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ABSTRACT

We propose and assess deep learning models for harmonic

and tempo arrangement generation given melodies and

emotional constraints. A dataset of 4000 symbolic scores

and emotion labels was gathered by expanding the HTPD3

dataset with mood tags from last.fm and allmusic.com.

We explore how bi-directional LSTM and Transformer en-

coder architectures can learn relationships between sym-

bolic melodies, chord progressions, tempo, and expressed

emotions, with and without a transfer learning strategy

leveraging symbolic music data without emotion labels.

Three emotion annotation summarisation methods based

on the Arousal/Valence (AV) representation are compared:

Emotion Average, Emotion Surface, and Emotion Cate-

gory. 20 participants (average age: 30.2, 7 females and

13 males from Japan) rated how well generated accom-

paniments matched melodies (musical coherence) as well

as perceived emotions for 75 arrangements correspond-

ing to combinations of models and emotion summarisa-

tion methods. Musical coherence and match between tar-

get and perceived emotions were highest when melodies

were encoded using a BLSTM model with transfer learn-

ing. The proposed method generates emotion-driven har-

monic/tempo arrangements in a fast way, a keen advantage

compared to state of the art. Applications of this work in-

clude AI-based composition assistant and live interactive

music systems for entertainment such as video games.

1. INTRODUCTION

With the burgeoning of video games, user-generated video

content, and tv/film productions released on streaming ser-

vices, the demand of music for media seems to be grow-

ing. Although musicians have known for long how to pro-

duce music for such media, interactive music production

systems can innovate the way producers create dynamic

scores responding to contextual and user factors deter-

mined prior to or during the media experience. Deep gen-

erative models for music composition have made steady

improvements but how to control them to support creative
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agency remains a challenge [1]. In this work, we investi-

gate deep learning techniques to generate musical arrange-

ments controlled by emotional features. Music composi-

tion and arrangement are art crafts which involve special-

ized knowledge and experience. Prior work used artificial

intelligence to either fully automate the music composi-

tion [2] and arrangement process [3] or develop assistive

tools helping producers to compose new material through

human-machine interaction [4]. Our work falls into the

second category and focuses on generating harmonisa-

tion and tempo arrangements for composed melodies given

emotional constraints. Deep learning (DL) was recently

used to learn relationships between musical attributes (e.g.

notes, chords) and associated emotions [5]. As discussed

in [6], music emotions can be considered as being com-

municated by music (perceived emotions), and as being

induced or evoked in listeners (felt emotions) [7]. Depend-

ing on the nature of the emotional annotations used during

training (e.g. Tan et al. [8]), DL models can be aimed at

producing music matching perceived or felt emotions. Mu-

sic emotion recognition (MER) is one of the most challeng-

ing music information retrieval challenge, and new devel-

opments aim towards personalized and context-sensitive

applications [9]. The proposed system generates harmonic

and tempo arrangements for input melodies encoded in the

symbolic domain so as to express specific emotions con-

trolling the generation. Harmony and tempo were cho-

sen for the inference stage as they have been shown to af-

fect emotional expression: changes in chord progressions

influence the emotions expressed by music [10]; tempo

can greatly affect music emotions (especially in terms of

arousal) [11]. A challenge in stirring DL generative mod-

els using emotion controls is the difficulty in finding train-

ing datasets containing both a large number of music ex-

amples and emotion labels [12]. We produced the HTPD3

Emotion Dataset (HED) released with this paper by col-

lecting crowd-sourced emotion labels for the 4,000 tracks

from the HTPD3 dataset [3]. Given the fairly small size

of the dataset, we test the effectiveness of transfer learn-

ing for emotion-driven music generation using a network

pre-trained only considering musical attributes.

Applications include the design of assistant tools help-

ing composers/producers to create different arrangements

given input melodies and emotional intentions. This may

be of help to musicians who do not have advanced mu-

sical knowledge and to find inspiration in musical ideas

generated by the machine. Another use case is interactive
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music systems which adapts to the user context, defined

in [9] as the dynamic aspects from the listener that fluctu-

ate frequently (e.g. physiological signals). If training was

conducted using felt emotion labels, the method could be

used for generative music produced on the fly driven by

a user’s felt emotions as predicted from e.g. biosignals.

This could support affective gaming for example to pro-

duce responsive background music adapting itself to the

emotional states of the game player, see e.g. [13].

2. RELATED WORK

A review of affective algorithmic composition dealing

with automatic composition of music based on specific

emotions can be found in Sulun et al. [5]. Guo et al.

[14] proposed a variational autoencoder (VAE) for mu-

sic generation controlled by tonal tension predicted from

low-level symbolic music features. Tan et al. [8] intro-

duced Music FaderNets enabling to stir music genera-

tion based on arousal - an emotional dimension related to

excitation - using Gaussian Mixture VAEs (GM-VAEs).

Makris et al. [12] proposed a method for assigning va-

lence - an emotional dimension linked to pleasantness -

to chords based on prior relationships between mood tags

and chord qualities. This enabled the generation of lead

sheet data (melody and chord) conditioned by valence,

phrasing and time signature using a sequence-to-sequence

model. Results from subjective evaluations with 42 partic-

ipants showed consistency between targeted and perceived

valence. However, a limitation is that only valence was

considered but not arousal. Sulun et al. [5] recently pro-

posed a promising approach for the generation of multi-

instrument symbolic music driven by musical emotion us-

ing a Music Transformer architecture. The models can be

conditioned by continuous-valued valence and arousal la-

bels and yield results representative of current state of the

art on a large scale dataset of 34791 songs. However, pos-

sible limitations towards generalisation come from the use

of machine-predicted valence labels retrieved from Spotify

and the modeling of arousal using MIDI note density.

3. DL ARCHITECTURE FOR AUTOMATIC

ARRANGEMENT CONDITIONED BY EMOTIONS

The proposed DL architecture is divided into a melody

context encoder and an arrangement decoder (Figure 1).

The melody context encoder aims to capture information

from the input melody taken as a sequence. Based on

the encoded melodic context embedding and emotional in-

formation, the arrangement decoder predicts chords, har-

monic functions, and tempo.

3.1 Melody Context Encoder

The melody context encoder is shown in the top part of Fig-

ure 1 and takes a representation of melodies as input and

outputs a 128-dimensional embedding (similar to [15]) at

every time unit. To reduce the dimensionality of the input,

the melody is converted to a pitch class profile (PCP), as

in [15]. A PCP is a 12-dimensional vector, in which each

Figure 1. Architecture of the proposed model. The top

represents the melodic context encoding, the bottom repre-

sents the arrangement generation (LSTM: long short-term

memory network; FC: fully connected layers).

element of the vector contains the duration of each pitch

class event. We compared the two following models for

the melody context encoders (see Section 5):

Bi-directional LSTM (BLSTM)

Inspired by the melody harmonizer proposed in [15],

the same BLSTM model was used in this study with

the aim of encoding the context of the melody.

Transformer encoder

The Transformer [16] is a network originally pro-

posed for machine translation. Its self-attention

mechanism supports more complex contexts and

more efficient computations than BLSTM.

3.2 Arrangement Decoder

As shown at the bottom of Figure 1, the arrangement de-

coder is constructed using LSTM units only with forward

propagation. This is to reduce the amount of computa-

tion required, and also to be able to make inferences based

only on historical information for near real-time applica-

tions. The LSTM unit of each melodic time unit receives

as input the hidden state of the past unit, the embedding

of the melody context, PCP of the melody, and emotion

conditions represented numerically. Finally, for every time

units, the arrangement decoder outputs the chord labels

and chord functions as a classification problem and the

tempo as a regression problem. The output layer of each

component consists of a fully connected layer. The loss

function is expressed as:

L = CCE(c, c∗) + 1.5CCE(f, f∗) + 0.001MSE(t, t∗)
(1)
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where c, f and t are chord labels, chord functions,

and tempo, respectively. c∗, f∗ and t∗ are the related

groundtruth attributes. CCE represents the categorical

cross-entropy and MSE represents the mean-squared error.

The weight of each error was heuristically determined by

observing the reduction in loss during training.

3.3 Training Strategies

When a sufficient amount of emotion-labelled musical

data is available for training, the model can be commonly

trained with a backpropagation algorithm. However, when

the amount of emotion-labeled data is not sufficient, trans-

fer learning strategy enabling to include data without emo-

tion labels can be effective. In such case, encoders are

pre-trained using music examples without emotion labels,

then the pre-trained encoders (weights are fixed) and ran-

domly initialized decoders are concatenated and retrained

only for the subset of tracks with emotion labels. However,

groundtruth data may not provide the best examples since

there are several possible arrangements following music

theory and perception considerations [3]. As in [3], train-

ing was stopped to a fixed number of epochs (500) without

using validation, when the loss was significantly reduced

(learning rate = 1e-3) and subjectively consistent arrange-

ments were generated with the test data. Results on the

effectiveness of the transfer learning strategy are reported

in Section 5.4.

4. MUSIC EMOTION QUANTIFICATION

In order to input emotional conditions to the networks, per-

ceived or felt emotions associated to music have to be rep-

resented numerically. We investigated three ways to map

emotions into Russell’s arousal-valence (AV) space [17].

4.1 Emotion Average Representation

In the Deezer Mood Detection Detaset [18], the emotional

tags from last.fm 1 were mapped to arousal and valence

values using [19]’s results. In [19], statistics on participant

ratings for emotion words are reported for valence, arousal

and dominance on a nine-point scale. In most cases, mul-

tiple emotion tags can be associated to music content. To

address this, one of the methods used e.g. in [18, 20], con-

sists in summarising multiple emotions tags using the ge-

ometrical mean of the tag projections in the emotion space

(e.g. AV space). We used such method yielding two-

dimensional emotional features from a set of mood tags

for songs. These were normalized in the range 0-1 for net-

work input. We refer to this emotional representation as

emotion average representation (EAR) in the remainder.

4.2 Emotion Surface Representation

The EAR expresses emotions locally in the AV space.

However, as investigated e.g. by [20], there is a possibil-

ity that a same song suggests/induces multiple emotions

1 https://www.last.fm/

to a same listener, or different emotions to different lis-

teners. Therefore, similar to [21], two-dimensional Gaus-

sian mixture models (GMMs) can be used to represent per-

ceived/felt emotions associated to multiple mood tags as-

sociated to songs in the AV space. The average and stan-

dard deviation corresponding to the mood tags associated

to a song are obtained from the experimental results in

[19]. Based on the average and standard deviation, random

sampling is performed and 10000 samples are generated

for each tag. Like for EAR, the emotional features were

normalized in the range 0-1. Clustering is performed using

two-dimensional GMMs based on the randomly sampled

points. Two Gaussian components were assumed sufficient

to represent the emotional feature surface in the AV plane

as in [21]. Finally, the average and standard deviation of

each Gaussian component were used as the network input

representation. We refer to this emotional representation as

the emotion surface representation (ESR) in the remainder.

4.3 Emotion Category Representation

EAR and ESR are both continuous. However, music emo-

tions may not be best represented by a dimensional model

[22]. Studies on music emotion recognition, such as [23],

used discrete representations of emotions through categor-

ical variables. We also tested emotional representations

with discrete categories. We distinguish four quadrants

in the AV space; Q1: high arousal & high valence [joy-

ful], Q2: low arousal & high valence [relaxing], Q3: low

arousal & low valence [sad], Q4: high arousal & low va-

lence [angry]). The AV space quadrant with the highest AV

annotations determines the emotional category of the mu-

sic. We refer to this emotional representation as emotion

category representation (ECR) in the remainder.

5. EXPERIMENTAL EVALUATION

In this section, the proposed emotion-driven automatic mu-

sic arrangement systems are evaluated for differences in

network architectures and the effect of transfer learning.

5.1 Dataset and training

Network training requires a dataset in which melody,

chords, tempo and emotions (perceived or felt) are simulta-

neously available. As in [3], we rely on the HTPD3 dataset

which provides symbolic melodies, chords, and tempo.

Time units were set to two beats (half bars in the 4/4 time

signature). The chord played for the longest time over two

beats was selected as the chord in that time unit. Notes

that spanned a segmentation were split. However, tracks

in HTPD3 are not labelled with emotion features. We re-

trieved crowd-sourced mood tags from last.fm 1 and all-

music.com 2 for the song and artists contained in HTPD3.

Tags from last.fm 1 and allmusic.com 2 have previously

been used in music emotion studies, see e.g. [18]. As

some of the last.fm tags are not related to emotions, we

filtered these out using the criteria proposed in [24]. This

2 https://www.allmusic.com/
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method allowed us to tag approximately 4000 tracks avail-

able in HTPD3. We refer to this expanded dataset as

the HTPD3 Emotion Dataset (HED) available at the link

below 3 . There is some uncertainty on whether crowd-

sourced mood tags relate to perceived or felt emotions. We

assume here that these tags relate to perceived emotions,

however this can limit the performance of the model in the

experiments. Another caveat is that the mood tags relate

to audio versions of songs, whereas our model deals with

symbolic music. Hence, as in [5], they are considered as

ªweak labels" for symbolic music. The dataset was divided

into 90% training data and 10% test data. As suggested

in [25], the use of commercial songs to train AI models for

research may be considered fair use.

5.2 Evaluation conditions and music stimuli

We conducted a listening experiment to assess the perfor-

mance of the proposed model. The study received ethics

approval from our institution. Four models (BLSTM with-

out [BL] and with [BT] transfer learning, Transformer

without [TR] and with [TT] transfer learning) and the

groundtruth (G) were used to create five stimuli for each

melody. As we do not investigate the role of key root in

this study, the chosen input melodies were converted to ei-

ther C major or C minor (both training and testing data).

Since it is not possible to test all possible EAR and ESR in

a continuous way, 15 emotion input presets were prepared

for the evaluation. Four types of emotion are represented

by EAR, another four by ECR, and seven emotion distri-

butions using the ESR. These input emotions were deter-

mined heuristically in order to be able to express as vari-

ous emotions as possible. The specific configurations are

shown on the study website 4 . The chord progressions and

tempo generated by the models were converted to MIDI

along with the input melody. Audio was rendered from

MIDI files using FluidSynth [26] using a SoundFont called

SGM-V2.01. As the research [27] has suggested that hu-

mans can distinguish the timbre of brass instruments and

guitars clearly, the melody part was played by a saxophone

and the harmony part by a classical guitar.

5.3 Procedure and Participants

Participants were given instructions on how to complete

the study on a dedicated website 5 which can be used to lis-

ten to examples of generated accompaniments. The web-

site displayed participants melodies (sampled randomly

from the test set) which were represented in the piano roll

style. For each of the 15 cases (corresponding to emotional

presets not explicitly revealed to participants), participants

had to press the ªExecute" button to obtain five (four mod-

els BT, TR, BT, TT, and groundtruth, G) musical arrange-

ments to rate using three questions:

Q1 The melody and accompaniment were musically co-

herent. (Likert item: 0 [Disagree] - 6 [Agree]). Par-

3 http://coconuts-palm-lab.com/EH/HED.zip
4 http://coconuts-palm-lab.com/EmotionPresets/
5 http://coconuts-palm-lab.com/EH/

Figure 2. The evaluation interface (five panels had to be

completed for each melody; four models plus groundtruth).

ticipants were instructed that musical coherence here

represents a measure of how well the musical ac-

companiment matches the melody.

Q2 How exciting (arousal) do you perceive the music to

be? (Continuous value from 0.0 to 1.0)

Q3 How negative or positive (valence) do you perceive the

music to be? (Continuous value from 0.0 to 1.0)

For Q2 and Q3, the self-assessment manikin [28] was

used to support associations between numerical rating val-

ues and corresponding emotions, together with a represen-

tation of the rating in the AV space. Figure 2 provides

a screenshot of the emotion rating interface. Participants

rated 75 songs in total (15 emotion presets x 5 models)

each lasting between approximately 15 to 30 seconds. As

participants had to rate new arrangements, we assumed that

familiarity with the melody, if any, did not affect the ratings

(this would have to be assessed in future work). The whole

experiment took about 45 minutes to complete.

Participants could not identify the models nor the

groundtruth. Different melodies were randomly chosen

from the test dataset and used for each emotional preset as,

in a pilot testing phase, some participants expressed that

listening to the same tune over and over made it difficult to

evaluate after a while. For a given emotion preset, the five

stimuli (BT, TR, BT, TT, and G) were generated for a same

melody, to enable fair comparison between models.

The experiment was completed by 20 participants (7 fe-

males, 13 males). All participants were Japanese residents,

19 were Japanese and one was German. Their age ranged

between 19 to 59 years (M=30.15, SD=14.05), where M

and SD refer to mean and standard deviation, respectively.

Six of them had at least one year of formal training in mu-

sic theory. Eight had more than five years of formal train-

ing in their instrument (including voice).

5.4 Results

In statistical analyses, a Type I error of 0.05 was used ex-

cept when mentioned otherwise.

5.4.1 Perceived musical coherence

Figure 3(a) illustrates the mean and standard error for

each model, computed on the perceived musical coher-
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Figure 3. Results of a subjective evaluation experiment,

with statistics on the musical coherence across compar-

isons. The means and standard errors are given.

ence considering all emotion presets. An analysis of vari-

ance (ANOVA) shows that the perceived music coherence

yielded by the models presented significant differences

(df=299, F = 66.750, p<.0001). Tukey’s honestly signif-

icant difference (HSD) test shows that there is a significant

difference between all pairs, except between the BLSTM

melody context encoder without transfer learning and the

Transformer melody context encoder with transfer learn-

ing. The BLSTM model with transfer learning achieves

a significantly higher musical coherence compared to the

other models. However, compared to the groundtruth, the

arrangements generated by the machine learning models

were found to be significantly less coherent.

Figure 3(b) displays the mean and standard error of

the musical coherence for each emotional expression.

ANOVA results showed a significant difference (df=319,

F = 3.661, p = 0.025) and Tukey’s HSD test showed that

there was a significant difference only between EAR and

ECR. This suggests that the type of emotional representa-

tion impacts perceived musical coherence. In particular,

it is suggested that EAR may reduce the coherence of the

generated music more than the other representations.

5.4.2 Errors between perceived and target emotions

By observing the error between target and rated emotions,

it is possible to assess how well each model expresses the

target emotions. The errors for the EAR were obtained us-

ing Euclidean distance. The ECR error was defined using

the shortest distance between the emotion AV rating and

the emotion category AV quadrant. The ESR error was de-

fined by the negative log-likelihood that the rating belongs

to the two Gaussians of the GMM component. It should be

noted that each absolute emotion error is thus calculated

on a different scale.

We also analyzed the relative emotion error, which in-

dicates the degree of reflection of emotion, based on the

ratio between the absolute error of the groundtruth and the

absolute error of the arrangement generated by the model.

If the absolute error for the music generated by the models

is smaller than the absolute error for groundtruth, it sug-

gests that the model may have been properly trained. Fur-

thermore, the relative emotion error also makes it easier to

compare different emotional representations. The relative

error er is calculated as follows:

er =
am

ag + ϵ
(2)

where am is the absolute emotion error for a model and

ag is the absolute emotion error for the groundtruth. ϵ is a

small regularising term, avoiding cases where the denomi-

nator tends to zero.

The upper part of Figure 4 illustrates the mean and stan-

dard error of the absolute emotion error (am) for each

model and emotional representation. The bottom part of

Figure 4 shows relative emotion error (er) boxplots. The

medians and quartiles are more appropriate to interpret

the results than the averages (green triangles) which are

strongly influenced by outliers. The blue dotted line is a

threshold representing the absolute emotion error yielded

by the groundtruth. If the relative emotion error is smaller

than the threshold, it suggests that the model has been able

to generate arrangements that are closer to the target emo-

tion than the original groundtruth arrangement.

The hypothesis that all means are equal in the abso-

lute error of the EAR is rejected based on the ANOVA

(df=79, F=4.388, p=0.004). The results of Tukey’s HSD

test showed that there was a significant difference in ab-

solute error between the BLSTM with transfer learning

and the Transformer without transfer learning (p = 0.003).

Moreover, based on the relative emotion errors of the EAR,

it was found that the median and quartiles are smaller for

BLSTM with transfer learning compared to without trans-

fer learning. In particular, up to the third quartile, the er-

rors were below the threshold, indicating that 75% of the

arrangements generated by the model with the transfer-

learned BLSTM are closer to the target emotion than the

original one. The results show that the BLSTM with

transfer learning can reduce the emotion error significantly

more than the Transformer one.

ANOVA results suggest that the mean of the absolute er-

ror for ECR is not significantly different (df=79, F=1.757,

p=0.155). Unlike for EAR, transfer learning does not seem

to have had any particular impact for ECR.

According to ANOVA results, the mean of the abso-

lute error for ESR is not significantly different (df=139,

F=2.539, p=0.0557). The results of Tukey’s HSD test also

showed that there were only significant differences be-

tween the BLSTM with transfer learning and the Trans-

former without transfer learning (p = 0.042). When ob-

serving the relative error of the ESR, the smallest median,

quartiles and mean were obtained with the BLSTM with

transfer learning. Thus, when ESR was used, the emo-

tional error was the smallest when BLSTM with transfer

learning was used as for the EAR.

In addition, Figure 5 summarises the tempo of the gen-

erated arrangements for all the test data. The plotted points

represent the actual tempo and the box plot shows the

statistics. In all models, the tempo varied significantly

when using ESR. This shows that ESR is the emotional

representation that generates the most diverse tempi. The
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Figure 4. Results of the subjective evaluation experiment, with statistics on the absolute emotion error and relative emotion

error across models.

Figure 5. Statistics of the tempi generated for each model

from the all melodies of the test data. Each point represents

a generated tempo.

use of Gaussian variance, as in ESR, may support more

complex emotional expressions.

5.5 Discussion

The highest perceived musical coherence and the lowest

absolute and relative emotion errors were obtained when

BLSTM with transfer learning was used for the melody

context encoder. The results also show that transfer learn-

ing, a semi-supervised learning strategy, seems to be effec-

tive at generating emotional arrangements. A comparison

of the relative errors of the BLSTM with transfer learning

showed that the third quartile was not below the threshold

only for the ECR, indicating that both EAR and ESR are

superior representations for the emotion conditioning.

The generated arrangement could be computed quickly

even with Intel(R) Core(TM) i7-9700K CPU (less than ap-

proximately 2.5 seconds per 16 bars of melody for any

compared models). This could be useful for real-time

music generation scenarios. Due to the simplicity of the

model, the arrangement may be generated more quickly

than state-of-the-art techniques such as that in [12] (ap-

proximately 50 seconds per 16 bars of melody for a lead

sheet on the same CPU). However, the method in [12] gen-

erates the entire leadsheet, so the computation time cannot

be directly compared to the ones reported here.

Several limitations should be highlighted. Observing

the perceived musical coherence, there was no model in

this experiment that could match the groundtruth. The rea-

sons may be overfitting and a lack of data in the dataset. In

most cases, the performance of the model was improved by

transfer learning, so it is expected that more data and ap-

propriate validation will help to build better models. Emo-

tion errors remain relatively large and it is difficult to prove

that the model consistently expresses the desired emotions.

As it is unclear whether emotion labels in the training

dataset represents perceived or felt emotions, this may con-

tribute to inference errors. More knowledge about the lis-

tener’s state and context would be needed to gauge more

comprehensively emotion perception [9]. Results cannot

be generalised since participants were from one prove-

nance (Japan) and the sample size was small (20). More

participants of different nationalities would be required to

assess the generalisability of the proposed models.

6. CONCLUSION

We devised techniques for automatic harmonic and tempo

arrangement of melodies controlled by emotional features,

suitable for near real time applications. A network ar-

chitecture to generate music expressing target emotions

by predicting chord progressions and tempo for an input

melody was proposed. In addition, three methods to quan-

tify musical emotions were compared. To evaluate the re-

sults, we conducted an online listening experiment. For the

melodic context encoder, the BLSTM model with transfer

learning produced the most coherent arrangement and the

one that best reflected the targeted emotions. The proposed

method finds applications in assisting tools to create new

music arrangements based on emotional directions and af-

fective video games.
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