
AN EXPLORATION OF GENERATING SHEET MUSIC IMAGES

Marcos Acosta

Harvey Mudd College

mdacosta@g.hmc.edu

Irmak Bukey

Pomona College

ibab2018@mymail.pomona.edu

TJ Tsai

Harvey Mudd College

ttsai@g.hmc.edu

ABSTRACT

Many previous works in recent years have explored various

forms of music generation. These works have focused on

generating either raw audio waveforms or symbolic music.

In this work, we explore the feasibility of generating sheet

music images, which is often the primary form in which

musical compositions are notated for other musicians. Us-

ing the PrIMuS dataset as a testbed, we explore five dif-

ferent sequence-based approaches for generating lines of

sheet music: generating sequences of (a) pixel columns,

(b) image patches, (c) visual word tokens, (d) semantic to-

kens, and (e) XML-based tags. We show sample generated

images, discuss the practical challenges and problems with

each approach, and give our recommendation on the most

promising paths to explore in the future.

1. INTRODUCTION

This work explores the feasibility of generating music in

the form of sheet music images. Below, we provide a

brief overview of recent work in the area of music gen-

eration, motivate the problem of generating sheet music

images, and describe five sequence-based approaches that

we will explore in this study. Our main goal is to identify

the practical challenges and problems with each of the five

approaches and to provide a recommendation on the most

promising paths to explore in the future.

Music generation has been an active research topic of

interest to the MIR community in recent years. Many re-

cent works in this area fall into one or more of the follow-

ing three research thrusts. The first research thrust is con-

trollable music generation, in which a user can control cer-

tain aspects of the music generation process. Some exam-

ples of this include providing a template from which vari-

ations can be generated [1] [2], providing a video to which

a suitable background music track is generated [3], spec-

ifying lyrics for the generated song [4], or disentangling

different characteristics of music like style & melody [5],

pitch & rhythm [6] [7], or structure & content [8]. A sec-

ond research thrust is generating music with realistic short-

term and long-term structure. Most recent works achieve

this by representing music as a sequence of discrete tokens

© M. Acosta, I. Bukey, and T. Tsai. Licensed under a Cre-

ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-

bution: M. Acosta, I. Bukey, and T. Tsai, ªAn Exploration of Generating

Sheet Music Imagesº, in Proc. of the 23rd Int. Society for Music Infor-

mation Retrieval Conf., Bengaluru, India, 2022.

and using Transformer-based architectures to learn long-

term dependencies. Some prominent examples of this in-

clude OpenAI’s Jukebox model [4] and Google Magenta’s

Music Transformer model [9] [10]. Other works focus on

encoding music in a way that allows the generated music

to exhibit appropriate metrical structure at the beat, bar,

and phrase levels [11]. A third research thrust is to gener-

ate music in different contexts and musical representations.

Some examples include multi-part music [12], multi-track

music [13] [14] [15] [16], guitar tabs [17], and jazz lead

sheets [18]. Much of this work focuses on how to encode

different music representations or different aspects of mu-

sic (like pitch, duration, velocity, and timing [11]) in a form

that is suitable for training with a Transformer model.

This work falls into the last group and explores music

generation in a different musical representation: sheet mu-

sic images. To the best of our knowledge, this is the first

systematic study of generating sheet music images.

Why generate music in the form of sheet music images?

We present four reasons. First, sheet music is the predom-

inant medium by which compositions are shared in many

genres of music. If a piece of music is intended to be a

composition (as opposed to a demo for an academic re-

search paper), the expectation is that the composition will

be in the form of sheet music. Second, sheet music con-

tains important musical information that is not contained

in MIDI files (which is the most common symbolic mu-

sic representation). For example, musical symbols in the

sheet music like bar lines, rests, note ties, phrasing mark-

ings, sharps and flats, and key changes may not appear in

a generated MIDI file in any explicit way. Third, generat-

ing sheet music cleanly decouples the musical composition

and expressive performance aspects of music, allowing us

to focus exclusively on the composition problem. Fourth,

there is an abundance of sheet music data (>650k scores)

available to the research community through the Interna-

tional Music Score Library Project (IMSLP) [19]. For the

above reasons, we believe that studying the generation of

sheet music images is an interesting and relevant problem.

Our goal is to explore the feasibility of generating sheet

music. As an initial step, we focus on the specific task

of generating monophonic incipit images, which are short

snippets of sheet music that are used to identify a musi-

cal work. Using the PrIMuS dataset [20] as a testbed, we

explore five different sequence-based approaches for gen-

erating incipits: (a) generating sequences of pixel columns,

(b) generating sequences of image patches, (c) generating

sequences of visual word tokens, (d) generating sequences

701



Figure 1. An example incipit from the PrIMuS dataset

(top). We explore five different ways to generate sheet mu-

sic: generating pixel columns, image patches, visual word

tokens, semantic tokens, and XML code.

of semantic tokens, and (e) generating MEI code, an XML-

based sheet music representation. For each of these five ap-

proaches, we train GPT-2 [21] and AWD-LSTM [22] lan-

guage models, generate example incipits, and characterize

the main challenges and problems with each approach.

2. SYSTEM DESCRIPTIONS

In this section we describe five different sequence-based

approaches for generating a monophonic incipit image.

All five approaches use language models to generate se-

quences of tokens, but they differ in the way that the tokens

are constructed or defined.

2.1 Generating Pixel Columns

The first approach is to generate sequences of pixel

columns. This is done in five steps, which are described

in the following five paragraphs.

The first step is to standardize the incipits. The raw

incipits in the PrIMuS dataset have variable height and

width, so it is necessary to standardize the height of the

incipit. This is done by selecting a fixed height for all in-

cipits, ensuring that the five staff lines are vertically cen-

tered in the resulting image. This ensures that the staff

lines appear in the same vertical pixel positions in each

image. After the standardization, the images have a fixed

height but variable width.

The second step is to convert pixel columns to words.

Here, we interpret each standardized image as a sequence

of words, where each word corresponds to a single pixel

column. We convert pixel columns to words by simply bi-

narizing the (grayscale) pixel values and interpreting each

column’s binary representation as a word.

The third step is to train a language model on the word

sequences. This can be done in a self-supervised man-

ner by predicting the next word in a sequence. We ran

experiments with two different language models: (a) the

AWD-LSTM model [22], which is a 3-layer LSTM model

that incorporates multiple forms of dropout and (b) the

GPT-2 small model [21], which is a 6-layer Transformer

decoder model. We use the implementation of AWD-

LSTM from the fastai [23] library and the implementation

of GPT-2 from the huggingface [24] library. We use the

default recommended vocabulary size in each respective

library (GPT-2 small 30k, AWD-LSTM 60k), and map in-

frequently occurring words to a special unknown word to-

ken <unk>.

The fourth step is to generate new word sequences given

a starting seed sequence. We do this by generating a new

token at each time step and using the generated token as

input to the next time step. For AWD-LSTM, we sam-

ple from the softmax distribution with a temperature of 0.8

(default in fastai). For GPT-2, we use top K = 50 sam-

pling (default in huggingface).

The fifth step is to render the generated word sequence

as an image. Since each word is a binary string of 0’s and

1’s corresponding to a single pixel column, we simply con-

catenate the generated words in a matrix and directly ren-

der it as a black-and-white image.

2.2 Generating Image Patches

The second approach is to generate sequences of image

patches. This is done in five steps, which are described in

the following five paragraphs.

The first step is to standardize the incipits. This is done

in the same manner as described in Section 2.1 above.

The second step is to convert image patches to words.

Figure 1 shows a graphical illustration of this process for

a single measure (green squares at left). Instead of using

pixel columns as words, we can instead use 15×15 square

image patches as words. This allows individual words to

retain context in both the vertical and horizontal dimen-

sions, rather than only along the vertical dimension. This

approach has been shown to work effectively for image

classification in the Vision Transformer model [25]. Af-

ter breaking the incipit image into square patches, we form

a sequence by considering patches from top to bottom and

from left to right. Each image patch is binarized and inter-

preted as a single word.

The third step is to train a language model on the word

sequences. This is done in the same manner as before. We

tried training both with and without special <col> tokens

indicating the end of each column of patches but found

that including the <col> tokens did not help.

The fourth step is to generate new word sequences given

a starting seed sequence. We generate a sequence of words

autoregressively as described previously.

The fifth step is to render the generated word sequence

as an image. Each word is a binary string of length

15 × 15 = 225 and can be directly reshaped into a bi-

nary image patch. The image patches are assembled in the

same rasterized order to generate the incipit image.

2.3 Generating Visual Word Tokens

The third approach is to generate sequences of visual word

tokens. This is done in five steps, which are described in

the following five paragraphs.

The first step is to standardize the incipits. This is done

in the same manner as described in Section 2.1.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

702



Figure 2. Visual word tokens. The top two rows show

some of the most common visual word tokens, and the bot-

tom two rows show a random selection of words in the vo-

cabulary.

The second step is to tokenize each standardized in-

cipit into a sequence of visual word tokens. This can be

done by identifying pixel columns that only contain empty

staff lines, and then interpreting these pixel columns as a

separator (similar to tokenizing text based on whitespace).

Figure 1 shows an example of this process for a single

measure (bottom left). With the PrIMuS dataset, there are

only a few unique ªempty" pixel columns, but with other

sheet music data one could train a simple model to iden-

tify empty pixel columns. Note that this process yields

visual word tokens that span the entire height of the incipit

and have variable width. The top two rows of Figure 2

show some of the most common visual word tokens, and

the bottom two rows show a random selection of other vi-

sual word tokens in the vocabulary. One benefit of this

approach is that entire symbols (e.g. clef signs) are inter-

preted as a single word, which allows the model to focus

on modeling sequences of symbols rather than on render-

ing common symbols correctly. We found it helpful to im-

pose a minimum separator width to avoid splitting certain

symbols (like single whole notes) into two parts.

The third step is to train a language model on the visual

word token sequences. This is done in the same manner as

described in Section 2.1. The separator pixel columns are

removed from the data and do not appear in training.

The fourth step is to generate new word sequences given

a starting seed sequence. We generate a sequence of visual

word tokens autoregressively as described in Section 2.1.

The fifth step is to render the generated visual word to-

ken sequence as an image. For simplicity, we simply con-

catenate the visual word tokens side by side and insert a

fixed-width separator between each visual word token.

2.4 Generating Semantic Tokens

The fourth approach is to generate a sequence of semantic

tokens. This is done in four steps, which are described in

the next four paragraphs.

The first step is to represent each incipit as a sequence of

semantic tokens. In the original PrIMuS dataset [20], the

creators introduce a language for encoding musical sym-

bols in a way that captures semantically meaningful in-

formation. Figure 1 shows an example incipit (top) and

its corresponding sequence of semantic tokens (gray col-

ored box on right). We tokenize by symbol and by sym-

bol characteristics, so that a string ªnote-E4_eighth rest-

eighth" would be converted into the sequence ªnote E4

eighth rest eighth". After tokenizing in this manner, there

are 279 unique words across the PrIMuS dataset.

The second step is to train a language model on the se-

mantic token sequences. This is done in the same manner

as described in Section 2.1.

The third step is to generate new word sequences given

a starting seed sequence. We generate semantic word to-

kens autoregressively as described in Section 2.1.

The fourth step is to render the generated semantic to-

ken sequence as an image. We first convert the semantic

token sequence into Plaine and Easie [26] code using a rel-

atively simple set of rules and logic. We then render the

Plaine and Easie code as an image using Verovio [27].

2.5 Generating XML Code

The fifth approach is to generate MEI [28] code, which is

a way of encoding music notation in XML form. This is

done in four steps, which are described in the following

four paragraphs.

The first step is to preprocess the MEI representation

into a sequence of words. Figure 1 shows a portion of the

MEI representation (bottom right) that encodes the mea-

sure highlighted in red (top right). To simplify the data,

we filter out information that is not needed for the engrav-

ing process, such as headers, footers, and XML identifiers.

We also insert spaces to keep conceptually distinct tokens

separate. For example, a tag ª<staff n=’1’>" would be to-

kenized into the sequence ª<staff", ªn=", ª‘1’", and ª>".

Tokenizing the MEI representations in this manner, we get

a vocabulary of 769 words across the PrIMuS dataset.

The second step is to train a language model on the MEI

token sequences. This is done in the same manner as de-

scribed in Section 2.1.

The third step is to generate new word sequences given

a starting seed sequence. We generate a sequence of MEI

tokens autoregressively until a closing </music> tag is gen-

erated. Note that, unlike the previous four methods, we

cannot directly control the width of the generated incipit

since the nested XML tags need to be properly closed.

The fourth step is to render the generated MEI repre-

sentation as an image using Verovio. Note that the gen-

erated MEI code may not be a properly formatted XML

document, so this rendering process may or may not be

successful.

3. EXPERIMENTAL RESULTS

In this section we present sample incipits generated by us-

ing all five approaches described in Section 2. We focus on

qualitative analysis of the generated images in this section,

and in Section 4 we perform several quantitative analyses

on the two most promising approaches.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

703



Figure 3. Sample images from generating pixel columns

with AWD-LSTM (left) and GPT-2 (right).

All systems described in Section 2 were trained on the

PrIMuS dataset [20]. It contains 87,678 real-music incip-

its, which are sequences of notes (often the first ones) used

to identify a melody or musical work. Each incipit in the

dataset is available in five different formats: (1) Plaine and

Easie code, (2) a rendered image, (3) an MEI representa-

tion, (4) a sequence of semantic tokens (as described in

Section 2.4), and (5) a sequence of agnostic tokens, which

encodes the graphical symbols in the music score with their

position in the staff but without any musical meaning. This

dataset is ideal for our study because the incipits are short,

there are a large number of incipits, and there are multiple

representations of the data. We use the rendered image for

the first three approaches (pixel columns, image patches,

visual word tokens), the semantic tokens for the fourth ap-

proach (semantic tokens), and the MEI representation for

the fifth approach (XML code).

During language model training, we use a 90-10

train-validation split for AWD-LSTM and a 95-5 train-

validation split for GPT-2. Once the language model train-

ing has converged, we use the model to generate sample

incipits as described in Section 2. Below, we present sam-

ple images generated from each of the five approaches and

comment on the problems with each approach.

Figure 3 shows sample images from generating pixel

columns. The left half of the figure shows images gener-

ated from the AWD-LSTM model, and the right half of the

figure shows images generated from the GPT-2 model. We

can immediately see several issues with the generated im-

ages: there are visual artifacts that appear as vertical lines

(particularly with the AWD-LSTM model), the measures

do not have a consistent number of beats, there are in-

valid key signatures (top left incipit), and the AWD-LSTM

model seems to reset the clef and key/time signatures fre-

quently. On the positive side, this approach is able to

model symbols like bar lines, grace notes, clefs, key sig-

natures, time signatures, and multiple bar rests in a single

unified framework.

Figure 4 shows sample images from generating image

patches. The left half of the figure shows images gener-

ated from the AWD-LSTM model, and the right half of

the figure shows images generated from the GPT-2 model.

We see some visual artifacts that come from incoherently

generated symbols (e.g. the time signature in the fourth ex-

ample on the right, the sixteenth note beams in the last

example on the right), the measures do not have a consis-

tent number of beats, and occasionally the model seems to

Figure 4. Sample images from generating image patches

with AWD-LSTM (left) and GPT-2 (right).

Figure 5. Sample images from generating visual word to-

kens with AWD-LSTM (left) and GPT-2 (right).

be confused about where each image patch is located rel-

ative to the global image (e.g. the incorrectly placed bar

lines in the fifth example on the left). Again, the AWD-

LSTM model seems to have a problem with resetting the

clef and key signature too frequently (e.g. the second and

third examples on the left). Compared to the pixel column

approach, this approach seems to have somewhat less vari-

ety in terms of rhythms and durations (e.g. sixteenth notes,

rests).

Figure 5 shows sample images from generating visual

word tokens. The left half of the figure shows images gen-

erated from the AWD-LSTM model, and the right half of

the figure shows images generated from the GPT-2 model.

We don’t see any visual artifacts in reconstructing symbols

since each token is itself an entire symbol (or collection

of symbols), but we see a lot of semantically incoherent

patterns. For example, there are accidentals that appear

without a corresponding note (fifth example on left), ties

to notes that don’t appear (second example on left), and

bar lines sometimes appear too frequently (third example

on right) and at other times too infrequently (last three ex-

amples on left). Measures still do not have a consistent

number of beats, but we do notice that the model is often

metrically coherent and correct immediately after a time

signature symbol is generated. There are stylistic issues as

well: some measures are technically coherent but do not

follow typical conventions of sheet music, such as generat-

ing three consecutive quarter note rests in a measure rather

than a whole measure rest (top example on right).

Figure 6 shows sample images from generating seman-

tic tokens. The left half of the figure shows images gen-

erated from the AWD-LSTM model, and the right half of

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

704



Figure 6. Sample images from generating semantic tokens

with AWD-LSTM (left) and GPT-2 (right).

the figure shows images generated from the GPT-2 model.

There is a noticeable improvement in semantic coherence

compared to the previous three approaches. For example,

most generated measures have the correct number of beats,

even across different time signatures (e.g. 3/4 in the first

example on left, 6/4 in the second example on left, 2/4 in

the third example on left, 4/4 in last example on left). How-

ever, we still occasionally see measures with an incorrect

number of beats (e.g. fifth example on left), and the model

particularly seems to struggle with unusual time signatures

(e.g. 5/4 in the fourth example on left). The models seem

to display a good amount of diversity in rhythms and dura-

tions, both with notes and rests. Note that, because the in-

cipit is translated from semantic tokens to Plaine and Easie

code and then to a rendered image, accidentals are guar-

anteed to be rendered correctly with a given key signature

(e.g. first and third examples on left).

Figure 7 shows sample images from generating MEI

code. The left half of the figure shows images generated

from the AWD-LSTM model, and the right half of the fig-

ure shows images generated from the GPT-2 model. Note

that some generated MEI code was ill-formed and could

not be rendered as an image, so the examples below are

self-selected from the examples that were valid MEI files.

We can see that most measures have the correct number

of beats, and this holds true across a range of time signa-

tures (e.g. 4/4, 3/4, 2/4, 2/2 in the examples in Figure 7).

Because the MEI representation explicitly encodes sym-

bols like note beams and ties, the generated incipits also

seem to obey most stylistic conventions. The AWD-LSTM

model has noticeably less diversity than the GPT-2 model,

but the latter demonstrates a reasonably good diversity of

rhythms and durations in notes and rests.

Summary. The three image-based approaches (pixel

columns, image patches, visual word tokens) are not rec-

ommended because the generated incipits are not seman-

tically coherent, even when they do not have any obvious

visual artifacts. The primary issue with generating seman-

tic tokens and MEI code is metrical coherence ± ensuring

that the number of beats in a measure is consistent with the

time signature. Generating MEI code also has the issue of

malformed XML code that cannot be rendered properly. 1

Our experiments lead us to two main conclusions. First,

1 One caveat is that our recommendations assume that the amount of
training data is the same across different encodings.

Figure 7. Sample images from generating XML code with

AWD-LSTM (left) and GPT-2 (right).

the two approaches that we believe are most promising to

explore in future work are generating sequences of seman-

tic tokens and generating XML code. Second, the main

technical issue that must be resolved to generate meaning-

ful sheet music is metrical coherence ± exploring ways to

utilize powerful and flexible language models while also

conforming to the strict metrical rules of music. This

emerges as a main challenge for future work.

4. ANALYSIS

In this section we perform additional quantitative analyses

on the two recommended approaches: generating semantic

tokens and generating MEI code.

We can quantify how metrically coherent the generated

semantic token sequences are in the following manner.

First, we generate 16,000 incipits in the form of seman-

tic token sequences. When generating these sequences, we

specify the clef, key signature, and time signature as part of

the seed sequence, and we divide the 16,000 incipits evenly

across eight different time signatures. Second, we segment

each incipit into distinct measures by detecting bar lines in

the generated sequence. If the generated sequence contains

a change of time signature, we only consider the portion of

the incipit before the time signature change and ignore the

rest. This policy allows us to measure and compare met-

rical coherence across different time signatures. Third, we

calculate the fraction of measures that are metrically coher-

ent, which we define as a measure that contains the correct

number of beats specified by the time signature. We can

determine this based on the time signature and the time

duration of each semantic token. Note that some semantic

tokens like slurs, bar lines, grace notes, and clef symbols

have no duration, while all notes and rests have a non-zero

duration.

Table 1 shows the results of this analysis on the gen-

erated semantic token sequences. The leftmost column

shows the different time signatures that we used as start-

ing seeds. The next two columns show the total number

of measures generated by the AWD-LSTM model and the

percentage of those generated measures that are metrically

coherent. Note that each incipit will have a variable num-

ber of measures, so we can only indirectly control the total

number of generated measures. The last two columns show

the same information for the GPT-2 model. The bottom

row shows a total across all time signatures.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

705



Time AWD-LSTM GPT-2

Signature # meas % coh # meas % coh

2/4 5820 75.2 8794 80.9

3/4 6229 79.5 8191 79.4

4/4 4109 77.6 5936 77.9

5/4 3762 0.3 5276 35.1

6/4 3640 70.4 5553 77.0

7/4 3781 0.05 5947 0.4

3/8 7091 77.9 10069 77.0

6/8 4334 75.8 7303 75.7

Total 45982 61.7 57069 66.0

Table 1. Measuring metrical coherence of generated se-

mantic token sequences. Columns indicate the number of

generated measures and the percentage of measures that

have the correct number of beats.

There are two things to notice about Table 1. First, both

models have very low metrical coherence for uncommon

time signatures like 5/4 and 7/4. For example, less than

1% of measures in 7/4 were metrically coherent in both

models, which is likely a reflection of the fact that this

time signature has little or no representation in the PrIMuS

dataset. Clearly, these language models are not learning

a notion of metrical structure and are unable to general-

ize to unseen or uncommon time signatures. Second, the

metrical coherence measures for GPT-2 and AWD-LSTM

are very similar for common time signatures like 3/4, 4/4,

3/8, and 6/8, with numbers falling somewhere between 75-

80%. For less common time signatures, however, GPT-

2 often significantly outperforms AWD-LSTM, suggesting

that it is able to generalize slightly better.

We measure the quality of the generated MEI code

in two different ways. The first measurement is simply

the percentage of generated incipits that are valid XML

documents. Note that every MEI document begins with

a <music> tag and ends with a corresponding </music>

tag. Therefore, when generating MEI code, we autore-

gressively generate tokens until a closing </music> tag is

encountered. The resulting MEI document is then ren-

dered with Verovio into an SVG file. If the rendering pro-

cess generates an error or warning, we consider the MEI

code to be malformed. We generated 16,000 incipits with

each model (2,000 incipits for each of the 8 time signa-

tures shown in Table 1) and found that 93.1% of the AWD-

LSTM incipits and 95.9% of the GPT-2 incipits were valid.

The second way to measure the quality of generated

MEI code is to quantify metrical coherence. This is done

in a similar manner as described above: we generate 2,000

incipits for each of the same eight time signatures, seg-

ment each incipit into measures by detecting bar lines, and

then calculate the percentage of measures that are metri-

cally coherent. Note that some of the incipits will not be

valid XML documents, so in our analysis we only consider

measures from generated documents that are valid.

Table 2 shows the results of this analysis on the gener-

ated MEI incipits. There are two things to notice. First, we

Time LSTM GPT-2

Signature # meas % coh # meas % coh

2/4 4754 35.2 6650 85.4

3/4 4998 69.4 6098 86.9

4/4 4418 74.1 4810 77.8

5/4 5400 3.2 4391 9.0

6/4 4298 13.4 3519 59.5

7/4 5586 2.4 3667 8.3

3/8 4120 22.5 7060 91.5

6/8 4354 81.1 5048 83.0

Total 37928 36.3 41243 68.3

Table 2. Measuring metrical coherence of generated MEI

code.

see that GPT-2 outperforms AWD-LSTM on metrical co-

herence for every time signature, sometimes by very large

margins. For instance, on incipits with a 3/8 time signa-

ture, 91.5% of the measures generated by GPT-2 are metri-

cally coherent, compared to only 22.5% for AWD-LSTM.

Second, comparing metrical coherence between semantic

tokens (Table 1) and MEI (Table 2), we see that AWD-

LSTM performs substantially worse with MEI represen-

tations across all time signatures (61.7% vs 36.3% total).

GPT-2 seems to perform better with MEI on common time

signatures, but has extremely variable performance with

uncommon time signatures.

Our quantitative analyses have a clear takeaway: met-

rical coherence is the primary issue with both approaches.

The percentage of metrically coherent measures is suffi-

ciently low as to be prohibitive, particularly with less com-

mon time signatures. It is clear that simply having more

data will not solve this problem, since having more data

will still have an extreme imbalance across different time

signatures. Some possible solutions include using rejec-

tion sampling or incorporating timing and position infor-

mation either into the Transformer model as additional em-

beddings or into the data itself (e.g. REMI [11]). We iden-

tify this as a main challenge for future work.

5. CONCLUSION

We explore the feasibility of generating monophonic sheet

music images using sequence-based models. We consider

five different approaches: generating sequences of pixel

columns, image patches, visual word tokens, semantic to-

kens, and XML-like tags. We train language models for all

five approaches on the PrIMuS dataset and generate sam-

ple incipits to better understand the pros and cons of each

approach. Our main findings are that: (a) the image-based

approaches can yield realistic looking sheet music but are

often semantically incoherent and are therefore not rec-

ommended, (b) generating semantic tokens and MEI code

yield the most semantically coherent sheet music, and (c)

metrical coherence is the biggest issue that needs to be ad-

dressed in future work.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

706



6. ACKNOWLEDGMENTS

This material is based upon work supported by the Na-

tional Science Foundation under Grant No. 2144050.

7. REFERENCES

[1] D. von Rütte, L. Biggio, Y. Kilcher, and T. Hoff-

man, ªFIGARO: Generating symbolic music

with fine-grained artistic control,º arXiv preprint

arXiv:2201.10936, 2022.

[2] G. Hadjeres and L. Crestel, ªVector quantized con-

trastive predictive coding for template-based music

generation,º arXiv preprint arXiv:2004.10120, 2020.

[3] S. Di, Z. Jiang, S. Liu, Z. Wang, L. Zhu, Z. He, H. Liu,

and S. Yan, ªVideo background music generation with

controllable music transformer,º in Proceedings of the

ACM International Conference on Multimedia, 2021,

pp. 2037±2045.

[4] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford,

and I. Sutskever, ªJukebox: A generative model for

music,º arXiv preprint arXiv:2005.00341, 2020.

[5] K. Choi, C. Hawthorne, I. Simon, M. Dinculescu, and

J. Engel, ªEncoding musical style with transformer au-

toencoders,º in International Conference on Machine

Learning, 2020, pp. 1899±1908.

[6] R. Yang, D. Wang, Z. Wang, T. Chen, J. Jiang, and

G. Xia, ªDeep music analogy via latent representation

disentanglement,º in Proceedings of the International

Society for Music Information Retrieval Conference,

2019, pp. 596±603.

[7] J. Jiang, G. G. Xia, D. B. Carlton, C. N. Anderson, and

R. H. Miyakawa, ªTransformer VAE: A hierarchical

model for structure-aware and interpretable music rep-

resentation learning,º in Proceedings of the IEEE Inter-

national Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2020, pp. 516±520.

[8] J. Jiang, G. Xia, and R. Dannenberg, ªRepresenting

music structure by variational attention,º in ML4MD

Workshop at the International Conference on Machine

Learning, 2019.

[9] C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, I. Simon,

C. Hawthorne, N. Shazeer, A. M. Dai, M. D. Hoffman,

M. Dinculescu, and D. Eck, ªMusic transformer: Gen-

erating music with long-term structure,º in Interna-

tional Conference on Learning Representations, 2018.

[10] C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C.-

Z. A. Huang, S. Dieleman, E. Elsen, J. Engel, and

D. Eck, ªEnabling factorized piano music modeling

and generation with the MAESTRO dataset,º in In-

ternational Conference on Learning Representations,

2019.

[11] Y.-S. Huang and Y.-H. Yang, ªPop music transformer:

Beat-based modeling and generation of expressive pop

piano compositions,º in Proceedings of the ACM Inter-

national Conference on Multimedia, 2020, pp. 1180±

1188.

[12] F. T. Liang, M. Gotham, M. Johnson, and J. Shotton,

ªAutomatic stylistic composition of Bach chorales with

deep LSTM,º in Proceedings of the International Soci-

ety for Music Information Retrieval Conference, 2017,

pp. 449±456.

[13] J. Ens and P. Pasquier, ªMMM: Exploring conditional

multi-track music generation with the transformer,º

arXiv preprint arXiv:2008.06048, 2020.

[14] C. Donahue, H. H. Mao, Y. E. Li, G. W. Cottrell, and

J. McAuley, ªLakhNES: Improving multi-instrumental

music generation with cross-domain pre-training,º in

Proceedings of the International Society for Music In-

formation Retrieval Conference, 2019, pp. 685±692.

[15] H.-W. Dong, W.-Y. Hsiao, L.-C. Yang, and Y.-H. Yang,

ªMuseGAN: Multi-track sequential generative adver-

sarial networks for symbolic music generation and ac-

companiment,º in Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 32, no. 1, 2018.

[16] Y. Ren, J. He, X. Tan, T. Qin, Z. Zhao, and T.-Y. Liu,

ªPopMAG: Pop music accompaniment generation,º in

Proceedings of the ACM International Conference on

Multimedia, 2020, pp. 1198±1206.

[17] Y.-H. Chen, Y.-H. Huang, W.-Y. Hsiao, and Y.-H.

Yang, ªAutomatic composition of guitar tabs by trans-

formers and groove modeling,º in Proceedings of the

International Society for Music Information Retrieval

Conference, 2020, pp. 756±763.

[18] S.-L. Wu and Y.-H. Yang, ªThe jazz transformer on

the front line: Exploring the shortcomings of AI-

composed music through quantitative measures,º in

Proceedings of the International Society for Music In-

formation Retrieval Conference, 2020, pp. 142±149.

[19] ªIMSLP Petrucci Music Library,º https://imslp.org, ac-

cessed: 2022-05-20.

[20] J. Calvo-Zaragoza and D. Rizo, ªEnd-to-end neural

optical music recognition of monophonic scores,º Ap-

plied Sciences, vol. 8, no. 4, p. 606, 2018.

[21] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and

I. Sutskever, ªLanguage models are unsupervised mul-

titask learners,º OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[22] S. Merity, N. S. Keskar, and R. Socher, ªRegulariz-

ing and optimizing LSTM language models,º arXiv

preprint arXiv:1708.02182, 2017.

[23] J. Howard and S. Gugger, ªFastai: a layered API for

deep learning,º Information, vol. 11, no. 2, p. 108,

2020.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

707



[24] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue,

A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz,

J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jer-

nite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame,

Q. Lhoest, and A. M. Rush, ªTransformers: State-of-

the-art natural language processing,º in Proceedings of

the 2020 Conference on Empirical Methods in Natural

Language Processing: System Demonstrations, 2020,

pp. 38±45.

[25] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weis-

senborn, X. Zhai, T. Unterthiner, M. Dehghani,

M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and

N. Houlsby, ªAn image is worth 16x16 words: Trans-

formers for image recognition at scale,º in Interna-

tional Conference on Learning Representations, 2021.

[26] ªPlaine & Easie Code,º https://www.iaml.info/

plaine-easie-code, accessed: 2022-05-20.

[27] ªVerovio: A Music Notation Engraving Library,º https:

//www.verovio.org, accessed: 2022-05-20.

[28] ªMusic Encoding Initiative,º https://music-

encoding.org, accessed: 2022-05-20.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

708


