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ABSTRACT

Tracking beats of singing voices without the presence of

musical accompaniment can find many applications in mu-

sic production, automatic song arrangement, and social

media interaction. Its main challenge is the lack of strong

rhythmic and harmonic patterns that are important for mu-

sic rhythmic analysis in general. Even for human listeners,

this can be a challenging task. As a result, existing mu-

sic beat tracking systems fail to deliver satisfactory perfor-

mance on singing voices. In this paper, we propose singing

beat tracking as a novel task, and propose the first approach

to solving this task. Our approach leverages semantic in-

formation of singing voices by employing pre-trained self-

supervised WavLM and DistilHuBERT speech represen-

tations as the front-end and uses a self-attention encoder

layer to predict beats. To train and test the system, we ob-

tain separated singing voices and their beat annotations us-

ing source separation and beat tracking on complete songs,

followed by manual corrections. Experiments on the 741

separated vocal tracks of the GTZAN dataset show that the

proposed system outperforms several state-of-the-art mu-

sic beat tracking methods by a large margin in terms of

beat tracking accuracy. Ablation studies also confirm the

advantages of pre-trained self-supervised speech represen-

tations over generic spectral features.

1. INTRODUCTION

Music tempo and beat detection are two of the core and

well-defined MIR topics, and scholars have proposed many

approaches to addressing different aspects of them for var-

ious music genres. For instance, some works such as

[1±4] proposed some unsupervised approaches to detect

music beat and tempo by using some low-level features

like onset strengths. More recently, several more recent

approaches employ neural networks to address the men-

tioned tasks [5±8]. Extracting singing rhythmic parameters

makes it possible to address several MIR problems such as

automatic instrumental and singing tracks alignment, au-
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tomatic music mix, and remix, interactive content creation

on social media platforms, etc.

Many of the proposed music rhythmic analysis ap-

proaches [1, 5, 7] perform in an offline fashion while oth-

ers [6, 9, 10] are capable of extracting music rhythmic fea-

tures causally and even in real-time.

In contrast to all of the mentioned models, beat and

tempo detection for singing voice is an untapped MIR task.

There are significant inherent differences between the na-

tures of complete music and singing voices. One of those

differences is that complete music pieces usually con-

tain rich percussive and harmonic profiles while singing

tracks usually lack such beneficial parameters making their

rhythmic analysis more demanding compared to the for-

mer group. Their other important difference is that music

beat tracking models usually only use acoustical clues such

as magnitude spectrogram as input features while singing

tracks are more similar to speech signals where the mod-

els may require to deal with para-linguistics, semantic, and

phonemic level inputs in addition to acoustical features.

Our contributions in this paper are as follows:

1- We introduce singing beat tracking as a novel MIR

task. We propose two strategies to tackle the lack of anno-

tated data for this task by leveraging pre-existing datasets

and beat tracking and source separation techniques. We

also propose a new evaluation scheme that can account for

phase ambiguities of beat annotation for vocal music.

2- We propose two neural models for the singing

beat tracking task. These models leverage pre-trained

speech self-supervised models to extract feature embed-

dings, which are then fed into a linear transformer network

to output beat predictions.

3- We evaluate the proposed models on hundreds of vo-

cal tracks with diverse genres. Experiments show that the

proposed models outperform three representative baselines

designed or trained for general music beat tracking by a

large margin. An ablation study is also performed to in-

vestigate the effect of speech self-supervised models over

commonly used generic spectral features, and results again

show an outperformance by a large margin.

The remainder of the paper is organized as follows: In

Section 2, we describe the proposed vocal beat tracking

task with dataset curation and a new evaluation scheme. In

Section 3, we describe our proposed models with details.

In Section 4, we present experimental comparisons with

baselines and an ablation study on the feature extraction
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front end. Finally, Section 5 concludes the paper.

2. THE PROPOSED TASK

We propose singing beat tracking as a new MIR task,

which aims to design algorithms that can track beats of

singing voices in online or offline fashion. In this section,

we describe the two cornerstones for this task: datasets and

evaluation metrics.

2.1 Singing Data and Label Generation

Data for training and evaluating singing beat tracking al-

gorithms require both singing voice recordings and their

beat annotations. As there is no existing datasets that meet

this requirement, we need to design a mechanism to collect

such data. Instead of recording singing voices and anno-

tating their beats manually, we propose to leverage exist-

ing MIR datasets and techniques to collect data for singing

beat tracking, as illustrated in Figure 1.

Figure 1. Singing data and label generation pipeline.

The first strategy we propose is to use pre-existing mu-

sic beat tracking datasets in which the beat annotations are

available. The idea is to obtain their singing tracks through

music source separation. State-of-the-art (SOTA) singing

voice separation methods have been shown to achieve out-

standing results on popular genres of music, and the sep-

arated singing voice contains little interference from the

background music. For this task, we employ Demucs Hy-

brid [11], one of the superior music source separation mod-

els. It uses a waveform-to-waveform convolutional auto-

encoder with a U-Net structure and bidirectional LSTM

layers, and is designed to separate the music mixture into

four sources including bass, drums, vocals, and others.

We use the pre-trained model 1 which was trained on all

150 songs of MusDB [12] dataset. It is noted that source

separation is used in some related works e.g. [13±15] to

improve music beat tracking while in this work, we uti-

lize it as one of the suggested systematic ways to generate

singing vocal beat tracking datasets.

The second strategy we propose leverages pre-existing

music source separation datasets, in which the isolated vo-

cal tracks are available as a part of those datasets. To ob-

tain beat annotations, we apply BeatNet [6] offline version

on the complete songs (i.e., music mixtures). BeatNet is

a SOTA online beat tracking method that uses a convo-

lutional recurrent neural network (CRNN) and a hidden

Markov model (HMM) decoder to extract music beats and

downbeats. We modify the HMM decoder from particle

1 https://github.com/facebookresearch/demucs

filtering inference to Viterbi algorithm to improve its per-

formance in the offline scenario. The reason that we run

BeatNet on music mixtures instead of the separated vo-

cal tracks is because it, the same as all other beat tracking

methods, is trained on complete music pieces. While Beat-

Net has been shown to be fairly accurate on many songs

with different genres, there are still annotation errors. To

fix them, we also perform a manual revision by listening to

the separated vocal track together with synthesized beep-

ing sounds of the beat annotations and correcting errors.

While the beat annotations are obtained for the entire

song, the ground-truth or separated vocal tracks show long

chunks of silence due to the inactivity of singing. These

long silent chunks are not useful and even are distracting

for singing rhythmic analysis. Therefore, we normalize

the energy of each vocal track using the root-mean-square

(RMS), calculate a frame-wise RMS, and set a threshold

to detect long silent chunks and split the vocal track into

vocal segments. The RMS threshold is set to 0.01, and

silent chunks shorter than 8 seconds are kept.

We apply these two strategies to a total of 8 existing

beat tracking and music source separation datasets to ob-

tain a total of 2248 vocal excerpts with beat annotations.

The entire length of the vocal segments is 34h 35m. The

datasets are summarized in Table 1.

2.2 Evaluation Metrics

For evaluation metrics, we adopt the commonly used F-

measure in beat tracking. A beat is considered correctly de-

tected if it is matched with a ground-truth beat with a time

deviation smaller than 70 ms. In addition, we employ three

additional metrics including P-score, Cemgil and Goto to

provide a more detailed evaluation. Details about these

three metrics can be found in [3].

For many music pieces, vocal tracks can align with the

offbeat position (i.e., middle point between two adjacent

ground-truth beats) rather that the beats. In fact, it also can

be quite natural for humans to clap on the 180-degree phase

shifted positions While this inherent ambiguity also exists

in some instrumental music, it is much more common for

singing voices. Apparently, the off-beat predictions would

Dataset # Number

of vocal

excerpts

Total

Length

Ballroom [16, 17] ∗ 452 2 h 38 m

GTZAN [18, 19] ∗ 741 5 h 44 m

Hainsworth [20]∗ 154 1 h 47 m

MUSDB18 [12]† 263 6 h 21 m

Rock Corpus [21]∗ 315 9 h 23 m

RWC pop [22, 23]∗ 188 5 h 06 m

RWC Royalty free [22,23]∗ 29 19 m

URSing [24]† 106 3 h 17 m

Table 1. Datasets collected and adapted for singing beat

tracking. ∗ denotes beat tracking datasets and † denotes

music separation datasets.
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be evaluated poorly against the ground-truth beat annota-

tions for all of the abovementioned metrics.

To address this problem, we propose an additional

Phase Inclusive (PI) evaluation scheme with existing met-

rics. In this scheme, a metric is computed twice, one com-

paring the predicted beat positions with the ground-truth

beat annotations and the other comparing with the 180-

degree shifted ground-truth. The maximum is reported as

the final metric under the PI evaluation scheme.

3. THE PROPOSED METHOD

To address the singing beat tracking task, we propose two

models that take advantage of pre-trained WavLM and Dis-

tilHuBERT SSL representations respectively to extract the

input features. Then we build the same linear multi-head

self-attention network on top of them to fine-tune the mod-

els for our task. Finally, a hidden Markov model decoder

is used to infer the singing beat positions using the acti-

vations provided by the respective neural networks. The

source code and system demos are available 2 .Figure 2

demonstrates the overall structure of all proposed models

and Figure 3 demonstrates the neural network structures of

all proposed models.

Figure 2. General pipeline of the proposed method.

3.1 Feature Embedding

Neural networks benefit from large quantities of labeled

training data. However, in many cases including that of our

task, labeled data is much harder to obtain than unlabeled

data. Self-supervised learning has emerged as a paradigm

to learn general data representations from unlabeled exam-

ples and fine-tuning the model on labeled data [25]. On the

other hand, as demonstrated in [6], selecting appropriate

input features plays an important role in music rhythmic

analysis tasks. Due to acoustic and linguistic similarities

between singing voices and speech, our main assumption

is that self-supervised speech representations are helpful as

feature embeddings in singing rhythmic analysis.

SSL achieves great success in speech-related tasks such

as Automatic Speech Recognition, Phoneme Recognition

and Emotion Recognition. Each task can be addressed by

fine-tuning a universal pre-trained self-supervised model

or training a neural network on top of the contextualized

self-supervised representation of the input. In recent years,

several pre-trained self-supervised models (e.g. [25±30])

attempt to provide such universal speech representations.

The most successful models such as [25, 26] usually en-

code speech audio through a multi-layer convolutional

neural network and then mask some chunks of the resulting

latent speech representations. Then, a contrastive learning

2 https://github.com/mjhydri/singing-vocal-beat-tracking

step is performed by feeding the latent representations to a

transformer network to distinguish true latents [25].

WavLM: WavLm [26] is one of the recent universal

self-supervised pre-trained models on 94k hours of data

to solve full-stack downstream speech tasks. It jointly

predicts masked speech and performs denoising in the

pre-training stage. The denoising module helps to en-

hance the potential for non-ASR tasks. Moreover, it uses

gated relative position bias in its transformer structure

to improve capturing sequence ordering of input speech.

WavLM has three different versions, Base, Base+, and

Large. WavLM Base and WavLM Base+ include 12 en-

coder layers, 768-dimensional hidden states, and 8 atten-

tion heads. The WavLM Large contains 24 encoder layers,

1024-dimensional hidden states, and 12 attention heads.

According to the SUPERB [31], which is an evaluation

benchmark designed to provide a standard and compre-

hensive testbed for pre-trained models on several speech

tasks, WavLM outperforms the other counterparts for sev-

eral speech downstream tasks.

Since WavLM model has demonstrated promising re-

sults for several downstream speech tasks, we employ it as

the front-end model for our first proposed approach to pre-

pare contextualized input embeddings. Among three pre-

trained options, we chose the Base+ model, becasue of its

better performance than the Base model and similar perfor-

mance with the Large model on many downstream tasks.

According to some works on the layer-wise analysis

of self-supervised models (e.g. [32, 33]), using their last

layer’s output is not necessarily the best option to leverage

the SSL model’s maximum capability. This is because the

desired feature aspects of the input signal are distributed

differently through internal encoder layers. For exam-

ple, [33] demonstrated that in Wav2Vec2 self-supervised

model, for some properties like word meaning, intermedi-

ate layers play a much more important role than the output

layer, while for acoustical features, early layers carry the

most important information. Therefore, in order to capture

different aspects of the input signal, we use a weighted sum

of all encoder layers of WavLM in which each weight is a

learnable parameter during the training phase.

DistilHuBERT: Although WavLM demonstrated the

most successful results for several downstream tasks, it is

a large model which requires large memory and high pre-

training and inference costs imposing a speed bottleneck

for the system. DistilHuBERT [29], is a novel multi-task

learning framework to distill hidden representations from

a HuBERT [27] model directly. It is initialized with the

HuBERT’s parameters. Then, its prediction heads learn to

generate the teacher’s hidden representations by minimiz-

ing the loss function. DistilHuBERT reduces the model

size by 75% and increases the inference speed by 73%

from HuBERT while retaining most performance in ten

different speech tasks. Moreover, it requires little train-

ing time and data, opening the possibilities of pre-training

personal and on-device SSL models for speech.

Therefore, we propose a second model that switches

the heavy WavLM front-end model with DistilHuBERT,
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Figure 3. Neural network structures of the proposed models. (I), (II) and (III) use WavLM, DistilHuBERT and Spectrogram

front-ends blocks, respectively, followed by the same linear transformer network.

a much lighter model, leading to a much faster infer-

ence process. DistilHuBERT includes a CNN network

and two self-attention layers. According to its evalua-

tion results [29], DistilHuBERT delivers comparable per-

formance to the teacher HuBERT model with much less

computational cost. It is noted that as the training objec-

tive of the DistilHuBERT student model is to learn directly

from several internal encoder layers of the teacher model,

the weighted sum strategy is not needed for this model and

its last layer’s output is used as the feature embeddings.

Spectrogram: We also perform an ablation study to

evaluate the effect of using self-supervised models on

the system performance by replacing the self-supervised

pre-trained feature embeddings with spectral features that

are commonly used in SOTA music beat tracking meth-

ods [6, 7]. These spectral features include log-magnitude

mel-frequency spectrogram with three window sizes of

1024, 2048, and 4096 samples and their first-order time

differences.

3.2 Linear Transformer Network

Transformers achieve remarkable performance in many

tasks, but due to their quadratic complexity with respect

to the input length, they are prohibitively slow for long se-

quences [34]. To address this limitation and to improve

transformers’ computational cost, several approaches are

proposed. For instance, Linformer [35] is a model that re-

duces the transformer complexity in both time and space

from O(N2) to O(N) by approximating the self-attention

mechanism by a low-rank matrix. It is noted that N is

the sequence length. Another model [34]reduces the com-

plexity to linear by expressing the self-attention as a linear

dot-product of kernel feature maps and making use of the

associativity property of matrix products. It achieves sim-

ilar performance to vanilla transformers and they are up to

4000x faster on auto-regressive prediction of very long se-

quences. Another recent model [36] removes the softmax

in self-attention by using the Gaussian kernel function to

replace the dot-product similarity without further normal-

ization. It enables a full self-attention matrix to be approx-

imated via low-rank matrix decomposition.

In our proposed method, we build a linear multi-head

self-attention layer using [34] on top of the feature embed-

ding blocks for all three proposed models.

Our encoder comprises a self-attention layer with four

attention heads with query and value dimensions of 192

and a feed-forward network with the size of 1024. The en-

coder network is followed by a linear layer and a sigmoid

layer. The final output can be viewed as the beat salience

for the input audio frame.

To train the proposed models, we use binary cross-

entropy with logits between model output and the ground-

truth beat annotations as the loss function. Only the linear

transformer and its following layers are trained, while the

self-supervised front ends are pre-trained and fixed.

4. POST-PROCESSING

In order to decode the beat positions, we employed a DBN

approximated using HMM from Madmom library [37]

with the default parameters. It is noted that the mentioned

inference block is shared between all reported models in

the evaluation table except BeatRoot [2].

5. EXPERIMENTS

5.1 Experimental Setup

We use all of the datasets collected in Section 2 except

GTZAN for training the models with 80% of the songs

randomly allocated for training and 20% for validation.

Following several previous music beat tracking works, we

keep the entire GTZAN dataset as the test set. It contains
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1000 music excerpts covering 10 different music genres,

out of which 741 of them contain vocal tracks. It en-

sures genre diversity in the test set and such a training/test

dataset partition reduces the possibility of overfitting as

well.Moreover, it is unseen in the training blocks of all

compared methods. However, one drawback of it is that

GTZAN’s vocal tracks are separated from the whole songs.

Hence, they may contain some information leakage from

other musical instruments, which may boost the system

performance compared to testing on isolated vocal tracks.

To address this issue, we took the following steps. First,

We used one of the best-performing supervised source sep-

aration models [11] and listened through the separated vo-

cal tracks to ensure that they do not contain obvious music

signal leakage. Second, when tuning the RMS filter, we

discarded some sparse, abrupt and short signal segments

that are more likely to be percussive sounds instead of vo-

cal signals. Third, we compared with several high perform-

ing music beat tracking methods in the evaluation section;

The leakage of musical signals into the separated tracks, if

any, would improve the performance of these comparison

models as well.

For the mentioned reason and given that singing beat

tracking is a novel MIR task with no specifically design

existing models, in this paper, we compare our proposed

models against general music beat tracking models includ-

ing two supervised models, BeatNet [6] and Böck [7] and

an unsupervised signal-processing model, BeatRoot [2].

BeatNet is the SOTA online joint beat, downbeat, and me-

ter tracking model that uses convolutional recurrent neural

networks and particle filtering. It can also operate in an

offline fashion by switching its particle filtering inference

block with an offline hidden Markov model decoder. Böck

uses a recurrent neural network to predict beat and down-

beat saliences of each audio frame, and uses a Dynamic

Bayesian Network (DBN) to infer beat and downbeat po-

sitions from the salience function. In our implementation,

we use the same HMM decoder as that in BeatNet to re-

place the DBN. BeatRoot is a unsupervised method with

a multiple agent architecture that simultaneously considers

several different hypotheses of beat positions and tempi.

5.2 Training Details

To train the proposed models, we freeze the self-supervised

front-end blocks and train the rest of the model including

the multi-head self-attention layer and its following feed-

forward and linear layers. For the WavLM+LT model, in

addition to the abovementioned items, the 12 weights to

combine different encoder layer’s output are also trained.

The mentioned weights are initialized as ones and the

rest of the weights and biases are initialized randomly. We

use the Adam optimizer with a learning rate of 5 × 10−5

and a batch size of 10. The batches comprise 15-second

long excerpts randomly sampled from all audio files in the

training set. As the audio files have different length, to

ensure a fair distribution, we sample with a probability that

is proportional to the length of the files.

5.3 Results and Discussions

To assess the computational cost of the models, we report

the inference speed for all of them. The reported numbers

are the average computational time for all 741 excerpts

with the average duration of 28 seconds each. Note that

we measure the speed of all methods using CPU process-

ing on the same Windows machine with an AMD Ryzen

9 3900X CPU and 3.80 GHz clock. Table 2 demonstrates

the evaluation results.

Table 2 shows the evaluation results of the baselines and

the proposed models using the four metrics presented in

Section 2.2. It also includes the Phase Inclusive (PI) evalu-

ation scheme for the proposed models. Several interesting

observations can be made. First, all of the three proposed

models outperform the three baselines by a large margin.

This difference is especially pronounced for more strict

metrics such as Goto [3]. This confirms our hypothesis

that vocal tracks show very different patterns from com-

plete songs, and the baseline models that are trained on

complete songs do not perform as well as the proposed

models that are trained on the vocal tracks. This hypoth-

esis is further validated by the fact that BeatRoot outper-

forms BeatNet and Böck, while the latter two models are

shown to outperform BeatRoot in previous studies on com-

plete songs [6, 7]. It is noted that BeatNet and Böck are

data-driven approaches and are trained on complete songs,

while BeatRoot is a signal processing model without train-

ing. The mismatch between complete songs and vocal

tracks does impose a strong negative bias to the data-driven

baselines.

Second, the two proposed models that leverage speech

SSL feature embeddings (i.e., WavLM+LT and DistilHu-

BERT+LT) improves over Spectrogram+LT by a large

margin, and this improvement is even bigger than that from

the best baseline to Spectrogram+LT. This shows the sig-

nificant advantage of using feature embeddings learned on

speech data and suggests that this advantage is even more

significant than training on the vocal tracks. As the spec-

trogram features used in Spectrogram+LT are the same as

those in BeatNet and Böck and transformers have been

shown to outperform RNNs in various tasks, it is reason-

able to believe that even if BeatNet and Böck are trained

on the vocal tracks, their performance would be only com-

parable to that of Spectrogram+LT.

Third, WavLM+LT delivers the best scores for all of the

evaluation metrics except the computation time, showing

that stronger feature embeddings lead to better vocal beat

tracking accuracy. However, the attention layers’ complex-

ity in WavLM is quadratic to the length of input; while

the average computational time (4.09 seconds) is accept-

able for vocal segments ( 28 s long on average) in this ex-

periments, as the length increases, the computational time

will soon become prohibitive. Figure 4 shows the learned

weights of different encoder layers of the WavLM SSL

model. It can be seen that earlier layers generally con-

tribute more to forming the feature embeddings compared

to latter layers. Layers 3, 2 and 1 contribute the most. Note

that Layer 0 represents the CNN network output.
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Method F-Measure P-Score Cemgil Goto Comp. Time

Baseline

BeatNet 0.243 0.327 0.173 0.003 0.13 (s)

BeatRoot 0.301 0.394 0.22 0.066 0.03 (s)

Böck 0.171 0.195 0.122 0.009 1.56 (s)

Proposed

WavLM + LT 0.733 0.704 0.618 0.560 4.09 (s)

DistilHuBERT + LT 0.703 0.668 0.593 0.516 1.83 (s)

Spectrogram + LT 0.454 0.438 0.367 0.223 0.32 (s)

Proposed

(PI Results)

WavLM + LT 0.745 0.715 0.627 0.574 4.09 (s)

DistilHuBERT + LT 0.721 0.684 0.608 0.537 1.83 (s)

Spectrogram + LT 0.489 0.477 0.391 0.265 0.32 (s)

Table 2. Average performance and speed across segments of several methods on the GTZAN separated vocal tracks.
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Figure 4. Illustration of the learned weights for different

encoder layers of WavLM in the WavLM+LT model.

Fourth, with slight performance drop, the second pro-

posed model which employs LT and DistilHubert delivers

the next best performance among all models. DistilHubert

uses a much lighter structure with fewer parameters than

WavLM, making it ideal for time-sensitive inferences.

Finally, the PI evaluation scheme shows a slight im-

provement of all of the proposed models on all accu-

racy metrics. In particular, the improvement of Spectro-

gram+LT is greater than that of the other models. This

suggests that the SSL pretrained speech embedding fea-

tures are helpful to reduce the phase shift ambiguity.

Figure 5 shows the performance of our proposed

WavLM + LT model for different music genres. Accord-

ing to the table, the best and worst performances belong

to disco and blues respectively. One reason for that may

be the stronger and punchier stresses in disco vocal tracks

comparing to that of blues tracks. Another important rea-

son may be the different syncopation ratio among vocal

track of different music genres. Syncopation is a musical

term that defines the placement of rhythmic stresses or ac-

cents where they would not normally occur, making part

or all of a tune or piece of music off-beat [38]. There-

fore, a higher syncopation ratio leads to a more difficult

beat tracking process. Nate that in Figure 5 we only report

the evaluation results of the genres that contain at least 80

separate singing tracks. It leaves out the classical and jazz

genres which have only two and zero separated tracks.

6. CONCLUSION

In this paper we introduced singing beat tracking as a novel

MIR task. We proposed two approaches to obtain labeled

data for the mentioned task and introduced two methods

to accomplish the mentioned task using pre-trained speech

self-supervised models and multi-head linear self-attention

networks. We also conducted an ablation study to inves-

tigate the effect of speech self-supervised models on the

system performance. Experiments on a collection of vocal

tracks with diverse genres show that the proposed models

that combine self-supervised models and transformers out-

perform three representative baselines designed or trained

for beat tracking for general music. The ablation study also

shows that the self-supervised speech embeddings outper-

form generic spectral features that are commonly used in

music beat tracking. In the future we will extend this re-

search to cover real-time applications and more challeng-

ing singing tracks such as human humming and operas.
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Figure 5. F-measure performance of WavLM + LT model

on the GTZAN separated vocal tracks for different genres.
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