling disagreements

between annotators [3]). However, by simply checking if

each prediction agrees with any annotator’s label for that

note in isolation, we miss whether the model’s predictions

are coherent with one another. For instance, a model may

output two adjacent fingers which each agree with an an-

notator’s label, but not the same one, creating a pattern that

is harder to play than if it had solely aligned with one of

them, despite these having the same Mgen score. Also,

a model may output a sequence that agrees with none of

the annotators but is at least playable, and yet receives the

same score as a physically impossible sequence. This is

especially an issue for songs labeled by fewer annotators.

To address this, we expand the scope of our evalua-

tion to include metrics that also measure how fluent model

predictions are within themselves. To this end, we track

statistics on the frequency of several types of output pat-

tern that would increase the physical difficulty for a human

performer, but may not be reflected in the raw labeling pre-

cision score. This allows us to more holistically compare

models in ways that are both attentive to sustained agree-

ment with annotators, and also expose the specific ways in

which their predictions are more or less playable. Visual

examples of these are provided in Figure 3 for clarity.

4-gram: Anchored 4-gram precision is the proportion

of subsequences of four consecutive notes that were all pre-

dicted correctly with respect to a single annotator. This

metric measures output coherence, but is still directly tied

to the gold labels. Where Mgen scores plateau as they ap-

proach the inter-annotator agreement of 71.4, 4-gram pre-

cision has more headroom and better stratifies models.

Thumb/Thumbless Crosses and Crossed Chords:

Thumb crosses are where a note lower in pitch than the pre-

vious is played with a ªhigherº finger or vice versa, one of

those two fingers being a thumb. These shift the hand up or

down the keyboard without fully lifting off of the keys. We

also track crosses where neither finger is a thumb, which

is much less common due to their difficulty. We refer to

cases where two fingers are crossed and the notes overlap

in time as crossed chords. These are only performed under

very specific circumstances, as most chords are not physi-

cally playable with crossed fingers.

Hop: These are cases where one finger is used to play

two different consecutive notes. While not intuitively dif-

ficult, these do not allow the player to rest their hand in a

fixed spot, and make distances harder to accurately judge,

limiting the maximum tempo of a piece, similar to how

hunt-and-peck typing is generally slower.

Smear: In a smear, more than one note within a chord

is played by a single finger. These are generally utilized

when two adjacent keys are both in the chord, but because

of the placement of the other notes it is hard to use two sep-

arate fingers. While these are extremely rare in our gold la-

bels, naive baselines tend to produce them quite frequently.

Step/Chord Spread: Step spread tracks how far the

player must stretch their fingers apart while playing.

Specifically, it is the average number of semitones per fin-

ger separating any two adjacent but not overlapping notes.

For example, if a song contains an E followed by the B a

fifth above it, the step spread would be 7 for a model that

predicts playing them with fingers 1 and 2 respectively, but

only a 3.5 for a model that predicts 1 and 3. We measure

similar cases where the notes do overlap in time as chord

spread. A large average chord spread is more challenging

since it requires stretching the hand over a larger distance.

4.2 Loss Functions

Having defined our model as above, we can train it on

the cross entropy loss between the predicted distribution

p(y|x; θ) and the gold labels by simply backpropagating

to obtain parameter gradients and taking gradient descent

updates on our training set. Autoregressive models are

teacher forced at train time (i.e. conditioned on gold labels

from prior timesteps in lieu of the model’s own previous

predictions), and we decode with beam search at test time.

However, while training on cross entropy can yield

strong performance on labeling precision, we find that this

is not consistently correlated with other non-differentiable

metrics which we may also wish to optimize with respect

to. We therefore also investigate using a supplemental loss

function based on the REINFORCE algorithm [12] which

measures the frequency of undesirable fingering patterns in

predicted outputs. While REINFORCE is traditionally as-

sociated with environment navigation, it has seen success

in sequence generation tasks as well [13±15].

Under this framework, the loss function is formulated as

an expected reward, which we approximate by sampling a

sequence ỹ from our output distribution (using ancestral

sampling) and weighting its reward by its likelihood.

L =
(r̄ − r(x, ỹ))

N

N∑

i=1

log p(ỹi|ỹ<i,x; θ)

Where r̄ is the rolling average reward over the past 50
examples, serving as our reward baseline. In order to en-

sure stronger signal during training, we also calculate the

REINFORCE loss over 10 note chunks at a time, rather

than over an entire song as this would make the attribution

of reward to specific decisions less direct. In our experi-

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

528



Model
Thumb

Cross (#)
Thumbless
Cross (#)

Crossed
Chord (#)

Hop
(#)

Smear
(#)

Step Spread
(s/f)

Chord Spread
(s/f)

4-gram
(Acc)

Mgen

(Acc)

Gold 331 58 28 155 7 2.78 2.64 100 100

Bi-LSTM (MIDI) [3]† 228 84 47 485 148 2.63 2.56 66.7 27.8

Bi-LSTM (Note ⊕ Octave) 257 90 36 394 135 2.69 2.61 67.0 28.3

Bi-LSTM (Note ⊕ Rel Dist) 218 87 52 390 101 2.65 2.59 69.1 32.2

Bi-LSTM (Lattice) 217 43 40 334 74 2.66 2.62 69.6 33.1

Table 1. Results on PIG test set for Bi-LSTM model with different input representation schemes. The first row represents

the value of each metric under the gold fingerings produced by human annotators. Values in bold are the closest to the

gold labels’ score for that metric. †This model is based specifically on the neural approach used in [3], but is our own

implementation of it. It was similarly reimplemented by [4] in their work. Units for most metrics are simple frequency

counts, except for spreads which are in semitones per finger, and 4-gram and Mgen which are accuracies.

ments, we set the reward to be a function of the number of

hops and smears (see Section 4.1):

r(x,y) = exp(−#{i : xi ̸= xi+1, yi = yi+1}

−#{i : yi = yi+1, t
+

i > t−i+1
})

Because training solely on the REINFORCE objective

can lead the model towards degenerate solutions that triv-

ially minimize undesirable patterns while compromising

predictive accuracy, we take an approach similar to [15]

and [19] where both loss functions are summed into a

mixed training objective. This provides a reasonable trade-

off between the predictive signal of cross entropy, and

the pressure towards fluent output given by REINFORCE.

Mixed objective runs are warm-started on just the cross en-

tropy loss to avoid degenerate solutions.

5. EXPERIMENTAL SETUP

5.1 Implementation Details

We use 2 layer LSTMs and 2 layer MLPs with a hidden

size of 1024, and a dropout of 0.2 in both of these net-

works. We use d=256 for our input embedding size. Beam

search is performed to decode autoregressive models at test

time using a beam size of 10. Models are trained using the

Adam optimizer [20] with a learning rate of 1e−4. Our

code is implemented in PyTorch 1.8.1 [21] and trains on

an NVIDIA 2080ti GPU in roughly 12 hours.

5.2 Data

We train and evaluate on the PIano fingerinG dataset

(PIG) [3] which contains 150 piano songs written by 24

composers. Each song has up to 6 fingerings produced by

human pianists, yielding 309 annotated songs in total. Be-

cause of the imbalance in the dataset’s original splits, we

use alternate splits created by [4] which increase the rel-

ative size of the train and validation sets. As a baseline

we compare to a reimplementation of the LSTM model

of [3] (which was also reimplemented by [4] in their ex-

periments), albeit with the same architecture of our other

systems. We also show results from the third order HMM

implementation of [3], although the more similar neural

models are our primary point of direct comparison.

We employ similar preprocessing as prior work. Rather

than modeling left and right hands separately, we reflect

the pitches of all left hand parts and reverse the correspond-

ing finger labels, thereby constructing a second ªright hand

partº which we treat as an independent song. This prevents

overfitting by halving the label space. To handle chords,

i.e. multiple notes with identical onsets, we simply arpeg-

giate them from lowest to highest pitch. Otherwise, notes

are ordered by onset. We do however retain the original

timing information for constructing accurate checklists.

6. RESULTS

6.1 Input Representation Ablation

We start by investigating the effects of input representa-

tions on a simple Bi-LSTM baseline model that outputs

independent prediction probabilities at each timestep. Ta-

ble 1 shows our results across all metrics. Overall the lat-

tice representation does best, followed by note ⊕ octave.

This matches our hypothesis that learning a separate em-

bedding for each note on the keyboard leads to overpa-

rameterization, and that modular representations are more

effective. We also see that relative distance based embed-

dings lead to fewer hops and smears specifically, which

makes sense given that it allows the model to more easily

observe when notes are or are not repeated, and therefore

whether repeating the same finger would make sense.

6.2 Checklist Models

We see in Table 2 that the checklist models tend to do best

overall, with Binary Checklist using REINFORCE getting

the highest 4-gram score among LSTMs. All the autore-

gressive systems significantly outperform the Bi-LSTM

baselines, but with different tradeoffs in terms of the output

patterns we measure. REINFORCE minimizes the number

of hops and smears compared to just cross entropy, and in

doing so can sometimes boost other metrics as well.

Note that Mgen fails to fully reflect what are at times

substantial differences in model output made apparent

from the other metrics. For instance, the Prev Finger Em-

bedding produces fewer hops, smears, and crossed chords

than the Autoregressive tagger, likely indicating that it

would be far easier for a human to perform despite having

worse Mgen. This is especially apparent when comparing

the checklist models to the Bi-LSTM baselines. Also while

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

529



Model
Thumb

Cross (#)
Thumbless
Cross (#)

Crossed
Chord (#)

Hop
(#)

Smear
(#)

Step Spread
(s/f)

Chord Spread
(s/f)

Mgen

(Acc)

4-gram
(Acc)

Gold 331 58 28 155 7 2.78 2.64 100 100

Bi-LSTM (MIDI) [3]† 228 84 47 485 148 2.63 2.56 66.7 27.8

HMM-3 [3]‡ 220 32 31 196 84 2.84 2.72 70.2 39.5

Autoregressive Tagger 278 88 49 168 58 2.74 2.67 68.3 36.7

(+REINFORCE) 274 66 49 59 18 2.70 2.63 68.7 36.5

Prev Finger Embedding 271 56 40 127 30 2.78 2.67 68.1 35.5

(+REINFORCE) 283 53 54 53 12 2.81 2.76 68.4 36.5

Binary Checklist 227 72 26 332 74 2.67 2.58 69.3 35.8

(+REINFORCE) 261 49 26 217 42 2.69 2.64 69.5 37.1

Distance Checklist 274 72 37 195 37 2.80 2.69 68.8 36.6

(+REINFORCE) 284 78 41 134 32 2.75 2.68 69.0 36.1

Table 2. Results on PIG test set for various autoregressive setups, shown with and without using REINFORCE to minimize

hops and smears (see Section 4.2). ‡ A third order HMM implementation by [3] is also included ± while it ranks similarly

as in prior work against LSTMs by Mgen, it falls behind on other metrics.

the HMM does strongly on Mgen and 4-gram, we only see

its deficits when we look at other metrics which reveal sub-

tle issues such as an especially high finger spread and num-

ber of smears, and low utilization of thumb crosses.

6.3 Label Confusion
Actual Finger

P
re

di
ct

ed
 F

in
ge

r

I II III IV V

I
II

III
IV

V

89.3 19.1 6.6 1.8 0.5

7.7 65.1 31.6 8.8 1.2

1.5 13.0 43.2 25.1 3.3

1.2 1.8 14.0 38.7 12.1

0.4 1.0 4.7 25.7 82.8

This figure shows the

confusion matrix for

predictions by the Bi-

nary Checklist model

with REINFORCE.

The distribution of

misclassifications is

fairly different for each finger; adjacent fingers are more

likely to be confused than ones that are further apart,

reflecting a degree of interchangeability in how pianists

use them. We also see that thumb and pinky predictions

are most accurate, perhaps because being at the ends of

the hand makes them less versatile.

6.4 Human Evaluation and Conclusion

Model
Physical
Comfort

Mechanical
Efficiency

Ease of
Learning

Bi-LSTM (MIDI) [3] 1.6 1.4 1.6

Binary Checklist (+REINFORCE) 2.8 2.5 2.9

Table 3. Human evaluation ratings across various criteria.

Since the ultimate success criteria of our task is to pro-

duce fingerings that are well-suited to human performance,

we also present results from a small scale round of human

evaluation. Specifically, we recruited a college professor of

piano with a doctorate in piano performance (who was not

involved with the creation of the original dataset) to assess

the outputs of two modelsÐthe Bi-LSTM (MIDI) [3] and

Binary Checklist with REINFORCEÐaccording to three

main criteria: physical comfort, mechanical efficiency, and

ease of learnability. The pianist was asked to score the

models’ outputs with respect to each of these categories on

a scale of 1-3 for all 10 songs in the validation set (com-

posed by Brahms, Mendelssohn, and Rachmaninoff).

We show the models’ average ratings per category in

Table 3. The strong contrast suggests that the checklist

model is not just predicting gold label fingers more fre-

quently (shown by Mgen) but also that it is producing more

locally coherent outputs in a way that substantially im-

proves performability. Furthermore, the correlation of hu-

man judgements with our proposed metrics indicates that

they are meaningful measurements of output quality.

The pianist also provided qualitative observations

which we summarize. He noted that both systems per-

formed best on simpler, repetitive passages such as those

found in Mendelssohn. Our model also reportedly pro-

duced fewer difficult stretches, which we expect as it is

directly aware of interval distances in its input representa-

tion. Another observed issue was that the Bi-LSTM’s fin-

gerings did not consider tempo, often containing sections

that would be impossible to play fast enough, especially for

Rachmaninoff pieces. We suspect our model’s advantage

is from the checklist’s dependence on absolute timing, not

just the ordering of notes. The pianist also reported that

our model more frequently used the same fingering for re-

peated notes and chords, whereas the Bi-LSTM would of-

ten change fingerings without reason, which can also likely

be explained by our conditioning on recent predictions in-

stead of decoding them independently. Quantitatively, we

found that REINFORCE was able to reduce the number of

hops and smears, which was confirmed by the pianist to

have a significant impact on playability, emphasizing the

importance of integrating these into the training loop in-

stead of purely relying on a traditional likelihood loss.

Finally, he noted that the models particularly struggled

on successive chords (as opposed to stepwise passages).

Chord transitions require fingerings that are not just com-

fortable in isolation but also connect together. This re-

quires the model to reason about voices within the same

hand, something which may require moving beyond a

framework that treats songs as linear sequences of indi-

vidual notes, and is more sensitive to polyphony.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

530



7. REFERENCES

[1] R. Parncutt, J. A. Sloboda, E. Clarke, M. Raekallio, and

P. Desain, ªAn ergonomic model of keyboard fingering

for melodic fragments,º Music Perception, vol. 14, pp.

341±382, 1997.

[2] J. Sloboda, E. Clarke, R. Parncutt, and M. Raekallio,

ªDeterminants of finger choice in piano sight-reading,º

Journal of Experimental Psychology: Human Percep-

tion and Performance, vol. 24, pp. 185±203, 02 1998.

[3] E. Nakamura, Y. Saito, and K. Yoshii, ªStatistical

learning and estimation of piano fingering,º Informa-

tion Sciences, vol. 517, pp. 68±85, 2020.

[4] A. Moryossef, Y. Elazar, and Y. Goldberg, ªAt your

fingertips: Automatic piano fingering detection,º 2019.

[5] H. Zhao, X. Guan, and Q. Li, ªEstimation of playable

piano fingering by pitch-difference fingering match

model,º EURASIP Journal on Audio, Speech, and Mu-

sic Processing, vol. 2022, pp. 1±13, 2022.

[6] D. G. Barbara, Ugenio, B. Justin, and Adgerow, ªEx-

pected reciprocal rank for evaluating musical finger-

ing advice,º Sound and Music Computing Conference,

2021.

[7] E. Clarke, R. Parncutt, M. Raekallio, and J. A. Sloboda,

ªTalking fingers: An interview study of pianists’ views

on fingering,º Musicae Scientiae, vol. 1, pp. 107 ± 87,

1997.

[8] E. Nakamura, N. Ono, and S. Sagayama, ªMerged-

output hmm for piano fingering of both hands.º in IS-

MIR, 2014, pp. 531±536.

[9] Y. Yonebayashi, H. Kameoka, and S. Sagayama, ªAu-

tomatic decision of piano fingering based on a hidden

markov models,º in IJCAI, 2007.

[10] A. McCallum, D. Freitag, and F. C. Pereira, ªMaxi-

mum entropy markov models for information extrac-

tion and segmentation,º in ICML, 2000.

[11] C. Kiddon, L. Zettlemoyer, and Y. Choi, ªGlobally co-

herent text generation with neural checklist models,º in

EMNLP, 2016.

[12] R. J. Williams, ªSimple statistical gradient-following

algorithms for connectionist reinforcement learning,º

Machine Learning, vol. 8, pp. 229±256, 2004.

[13] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, ªSe-

quence level training with recurrent neural networks,º

CoRR, vol. abs/1511.06732, 2016.

[14] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and

V. Goel, ªSelf-critical sequence training for image

captioning,º 2017 IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), pp. 1179±1195,

2017.

[15] R. Paulus, C. Xiong, and R. Socher, ªA deep rein-

forced model for abstractive summarization,º ArXiv,

vol. abs/1705.04304, 2018.

[16] N. Jaques, S. Gu, R. E. Turner, and D. Eck, ªGener-

ating music by fine-tuning recurrent neural networks

with reinforcement learning,º in Deep Reinforcement

Learning Workshop, NIPS, 2016.

[17] L. Yu, W. Zhang, J. Wang, and Y. Yu, ªSeqgan: Se-

quence generative adversarial nets with policy gradi-

ent,º in AAAI, 2017.

[18] G. L. Guimaraes, B. Sánchez-Lengeling, P. L. C.

Farias, and A. Aspuru-Guzik, ªObjective-reinforced

generative adversarial networks (organ) for sequence

generation models,º ArXiv, vol. abs/1705.10843, 2017.

[19] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi,

W. Macherey, M. Krikun, Y. Cao, Q. Gao,

K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu,

L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa,

K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young,

J. R. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. S.

Corrado, M. Hughes, and J. Dean, ªGoogle’s neu-

ral machine translation system: Bridging the gap be-

tween human and machine translation,º ArXiv, vol.

abs/1609.08144, 2016.

[20] D. P. Kingma and J. Ba, ªAdam: A method for stochas-

tic optimization,º ICLR, 2015.

[21] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,

Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and

A. Lerer, ªAutomatic differentiation in PyTorch,º in

NIPS Autodiff Workshop, 2017.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

531


