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ABSTRACT

Notable progress in music source separation has been

achieved using multi-branch networks that operate on both

temporal and spectral domains. However, such networks

tend to be complex and heavy-weighted. In this work, we

tackle the task of singing voice extraction from polyphonic

music signals in an end-to-end manner using an approach

inspired by the training and sampling process of denoising

diffusion models. We perform unconditional signal mod-

elling to gradually convert an input mixture signal to the

corresponding singing voice or accompaniment. We use

fewer parameters than the state-of-the-art models while op-

erating on the waveform domain, bypassing the phase es-

timation problem. More concisely, we train a non-causal

WaveNet using a diffusion-inspired strategy while improv-

ing the said network for singing voice extraction and ob-

taining performance comparable to the end-to-end state-

of-the-art on MUSDB18. We further report results on a

non-MUSDB-overlapping version of MedleyDB and the

multi-track audio of Saraga Carnatic showing good gener-

alization, and run perceptual tests of our approach. Code,

models, and audio examples are made available. 1

1. INTRODUCTION

Singing voice extraction, which involves separating the vo-

cal source from music recording mixtures, has received a

lot of attention from the Audio Signal Processing (ASP)

and Music Information Retrieval (MIR) communities in

the recent years. The problem can be modelled in the

waveform domain [1±4], the frequency domain [5±7], or

a combination of both [8±10]. In general, spectrogram-

based approaches have been more popular despite hav-

ing to deal with the problem of the complex phase, usu-

ally leading to artifacts or unnaturalness of the separated

sources. Within the Music Demixing Challenge (MDX)

framed in ISMIR 2021 [11], diverse submissions achieved

state-of-the-art source separation performance, in the ma-

jority of cases being multi-branch networks combining

1 github.com/genisplaja/diffusion-vocal-sep
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features from both time and frequency domains [8±10],

proposing therefore solutions to account for the problem

with the phase. Nonetheless, these models tend to be

heavy-weighted and include engineered strategies to im-

prove the predicted outputs.

While the problem of source separation has been shown

to be challenging on the waveform domain, promising re-

sults have been reported [2,3,12], opening the door for the

development of models that bypass the problem with the

complex phase. However, as the performance improves,

the model size and complexity accordingly grow.

In this work we propose a training and sampling strat-

egy inspired on the recently emerged denoising diffu-

sion models [13] to perform end-to-end singing voice ex-

traction. Denoising diffusion models are a novel class

of generative models theoretically grounded in the non-

equilibrium statistical physics that can gradually convert

one distribution into another using a Markov chain [14],

while learning to perform the reverse process. More con-

cisely, numerous works use diffusion models to convert

a signal from a particular data distribution to a simple

one (e.g. isotropic Gaussian noise) by gradually adding

samples of the said simple distribution. Subsequently,

the model is trained to reverse the perturbation process

and generate data samples of the original distribution us-

ing the easily tractable noise as input [15±17]. Diffu-

sion models have recently emerged as a versatile and

high-performance method for data generation, outperform-

ing classical generative approaches for the task of image

generation [13]. In the fields of ASP and MIR, diffu-

sion models have also shown promising performance for

speech synthesis [16, 18], speech restoration and enhance-

ment [13, 15, 19±21], audio super-resolution [22], singing

voice synthesis [23], and symbolic music generation [24].

Despite that, the literature does not include many attempts

to use diffusion models for source separation, being [25],

to the best of our knowledge, the only attempt.

Despite the use of deterministic signals as diffusion per-

turbation in place of Gaussian noise has shown promising

results in reverting different arbitrary types of image noise

and performing image morphing [26], to the best of our

knowledge, no exploration of this idea in the audio domain

has been reported to date. In this work, we build on top

of DiffWave, a versatile diffusion model for speech syn-

thesis [16] that is based on a non-causal WaveNet architec-

ture that has been previously used for music source separa-

tion [12]. We introduce an end-to-end approach to model
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the task of singing voice extraction as a diffusion-alike pro-

cess, by converting between two audio data distributions

that share similar content, in this case the singing voice

and the corresponding mixture. We propose to use a deter-

ministic diffusion perturbation, a music mixture, to gradu-

ally transform its corresponding isolated singing voice into

the mixture while learning to conduct the reverse process

at inference. Given the formulation of the diffusion pro-

cess, we train a model that learns to estimate the perturba-

tion at different ratios. Subsequently, we leverage from the

parametrization of the reverse process of diffusion models

to chain these estimations and sample, given an input mix-

ture, improved vocal source separation in terms of artifacts

and interferences compared to the vanilla trained network.

2. METHOD

2.1 Diffusion process

We assume that the waveform-domain signal correspond-

ing to the mixture m is the sum of the singing voice v and

the accompaniment a, such as: m = v + a. Our goal is to

estimate v given m. In the following sections we formalize

our method by relating it with the diffusion theory in the

literature. In Figure 1 we display the two main steps of our

method: the diffusion and the reverse process.

Diffusion. The diffusion process assumes perturbing

the training data with different scales of noise iteratively

following a Markov chain [13]:

q(x1, ..., xT |x0) =
T
∏

t=1

q(xt|xt−1) (1)

The input signal x0 is gradually perturbed by incrementally

adding a particular signal in small T diffusion steps. This

process results into a latent variable xT of same distribu-

tion of the perturbation. The standard diffusion schema, in-

troduced in [13] and subsequently used in most of the dif-

fusion research, perturbs x0 with random Gaussian noise,

therefore xT is an isotropic Gaussian noise distribution. In

our case, the input signal x0 is initialized with the isolated

singing voice v, and perturbed by incrementally adding the

mixture m. This results in xT being a mixture-alike sig-

nal, containing both voice and accompaniment. Therefore,

q(xt|xt−1) in Eq. 1 is an operation to add a small amount

of perturbation m to the given signal xt−1, moving to the

next diffusion step xt. We use m as perturbation to ac-

count for the formal diffusion design in [13], in which the

latent variable xT is expected to belong to the same data

distribution as the perturbing noise. The level of pertur-

bation at each diffusion step is controlled by βt, which is

a small positive coefficient within a fixed noise schedule

denoted β. That said, using the parametrization proposed

in [13], we can compute any given diffusion step using:

q(xt|x0) =
√
ᾱtx0 +

√
1− ᾱtm (2)

where αt = 1− βt and ᾱt =
∏t

s=1
αs. Note also that the

most common inference input of a singing voice extraction

model ± which in our case is xT ± is a mixture. Given

Figure 1. Overview of our diffusion-inspired training ap-

proach for the case of singing voice extraction.

Eq. 2, the perturbation is a mixture m to ensure xT ≈ m,

otherwise the said condition may not be given.

Modelling musical signals using a mixture of Gaussian

functions has been previously explored in [27]. Note also

that architectures similar to DiffWave have been already

used to model mixture, accompaniment, and vocal sig-

nals [12, 28] (for further detail see Section 2.2).

Reverse process. The reverse process aims at itera-

tively reverting the perturbation added by the diffusion:

pθ(x0, ..., xT−1|m) =
T
∏

t=1

pθ(xt−1|xt) (3)

We propose to parameterize the variable pθ(xt−1|xt) as
(

xt − 1−αt√

1−ᾱt
ϵ(xt, t)

)

1
√
αt

, being ϵ(xt, t) the perturbation

estimated by the model at a given diffusion step t. This

parametrization is leveraged from the diffusion sampling

process in [13]. However, we remove the deviation param-

eter from the original parametrization, which in our deter-

ministic noise case yields worse predictions. This process

can be seen as an iterative refinement of the latent variable

xT to convert it to x0, in our case to iteratively transform

an input mixture to its corresponding singing voice source.

Training. The training objective of the original diffu-

sion process is to maximize the log likelihood of: pθ(x0) =
∫

pθ(x0, ..., xT−1|xT )platent(xT )dx1:T [13], considering

stochastic noise as perturbation. Since in this context it

is not possible to calculate the said integral, in the litera-

ture this problem is approached by maximizing its varia-

tional lower bound (ELBO) [13]. The reader is referred

to [16], for a detailed development of this maximization.

In our case, relying on the ELBO is not required given

the deterministic perturbation. Therefore, by using pairs

of (xt, x0) [13], and referring to Eq. 2, we are able to ef-

fectively optimize the model with parameters θ using the

following objective [13]:

L(θ) =
∥

∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtm, t))

∥

∥

2

(4)

where ϵ is the target or true perturbation, whereas ϵθ is the

perturbation the model estimates based on ᾱ, t, the mixture

m and the input x0. In the case of extracting the singing

voice, we use the accompaniment a instead of mixture m
as the target corresponding to ϵ. Therefore, we do not in-

clude the voice into the target of the training process, thus

we alleviate the loss of vocal quality that may occur after

several reverse steps.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

686



Noise schedule. Choosing the noise schedule β has

been found to be crucial for the performance of diffusion

models [13] 2 and in fact, efforts have been done to learn

said variable instead of defining it manually [29]. In our

scenario, we require a schedule β that accounts for the pro-

posed diffusion-inspired approach, in which x0 is expected

to be predominant in the completely perturbed signal xT .

Moreover, our perturbation m is the mixture corresponding

to x0, thus x0 is contained in the perturbation, which may

lead to an abnormally over-loud source in the completely

diffused xT . Ultimately, the inference input is a mixture,

therefore we propose to use a schedule that produces a la-

tent variable xT as close as possible to an actual mixture.

Our noise schedule is defined by β0 = 1−4, βT = 0.2,

and T = 20, being 20 a reliable option for audio as found

in [16]. This noise schedule produces q(xT |x0) ≈ m, and

we denote it β20. Note that the closer βT to 1, we should

expect a more aggressive transformation, leading to less

interference at the expense of losing quality of the esti-

mated source. Recent diffusion-based works in the audio

domain successfully model their task using 4±8 steps [21].

To study the effect of the number of diffusion steps and

explore the feasibility of modelling the task with less com-

putational expense, we experiment with a new schedule β8,

which is defined by β0 = 1−4, βT = 0.5, and T = 8.

Accompaniment estimation. To perform accompani-

ment estimation we initialize x0 to be the musical accom-

paniment a, while the singing voice v is the target ϵ for

training in Eq. 4, and we adjust β. Since usually the ac-

companiment is a mixture of multiple sources, and the

singing voice ± now the perturbation ± is normally pre-

dominant, we may increase the number of diffusion steps

to 100 in the schedule and experiment with a more granular

reverse process. The other parameters remain unchanged.

2.2 Network details

We propose to use the unconditional vanilla DiffWave to

learn the reverse process [16]. Although recent works in

music separation propose various improvements with re-

gards to the architectures used, in this work we focus on ex-

ploring a novel diffusion-inspired process for source sep-

aration. At the same time, we aim at improving a smaller

model that has been previously applied for source sepa-

ration using our diffusion-inspired training and sampling

method, while leaving the improvements on the network,

or using a different architecture, as future work. Nonethe-

less, we consider the versatility and light weight of the en-

tire method an advantage. Note that within the scope of

this paper, we perform monaural source separation.

Architecture. The DiffWave architecture is based on

a modified WaveNet [30] extended with bidirectional di-

lated convolution modules (Bi-DilConv), aiming at remov-

ing the autoregressive generation constraint so that the

model is non-causal and the reverse process is done in

T steps. The said Bi-DilConv modules have been pre-

2 Despite being aware that our perturbation is a deterministic signal
instead of stochastic noise, we still use the term noise schedule in this
work for easier understanding in relation with cited works.

viously applied for the problem of music source separa-

tion [12, 28]. The used non-causal WaveNet consists of a

stack of L residual layers, which are equally grouped into

N blocks. Therefore, each block includes L/N layers with

skip-connections as the original WaveNet. A Bi-DilConv

module with kernel-size 3 is included in each layer. The

size of the dilation, initialized at 1, is doubled at each layer

of a block: [1, 2, 4, 8, ..., 2L/N − 1]. Before going through

the stacked blocks, the input is projected using a 1D con-

volutional layer of C channels of features. Similarly to the

original WaveNet, the output is obtained by summing the

skip connections of all the residual blocks. For our experi-

ments we configure the WaveNet architecture with L = 30,

N = 10, and C = 64, which in [16] is found to effectively

work while preserving the light weight of the architecture.

Diffusion step embedding. Since the training process

is based on optimizing Eq. 4 given a pair (xt, x0), we need

to input the diffusion step t to the model. We use a 128-

dimension encoding vector for each t [16], defined as [31]:

tembed =
[

sin
(

10
0∗F
S−1 t

)

, ..., sin
(

10
(S−1)∗f

S−1 t
)

,

cos
(

10
0∗F
S−1 t

)

, ..., cos
(

10
(S−1)∗F

S−1 t
) ] (5)

where F is the embedding factor and S is half the embed-

ding size. Note that F and S are pre-defined and fixed

hyperparameters, which in our experimentation are set to

F = 4 and S = 64. Next, the embedded diffusion step is

passed through three dense layers, the first two having size

S ∗ 2, while the latter maps the latent embedding into the

C channels the input is projected to, therefore we can add

the embedding to the input of each residual layer.

Conditioning. Using a vocoder paradigm, diffusion-

based approaches for audio modelling usually use condi-

tioning to guide the signal generation, providing clues to

obtain a particular desired output. Audio-related diffusion

works in the literature propose to guide the signal genera-

tion using, for instance, mel-spectrogram [16, 32] or lin-

guistic features [33]. We do not condition our network

for three reasons: (1) Conditioning our vocal extraction

model, for instance on the mel-spectrogram of the target

vocal signal, would probably improve the output quality,

however the task of source separation assumes that data of

this kind is not available at inference, (2) Our latent vari-

able xT is not an isotropic Gaussian but a known mixture

recording containing the target signal, therefore it serves

as a conditioner to guide the transformation towards the

isolated singing voice, (3) We reduce the model size.

2.3 Post-processing

To account for a possible over-increase of the signal ampli-

tude during the reverse process, the output of said process

is clamped to the amplitude levels of the input mixture.

During the iterative signal transformation at inference

we may generate audio content and artifacts not contained

in the original vocal signal. Although not perceptually sig-

nificant, these artifacts are heavily penalized by objective

evaluation metrics [34]. Moreover, the iterative nature of

the algorithm may accumulate several of the said artifacts
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in the final prediction. As an optional step, we use the

multichannel Wiener filter to improve our separation, a

well-known process used in numerous source separation

works [35]. We use the Python version in norbert [36].

Since our model operates in an end-to-end manner, we

use the following procedure to apply the Wiener filter-

ing. Let v̂ be an estimated vocal source and â the corre-

sponding estimated musical accompaniment. The inputs

of the Wiener process are the Short-Time Fourier Trans-

form (STFT) of the input mixture m, and the magnitude

STFT of both v̂ and â estimates. The outputs of the Wiener

process are the filtered complex spectrograms for v̂ and

â. We take the magnitude of said spectrograms and com-

bine it with the corresponding phases ϕ(v̂) and ϕ(â) that

our proposed model estimates. In that sense, we do not

use the Wiener filtering to estimate the phase as typically

done for spectrogram-based approaches that cannot esti-

mate such complex target, but refine our estimation using

the Expectation-Maximization algorithm [37] to make sure

that the predicted signal is contained in the input mixture.

3. RELATION WITH PREVIOUS WORK

The literature on waveform-based singing voice extraction

is mainly based on encoder/decoder architectures, with the

non-causal adaptation of WaveNet [12, 30] as the only ex-

ception. Wave-U-Net [3] is an autoencoder inspired by its

spectrogram-based counterpart U-Net [7], while ConvTas-

Net [2, 4] estimates prediction masks in the mid-point of

the network. The leading model is Demucs, now available

in two versions v1 [1] and v2 [2], which is also a con-

volutional autoencoder with a bidirectional LSTM in the

bottleneck. There is a growing tendency on the size of the

above-mentioned models, while all use similar, standard

training procedures. In contrast, we focus on the training

strategy and propose a diffusion-inspired approach for a

light-weight model. Building on top of DiffWave, we train

a non-causal WaveNet very similar to the one used for mu-

sic source separation [30], differing only on the number

of residual layers, the output projection (since WaveNet

in [30] estimates multiple targets while in DiffWave the

target is only the added perturbation by the diffusion pro-

cess), and the additional diffusion step embedding.

Our work has common aspects with [39], in which a

novel training strategy is built on top of Demucs (v2) by

modelling and learning the dependencies between target

sources, and adding an iterative refinement at the output

using a Gibbs sampling process. Contrastingly, we use

a diffusion-inspired algorithm to train a smaller baseline

model for source separation, not to directly estimate the

target sources but to gradually transform a mixture signal

into its corresponding singing voice.

The literature of diffusion-related approaches for music

source separation is scarce. In [25], an improved reverse

process based on Langevin dynamics is proposed and ap-

plied to several autoregressive models, including WaveNet,

which shows competitive performance on separating the

vocals from a piano accompaniment. However no experi-

ments on MUSDB18 [40] are reported.

4. EXPERIMENTS

4.1 Experimental setup

We include the following models in our experiments:

(1) Singing voice extraction model with different noise

schedules: β20 and β8 and β1, (2) Singing voice extrac-

tion model with β20 and Wiener filtering, using the accom-

paniment obtained by subtracting the estimated vocals v̂
from the input mixture m, (3) Accompaniment extraction

model with β100, (4) Combination of singing voice extrac-

tion model with β20 and accompaniment extraction model

with β100 using Wiener filtering. For the experiments we

use ADAM optimizer with learning rate of 2−4 and batch

size of 8. The models are first trained for 200k steps and

next, we keep training while evaluating the performance

using BSS Eval [41] repeatedly when ≈ 500 training steps

are completed, storing the model that performs the best on

the validation set, until 500k steps.

We use the MUSDB18 dataset [40] for training. The

accompaniment is computed as the linear sum of the bass,

drums, and other sources as represented in the dataset. To

train the models we first split the tracks in MUSDB18 in

chunks of 4 seconds to optimize the training process and

obtain more variate data batches along the training steps.

We do not disregard the unvoiced samples, aiming at im-

proving the estimation on vocal silences [28].

For a comparison with the state-of-the-art, our mod-

els are evaluated on the test set of MUSDB18, using

the standardized metrics for source separation (Signal-to-

Distortion Ratio or SDR, Signal-to-Interference Ratio or

SIR, and Signal-to-Artifact Ratio or SAR) [42]. We use the

BSS Eval implementation and the evaluation setup from

the SiSEC challenge [41], using window and hop sizes of

1 second, and subsequently computing the median over all

the 1-second estimations of each song. We finally report

the median over the entire MUSDB18 testing tracks. We

compare our approach with the waveform-based state-of-

the-art: WaveNet, Wave-U-Net, ConvTas-Net and Demucs

v1 and v2. We report the metrics that the best versions of

these methods obtain on the testing set of MUSDB18 [41].

For WaveNet we consider the best performing configura-

tion in [28], and for ConvTas-Net the music source separa-

tion version proposed in [2].

Being aware of the possible biases that might occur

if training and evaluating on data from the same distri-

bution, even if the splits are properly differentiated, we

consider two additional testing sets: (1) A non-MUSDB-

overlapping version of MedleyDB [43], in which we re-

move the 46 overlapping tracks between MedleyDB and

MUSDB18 [44] disregarding also the tracks from shared

artists between the two even if the track is not present in

both, and (2) A manually-cleaned subset of the multi-track

audio of the Saraga Carnatic dataset [45] (ground-truth

accompaniment is not available). The track list of both

datasets is made available in the accompanying repository.

The objective metrics in [41] are not always corre-

lated with the scores from perceptual evaluations of mu-

sic source separation [46]. However, perceptual tests are
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Singing Voice Accompaniment

Model Params Diff. steps SDR SIR SAR SDR SIR SAR

WaveNet [12] (w/ add. loss [38]) ≈ 3.3M - 4.49 13.52 6.17 11.39 16.37 13.49

Wave-U-Net [3] ≈ 10.2M - 4.97 13.98 4.41 11.11 15.30 11.44

ConvTas-Net [2] ≈ 8.75M - 6.43 - - - - -

Demucs (v1) [1] - - 5.44 - - - - -

Demucs (v2) [2] ≈ 450M - 6.84 - - - - -

Ours (vocal) ≈ 750K 1 4.81 9.21 8.09 - - -

Ours (vocal) ≈ 750K 8 5.63 10.55 8.86 - - -

Ours (vocal) ≈ 750K 20 5.59 10.78 8.89 - - -

Ours (vocal) + Wiener ≈ 750K 20 5.66 11.60 8.49 - - -

Ours (accomp) ≈ 750K 100 - - - 11.12 13.11 16.44

Ours (vocal & accomp) + Wiener ≈ 750K + 750K 20 + 100 6.07 12.77 8.61 11.72 14.44 16.81

Table 1. Performance comparison between our model and the waveform-based state-of-the-art. Metrics in dB.

time-consuming and expensive to conduct. We run a per-

ceptual evaluation of the vocal separation for four models:

Wavenet (again the best model in [28]), Wave-U-Net (the

best model in [3] for monaural separation), Demucs (the

v2 model for stereo mixture and 4 sources), and our best

model (combining both vocal and accompaniment extrac-

tion models using Wiener). We reiterate the experiment

in [28] with the same 5 songs (10 second excerpts) and

including now our model and Demucs v2. 3

In this perceptual experiment we follow a double-blind

multi-stimulus experimental design with a hidden refer-

ence. Similarly to [28], participants are asked to assess

the global quality of vocal separation taking into account

the suppression of other sources and the lack of distortion,

rating the stimuli on scale from 1 to 5, with 1 being very

intrusive interferences from other sources and degraded

audio, and 5 being unnoticeable interferences from other

sources and not degraded audio. In contrast to [28], the

order of the songs is randomized, so that the final rating

does not depend on a predefined ordering. In addition, we

include the ground-truth vocal stem as a hidden reference

along the other stimuli corresponding to the vocal separa-

tion of the four models being tested. This hidden reference

is used as a control stimuli to filter-out participants that

have not performed the training stage, have not understood

the task, or do not have sufficient expertise. The partici-

pants are asked to calibrate the volume using a tone burst.

Then, they perform a training stage where detailed instruc-

tions and three audio examples from the same song are pre-

sented: the reference mixture, the ground-truth vocal stem

and a poor quality separation using a model not included

in our test. We use the webMUSHRA framework [47] to

implement the experimental design in an online test.

4.2 Objective evaluation

In Table 1 we compare the performance of our approach

with the waveform-domain state-of-the-art models. No

metrics on accompaniment separation and SIR/SAR for

vocals are reported for Demucs and ConvTas-Net since

3 jordipons.me/apps/end-to-end-music-source-separation

these target to vocals, bass, drums and other. We observe

that our vocal extraction model outperforms WaveNet

(note that DiffWave is based on WaveNet), Wave-U-Net,

and Demucs v1 in terms of SDR, the latter by a slight

difference. Our model provides notable improvement on

SAR, which is translated into an output with less artifacts.

When combining our vocal and accompaniment extrac-

tion models through Wiener filter we obtain closer perfor-

mance to ConvTas-Net, while Demucs v2 is still leading

on SDR ≈ 0.8dB above. While iteratively transform-

ing an input mixture, for instance, to the corresponding

singing voice, incorrectly estimated accompaniment that is

not recognised in the subsequent reverse steps may accu-

mulate in the final prediction. Although the said interfer-

ences might not be audible at naked ear, these are penalized

by the metrics. The Wiener filtering provides notable im-

provement on that issue, as especially noted in the SIR and

also in the perceptual evaluation in Section 4.3, albeit the

source quality is slightly compromised. Finally, note that

we use fewer parameters, enhancing the portability and re-

producibility of our approach.

The β1 singing extraction model, which directly esti-

mates the perturbation by transforming the input mixture

in a single run, scores similar than the baseline WaveNet,

however we observe a notable decrease of SIR, while SAR

improves. This may be given the transformation nature of

our approach, which removes the perturbation from the tar-

get source instead of directly estimating the source. The β8

model scores similar than β20, however the SIR decreases

while SAR is maintained. While adding more steps pro-

vides improved interference removal, no notable negative

effect is observed in the quality of the estimated source.

Nonetheless, if the computational expense is prioritized,

the β8 model may be used for an optimized inference since

the measured performance drop in our experiments is not

dramatic. In fact, both models predict faster than real-time

on a TITAN Xp GPU. For accompaniment separation, us-

ing β100 provides better predictions. However, as observed

for vocals, we may be also capable of modelling this task

using less steps, with no significant performance drop.
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MUSDB18 MedleyDB Saraga Carnatic

Model for singing voice Model weight SDR SIR SAR SDR SIR SAR SDR

Ours (vocal, β20, no Wiener) ≈ 26MB 5.59 10.78 8.89 4.86 8.87 9.06 4.11

Wave-U-Net [3] ≈ 117MB 4.97 13.98 4.41 1.61 7.47 4.50 2.13

Demucs (v2) [2] ≈ 1GB 6.84 - - 6.01 - - 6.12

Table 2. Performance comparison of our baseline model and state-of-the-art on additional test datasets. Metrics in dB.

In Table 2 we evaluate our baseline β20 singing voice

extraction model (with no post-processing) on the two ad-

ditional testing datasets presented in Section 4.1. We per-

form the same evaluation procedure for Wave-U-Net and

Demucs v2, comparing how the three models generalize to

the testing datasets, using the performance on MUSDB18

± which is also the training dataset for the three ± as ref-

erence. Our model and Demucs v2 show good generaliza-

tion to MedleyDB, both getting a similar and small perfor-

mance drop. Contrastingly, the Wave-U-Net performance

is negatively affected in terms of both SDR and SIR. A

similar scenario is observed in the Carnatic Music exper-

iment. While Wave-U-Net generalization is again com-

promised, our model and Demucs v2 are decently able

to maintain the performance, the latter being less affected

by the change of domain. Similarly to what observed in

the MUSDB18 experiment, Demucs v2 predictions include

less artifacts, especially in the high-frequency range, being

reflected in the metrics as such. Audio examples of this

experiment are available in the accompanying repository.

We analyse the behaviour of the β20 singing voice

model along the steps in the reverse process. We observe

that the SIR (interf.) notably increases along the steps, at

a compromise of a much less steeply SAR (artifacts) de-

crease. Namely, as we iteratively transform the signal from

mixture to singing voice, we remove the accompaniment

while trying to maintain the quality of the singing voice,

relying on the model trained with our diffusion-inspired

strategy to estimate the perturbation at each step while

alleviating the additional interferences incorrectly gener-

ated during the reverse process. We note that given the

parametrization of the reverse process, stronger transfor-

mation is performed in the first steps (1 to 5 for β20), while

the rest of the steps refine the final estimation. For that

reason, fair or good performance ± relatively to the over-

all track difficulty ± on the first step normally leads to

enhanced final output, while bad initial performance may

even be further degraded through the reverse process.

4.3 Perceptual evaluation

In total 40 people participated in our experiment, 4 of them

being excluded because they scored the ground-truth stim-

uli lower than a separation stimuli. We compute Mean

Opinion Score (MOS) by averaging the ratings for all

songs and all participants. The results in terms of MOS are

presented in Figure 2. Note that Ground-truth is not reach-

ing 5, meaning that the test includes difficult cases with

distorted vocals or large unvoiced segments. We observe

that the 95% Confidence Interval for our model is very sim-

Figure 2. Perceptual evaluation report for the waveform-

based state-of-the-art models and ours

ilar to Demucs and notably higher than both Wave-U-Net

and especially WaveNet, a very similar architecture to the

instance we have trained using our diffusion-inspired strat-

egy. Such test suggests that the predictions made by our

approach may include artifacts or interferences that affect

negatively the standardized metrics but are not perceivable

at naked ear. This test may be extended in future to sepa-

rately study the perceivable distortion and interference.

5. CONCLUSIONS

In this paper we leverage from the denoising diffusion al-

gorithm to propose a training and sampling strategy for

singing voice extraction. The model trained using our

approach learns to gradually transform a mixture into its

corresponding vocal source or accompaniment, achieving

comparable performance to the waveform-based state-of-

the-art on MUSDB18. In addition, we evaluate how our

approach generalizes to other testing sets, showing decent

generalization to these out-of-domain data. We also run a

perceptual test in which our approach scores similar than

Demucs v2 and outperforms the others. Our approach op-

erates on an architecture similar to WaveNet and obtains

better objective and perceptual evaluation. This work has

a broad future outlook. For the next steps, we look at sepa-

rating other sources and supporting stereo. We also look at

extending the approach, for instance, by using a different

or improved network to learn the reverse process, focusing

on U-Nets which are the leading architecture music source

separation. We may also consider conditioning, the key el-

ement of diffusion-based approaches in the literature. Fi-

nally, our diffusion-inspired reverse parametrization may

be further improved to better refine the predictions.
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