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ABSTRACT

Recent years have seen considerable advances in audio
synthesis with deep generative models. However, the state-
of-the-art is very difficult to quantify; different studies often
use different evaluation methodologies and different met-
rics when reporting results, making a direct comparison to
other systems difficult if not impossible. Furthermore, the
perceptual relevance and meaning of the reported metrics
in most cases unknown, prohibiting any conclusive insights
with respect to practical usability and audio quality. This
paper presents a study that investigates state-of-the-art ap-
proaches side-by-side with (i) a set of previously proposed
objective metrics for audio reconstruction, and with (ii) a
listening study. The results indicate that currently used ob-
jective metrics are insufficient to describe the perceptual
quality of current systems.

1. INTRODUCTION

There has been growing research interest in building deep
learning models that are capable of generating audio. Mod-
els such as WaveNet [1], NSynth [2], WaveGAN [3] and,
most recently, DDSP [4] paved the way for data-driven Neu-
ral Audio Synthesis (NAS). Models like DDSP and NSynth
have been advertised in YouTube videos prominently [5, 6],
where artists make music using neural network generated
audio, indicating that there is real world applicability to
generative audio models.

Despite the many advances in generative modeling of
sounds in the past couple of years, the evaluation of these
systems lacks established methodology. Most importantly,
systems are not evaluated with a consistent set of metrics.
For instance, researchers have suggested the following to
evaluate the output of such generative systems: the classifi-
cation accuracies of neural networks trained to classify the
sounds into predefined categories such as pitch and sound
qualities [2,3,7,8], statistical methods [9,10], and subjective
evaluation through listening studies [3,9, 10].

This inconsistency in metrics and methodology makes
a direct comparison of systems difficult at best, making it
hard to understand the current state of the art and to measure
the impact of new innovations in the field.
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In this study, we measure and compare the quality of
the output of neural networks capable of producing short
time-invariant samples. The goal is to evaluate state-of-the
art systems comparatively with previously used evaluation
metrics and to investigate the perceptual relevance of these
metrics for measuring audio quality.

To pursue these goals, we trained three widely known
neural networks, DDSP [4], NSynth [2], and Diffwave [9].
The evaluation results published with the introduction of
these methods all imply that these models synthesize sounds
at high quality. However, since different metrics are used
for each system, no comparison is possible. To enable such
a comparative analysis, we survey and implement a set of
metrics and apply them to these systems. Furthermore, we
conduct a listening study to measure the perceptual sound
quality of the system outputs.

The core contributions of this paper are: (i) a review of
currently used metrics for the evaluation of synthesis quality
and a comparative analysis of 3 popular neural audio syn-
thesizers, (ii) a listening study for assessing the perceptual
audio quality of these synthesizers, and (iii) an investigation
on the perceptual relevance of the objective metrics.

2. EVALUATION OF NAS SYSTEMS TODAY

Generative systems are notoriously difficult to evaluate [11]
and new metrics are proposed frequently to understand
whether generative networks are able to capture desirable
characteristics required for a given task. In audio and music,
the task of evaluation is difficult because (i) the ground truth
is not well defined, as various outputs might be considered
“correct,” [12] (ii) the previously used set of objective met-
rics for NAS most likely misses or insufficiently models
perceptual qualities of a sound [7, 13], (iii) and aesthetic
preferences are, by definition, subjective. [14]

Some contemporary metrics for NAS derive from lit-
erature on evaluating Generative Adversarial Networks
(GANSs), where diversity of samples and modeling the dis-
tribution of data play a significant role [15]. Objective
evaluation metrics typically rely on either mathematical
formulations of a success measure, or —in the case of
contemporary GAN literature— using a separate neural
network to identify if the model is working appropriately.
Accordingly, we categorize the metrics into the four groups
(i) reconstruction metrics, (ii) sample diversity measures,
(iii) distribution distance measures, (iv) and measures de-
rived from subjective evaluation methods.

Reconstruction errors are computed as the difference be-
tween a given input sound .S; and a generated sound .S;.
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The error is typically defined as either an £5 norm (squared
error) or a /1 norm (absolute error). These differences
can be computed on either the time-domain signal or a
spectrogram. Typically, the MSE/MAE is computed on
spectrograms, given their ubiquity as the input and gener-
ated representation for neural networks. MSE and MAE
have a range between 0 and infinity, with a MSE/MAE of 0
indicating perfect reconstruction.

To give examples of practical use, Engel et al. use the
multi-scale spectrogram loss, which compares spectrograms
across a set of FFT sizes as a measure of reconstruction
error and as a loss term for use in training [4]. This was
recently used as a metric by Shan et al. to compare DDSP
with their proposed Differential WaveTable Synthesis [16].

With respect to reconstruction metrics, there appears to
be an ambiguity about the purpose of these metrics, as they
seem to be used as both the training loss to be minimized
and the evaluation metric itself. Also note that these errors
are known to not have a clear perceptual meaning, as a high
MSE between two sounds does not necessarily mean that
such two sounds will be perceived as dissimilar (or vice
versa). There is plenty of evidence in the field of (percep-
tual) audio coding verifying that measuring the power of the
coding error is insufficient to capture the perceptual quality
of the sound [17].

Sample diversity metrics: In GAN literature, a lot of
emphasis is placed on the performance of the “generator”
and to ensure that it is able to produce classifiable samples
that capture the diversity of classes from the training dataset.
The two metrics we will discuss in this section use machine
learning and deep learning driven approaches to measure
sample diversity.
¢ Number of statistically Different Bins (NDB/k) is
a metric devised to identify mode collapse in GANS,
a phenomena where a network produces a lot of out-
puts that look like alike, therefore lacking sample
diversity [18]. NDB/k is computed on a Voronoi
decomposition from the k-means centroids of the
training samples. The clusters are computed directly
in the sample space.! The k clusters are referred to
as the “bins.” To compute a score, test samples are
assigned to the k clusters/bins using an L2 distance
measure between the samples and the centroids of the
clusters. A two-sample t-test on each bin identifies
the statistically different bins. The final NDB score is
given by counting the number of statistically different
bins and dividing by the number of clusters.
NDBV/k scores are between the range of O and 1. Ac-
cording to the interpretation of the score provided by
Richardson and Weiss [18], a score of 0 indicates that
the network is producing a large diversity of samples
that captures the training distribution well, whereas a
score approaching 1 suggests that the generator has
collapsed.
This was used by Diffwave [9] and GANSynth [10]
as part of their evaluation metrics.
Richardson and Weiss [18] state in their definition

Uin the case of images, the pixel distance

of the metric that computing the distance for each
pixel in an image using an L2 distance is perhaps
not meaningful. As we have stated above, distances
like L2 are not good at capturing perceptual qualities
of sound, making this of particular concern when
evaluating audio and the outputs of generative audio
systems.

Inception scores (IS) were proposed by Salimans
et al. as a way to evaluate image generating GANs
by using a classifier [15]. This classifier is used to
automatically evaluate whether the output of a GAN
was of reasonable quality and captured the diversity
of samples in the dataset.

The Inception classifier produces class label proba-
bilities for a given input. Ideally, each input produces
a high probability for one class label and our genera-
tive system is able to produce many of them. At the
same time, the generator should be able to produce
many such images, that can be classified uniquely
into a large set of labels. If the difference between
the probability distribution of predicted labels for the
generated images and the marginal distribution of the
labels from the generated data is small, it implies
that the the generator is unable to produce a a diverse
number of easily classifiable images. The mathemati-
cal formulation of IS can be found in [15]. The score
itself has a lower bound of zero and an upper bound
of infinity. The higher the score, the better.

Within the context of audio, IS was used in evalu-
ating WaveGAN [3], where an Inception network
was trained on the SC09 dataset with spectrogram in-
puts. More recently, two inception scores have been
proposed for NAS: the Pitch Inception Score (PIS)
and the Instrument Inception Score (IIS) [8]. These
measures tell us if generator has captured the true
distribution of discrete MIDI pitch classes and the
instrument classes in the NSynth dataset [2], and are
thus focused on inherent sound properties that are not
directly related to audio quality.

Salimans et al. [15] stated that the Inception Score for
an image generator was found to correlate well with
human judgment of image quality [15]. However, no
such work has been done in evaluating the perceptual
meaningfulness of IS with audio.

Distribution distance metrics: Another important facet of
evaluating GANSs is identifying whether the distribution of
data produced by the generator is close to the distribution
of real data. Like the Inception score mentioned above, the
metrics discussed here use neural networks. The difference
here is that these metrics rely on using embeddings from a
neural network.

As noted by Ananthabhotla et al. [13], matching distri-
butions cannot guarantee a perceptually closer result.

¢ Kernel Inception Distances (KID) are scores that
are generated by computing the distance between
embeddings of input and generated data fed to in-
ception networks. The distance is computed using
Maximum Mean Discrepancy (MMD), a statistical
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test that describes the difference between two distri-
butions of data. They were first introduced in a paper
by Binkowski et al. [19] where they used MMD to
train a critic or discriminator and KID was shown as
a metric to evaluate the convergence of the GAN. In
order to compute KID, we compute a distribution of
embeddings extracted from the Inception classifier
for both the reference and generated output and com-
pute the MMD between the distributions of reference
and generated embeddings. The score is defined with
a lower-bound of zero and an upper bound of infinity.
This was used by Nistal et al. to compare input feature
representations using GANs [7] and in a separate
paper by Nistal et al. to measure the performance of
an architecture they built called the VQCPC-GAN [8].
It was also used to evaluate DarkGAN [20].

* Fréchet Audio Distance (FAD) [21] is a metric orig-
inally developed to evaluate sound enhancement al-
gorithms, but recently it has found use in evaluating
NAS systems. The computation of the FAD relies on
the VGGish embeddings for both the reference and
the generated sounds. The VGGish embeddings are
then fitted to multi-variate gaussians. The FAD itself
is the Fréchet distance between the two distributions
N, and N representing the reference and generated
gaussian distributions. The mathematical definition
can be found in [21].

This metric was used for evaluating Diffwave [9],
Neural Waveshaping Synthesis [22], DarkGAN [20],
and CRASH [23].

2.1 Subjective evaluation

Since the quality of the generated outputs is ultimately a
perceptual property, listening studies have been previously
used to evaluate a neural network’s generated audio qual-
ity. A lot of listening studies use a popular method called
“Mean Opinion Score” (MOS) [24]. Users participating in
the listening study are asked to rate the sound they hear on
a Likert scale between 1 and 5 across a set of questions. For
example, WaveGAN asked participants to rate sounds on
their “sound quality, ease of intelligibility, and speaker di-
versity” [3] where 1 indicates bad and 5 indicates excellent.
These questions are asked for a collection of methods that
the researcher seeks to evaluate.

The MOS survey strategy has been used for the evalua-
tion of WaveGAN [3], Diffwave [9], and in neural speech
generation literature [25,26]. Kong et al. compared their re-
sults to WaveGAN using MOS and found that their network
scored higher [9].

It should be noted that surveys that use MOS do not
explicitly ask participants to compare the outputs against
a reference and instead present participants with a single
sound for every question. This means that MOS surveys
give you an absolute rating for every sound, not a relative
preference. The absence of reference precludes the ability
to rank the methods that are being evaluated. For example,
a person might like sound A and sound B in isolation and
provide high ratings to both, however, it remains unclear
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whether the person has a relative preference for sound A or
B.

A well known alternative to MOS surveys is to use a sur-
vey method called MUltiple Stimuli, Hidden Reference and
Anchor (MUSHRA) [27] . It is an ITU recommendation
for studies designed to evaluate differences in audio quality
between audio codecs [28]. While it hasn’t seen significant
usage in evaluating NAS, it was recently used by Hayes et
al. [22] in evaluating the performance of their Neural Wave-
shaping Synthesis (NeWT) model against the performance
of DDSP. Their listening study results showed that their
neural network outperformed DDSP on most instruments,
with the exception of violins. This was shown to correlate
well with the computed FAD scores for DDSP and NeWT.

3. EXPERIMENTAL SETUP

Aiming at our goal of comparing the output quality of popu-
lar generative systems and assessing the metrics commonly
used for evaluation, we chose three neural networks and
re-trained DiffWave and DDSP with the NSynth dataset and
used the NSynth network directly. We report both objec-
tive metrics and subjective ratings of the outputs of these
system.

We break our study into the three phases: (i) comparative
analysis using objective metrics, (ii) comparative analysis
using listening study results, and (iii) a brief investigation
into the perceptual relevance of the objective metrics.

3.1 Dataset

The NSynth dataset is a publicly available dataset with
approximately 300k sounds of 4 s length spanning acoustic
and electronic timbres [2]. The sounds are all sampled at
16 kHz. It is comprised of 11 instrument families. There are
ten unique “quality” descriptors that are attached to every
sound in the dataset. The descriptors are timbral, for e.g
“dark,” “bright,” “reverb,” and “percussive.” The NSynth
dataset is frequently used in generative audio research and
is therefore an obvious choice for this study.

The NSynth dataset’s test set was used to generate all
the samples that were used in both the listening study and
to compute objective metrics.

3.2 Models

Model selection was based on the criteria of age, architec-
ture, and public availability. There are a number of genera-
tive audio systems that have been published since 2017, but
not all of them were available publicly or were difficult to
train due to the lack of computational resources. Models
selected were NSynth [2], DDSP [4], and DiffWave [9].
These models are widely known and represent different
architectural designs.

NSynth [2] is a deep learning based generative audio
system that uses a Variational Autoencoder architecture
that learns to generate musical instrument timbres with the
ability to be controllable. Its primary novelty is the fact
that it can interpolate between multiple sounds and generate
new timbres in the process. NSynth is the “oldest” of the



Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

System | NDB/A() | PKID() | IKIDQ) | PIS(H | IS(H | MSEW) | MAE({) | FAD()
Diffwave 0.74 0.0093 0.0021 23814 5.6477 0.0291 0.1369 7.9438
DDSP 0.20 0.0053 0.0020 3.3224 53371 0.0130 0.0666 1.1519
NSynth 0.74 0.0101 0.0024 23238 7.6364 0.0329 0.1224 4.0590
Anchor 0.72 0.0123 0.0006 2.9356 53017 0.0257 0.0857 1.4952

Table 1. Table with objective results for each of the neural networks that we measured. | indicates that a lower score is

better and 1 indicates that a higher score is considered better. Bold indicates best performance.

evaluated systems. The publicly available weights for the
NSynth model were used for this study to generate the
sounds.

DDSP [4] uses classical synthesis techniques like ad-
ditive synthesis and noise filtering in the context of deep
learning by treating them as differentiable blocks. It uses an
encoder-decoder architecture that produces the fundamental
frequency, loudness envelope and the necessary variables to
control the additive synthesizer. DDSP is also known for it
ability to perform “timbre-transfer,” where it takes sounds
produced from one instrument and outputs it on a different
instrument. To train DDSP, we used publicly available code
for training with the NSynth dataset and verified it worked
by producing metrics similar to the metrics reported in the
original paper.

Diffwave [9] is the most recent system that uses a new
generative modeling technique called “Diffusion” on au-
dio. Diffusion models start with white noise and through a
fixed number of iterations, learn to generate audio. During
training, the models use a forward and backward process,
where the forward process takes the reference, corrupts it
with white noise iteratively until the whole signal is noise.
The backwards process learns how to iteratively remove the
white noise to recover the reference. Diffwave was primar-
ily evaluated on speech and produced results that seemed
to outperform WaveGAN and Wavenet significantly.

DiffWave was trained with an implementation available
online . Since this algorithm was not originally trained
with NSynth, we had to verify if our model worked properly.
We trained the network for 2 million steps and evaluated
the network’s automatic metrics and found that the metrics
aligned with the paper’s reported results.

3.3 Objective metrics

To evaluate our neural networks, we used the set of metrics
described above. As we discussed in Section 2, some of the
objective metrics were designed with specific architectures
like GANSs in mind. However, since the metrics have found
use in the evaluation of other types of architectures we
chose to evaluate all of our networks with the same set of
metrics.

The pre-trained pitch and instrument inception networks
trained on the NSynth dataset from Nistal et al.’s paper on
comparing audio representations [7] were used to compute
neural network driven metrics such as as PKID and IIS and
the “official” implementations of NDB/k 3 and FAD* were

2 https://github.com/Imntcom/diffwave
3 https://github.com/eitanrich/gansngmms
4 https://github.com/googleresearch/googleresearch/

used. In order to compute NDB/k, we trained the K-means
clustering on the NSynth dataset.

The rest of the metrics, like MSE and MAE were com-
puted using SciKit-learn’s built-in metrics [29]. We tried
to include other metrics but could not select them due to
high variance in scoring between implementations (such as
PEAQ [17]).

To summarize, the following objective metrics are com-
puted for the network outputs:

1. NDB/k, 2. PKID, 3. IKID, 4. PIS, 5. 1IS, 6. MSE,
7. MAE, and 8. FAD.

3.4 Listening study

The listening study uses a variation of the aforementioned
MUSHRA methodology. It is popularly used in evaluating
“intermediate” differences in low bitrate audio codecs [28].
Given that we are measuring audio reconstruction, we be-
lieve that treating the neural network outputs similar to
encoded audio is a suitable choice for evaluating audio qual-
ity differences. The rating scale used in the study is divided
according to the MUSHRA specification. A score between
0 and 20 indicates that the sound is rated bad, 20 to 40 indi-
cates that the sound is rated poor, 40 to 60 is considered fair,
60 to 80 is considered good, and 80 to 100 is considered
excellent.

The 4096 sounds from the NSynth test set are recon-
structed using the three generative systems. In addition, one
anchor sound is generated for each test sample by low pass
filtering the sound at a 1 kHz cutoff frequency and reducing
its bit depth to 8 Bits.

Participants were recruited by emails sent to two large
academic audio-focused communities. Participants were
asked to use a good pair of headphones or speakers in
order to participate in the survey. Prior to the listening
study, the participants were asked to share their age bracket,
experience with audio synthesis, and how much money they
have spent on the audio equipment they used. This then led
to a training phase where participants were presented with
an example sound and necessary introduction to the survey.

When presenting the survey, a sound is randomly se-
lected out of 3237 possible sounds with MIDI note numbers
ranging from 22 to 84.° Five sliders are presented in ran-
dom order, with three sliders referring to the generated
audio output of the three neural networks to evaluate, and
the other two sliders corresponding to the hidden reference
and the anchor. The participants were asked to rate au-
dio generated by each neural network on its audio quality

5 We used the note number range to remove sounds that were either
inaudible or could potentially be uncomfortable to listen to.
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MUSHRA Box Plot
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reference anchor ddsp diffwave nsynth

Rating

Figure 1. A boxplot of ratings from participants in the lis-
tening study. The size of the box represents the interquartile
range of ratings from the listeners.

compared to the reference. This presentation is repeated
ten times without collision (i.e., no two sounds are ever
repeated for a participant).

To clean up the data, responses that are “incomplete’ are
removed entirely from data that can be used for analysis.
MUSHRA analysis generally removes raters who rate the
reference below a high rating threshold [30]; thus, partici-
pants who rate the reference below an average of 85 will be
removed.

Statistical analysis of MUSHRA and MUSHRA-like
data relies on running statistical tests such as ANOVA or
Wilcoxon tests [30] to measure differences in results be-
tween the presented conditions. We will use the Wilcoxon
tests for the ratings to measure statistical differences be-
tween presented conditions. The test indicates differences
between the generative models. The MUSHRA results will
also be broken down by demographic information collected
above to measure if different demographic groupings rated
the models differently.

In order to compare objective and subjective ratings,
we will also compute rankings for both ratings. We are
interested in knowing how frequently specific networks
were considered the best and comparing it to the rankings
for each metric. Rank driven correlations were used by
Ycart et al. [31] in their paper validating perceptual metrics
related to piano transcription.

4. RESULTS
4.1 Objective metric results

The results from the objective metrics as discussed above
are shown in Table 1. Overall, these results seem to indicate
that DDSP is producing higher quality samples that are
more easily classifiable compared to DiffWave and NSynth.

DDSP has a 54% better PKID score over Diffwave and
a 62% higher score than NSynth. This trend continues
across most metrics, with the exceptions of the IIS, where
Diffwave achieves a 5% higher score than DDSP, and the
IKID where there is only a 4% difference between DDSP
and Diffwave. The kernel distances mentioned here do not
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measure audio quality.

The MSE and MAE results tell us that DDSP is the
“closest” to the reference sounds, with an MSE of 0.0130,
a 76% and 79% improvement over Diffwave and NSynth,
respectively.

DDSP significantly outperforms Diffwave and NSynth
on the FrA©chet Audio Distance. FAD is also a category
where NSynth outperforms Diffwave. This metric indicates
that —according to the VGGish representation— DDSP
and NSynth are generating samples that are closer to the
reference than Diffwave.

Based on these metrics, we can state that DDSP outper-
forms Diffwave and NSynth and produces a diverse set of
easily classifiable samples and produces samples that are
much closer to the reference sounds.

4.2 Listening study results

Data was collected from 77 participants from our listen-
ing study. After data cleanup, a total of 24 submissions
were considered trustworthy. 74% of our participants were
between the age of 24 and 50, 22% of our participants be-
tween 18 and 24 and 3.7% or 1 participant over the age of
50. 37% of our participants reported that they were very
familiar with music production tools and 18.5% reporting
that they were extremely familiar. 29% of the participants
reported that they were moderately knowledgeable about
sound synthesis techniques, with an even distribution of
familiarity ranging from “Not very knowledgeable” to “Ex-
tremely knowledgeable.” 33% of our raters reported that
they had spent over $750 on their audio equipment and 25%
having spent between $250 and $500.

The overall visualization of the responses can be seen in
Fig. 1. Every dot in the chart is an averaged rating from a
participant. As expected, the reference scored highly with
an average rating of 92. The analysis of the listening study
results shows that DDSP and DiffWave scored similarly
while NSynth performed considerably worse than the other
networks. Both DDSP and Diffwave have average ratings
around 53 while sounds generated by NSynth received an
average rating of approx. 29.

The inter-rater Krippendorff o score [32] is 0.66 ©, sug-
gesting that the subjects were largely in agreement.

The Wilcoxon test for statistical significance was ap-
plied to the data [30]. We found no statistically significant
difference between DDSP/Diffwave (p = 0.629) and a
statistically significant difference between DDSP/NSynth
(p = 8 x 107%) and Diffwave/NSynth (p = 8 x 1079).
There was a significant difference between the Reference
and all the systems and the anchor (p < 8 X 1079).
There is a significant difference between Anchor/NSynth
(p = 8 x 1079), but no statistically significant difference
between Anchor/Diffwave or Anchor/DDSP, with p-values
of 0.144 and 0.4385, respectively.

Breaking down the results by the subjects’ self-reported
familiarity with audio synthesis technologies, we first inves-
tigate the inter-rater variation within different “expert levels.”

6 Krippendorff o ranges from -1 to 1, where -1 indicates significant
disagreement between raters and 1 suggests maximal agreement
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Participants who said they were the least knowledgeable
had an Krippendorff o of 0.7, moderately knowledgeable
raters had a Krippendorff o of 0.608 while participants who
were the most knowledgeable had a Krippendorff « of 0.9.
Participants who reported to be either very or extremely
knowledgeable tended to rate DDSP and Diffwave lower
than the overall scores (DDSP: 47, Diffwave: 43). Less
knowledgeable participants tended to rate Diffwave and
DDSP higher than the overall scores (DDSP: 56, Diffwave:
59). There was a statistically significant difference in how
these two groups rated Diffwave (p = 0.006) but no sta-
tistically significant difference in how they rated DDSP,
NSynth, or the reference and anchor point.

We found no statistically significant differences in rat-
ings between the age categories or in ratings based on
money spent on audio equipment.

Instrument results: To investigate whether specific instru-
ments or instrument groups are consistently rated higher or
lower than others, the listener ratings were broken down
into ratings by instrument family (according to the NSynth
dataset). We found no statistically significant differences
in ratings between DDSP and Diffwave, but found statis-
tically significant differences between DDSP/NSynth and
Diffwave/NSynth. Additionally, there were no statistically
significant differences between instrument sources and the
ratings from the listeners.

The IKID metric tell us that all three networks are pro-
ducing samples that are close to the reference and the IIS
score tells us that Diffwave should be slightly better than
DDSP and much better than NSynth. While we cannot state
that this result is accurate for IKID, it is in line with the
results from the IIS computation.

Comparing the listener ratings to objective metrics: In
order to identify if our listening study results lined up with
our objective metrics, we took the selection of sounds that
were presented to participants and computed the correlation
between their sample based metrics and our ratings using
the Pearson correlation coefficient, which tells us how cor-
related two samples are from a range of -1 to 1. We have
sample based results for MSE and MAE, since all the other
metrics in our list rely on computing a difference across a
distribution of samples. We also computed the Spearman
R score and the R? from a linear regression between the
ratings and the MSE and MAE. We found that there is no
statistically significant correlation between the MSE/MAE
errors and the listener ratings.

The listening responses were also ranked based on how
frequently a specific network was ranked higher than the
others. In the 240 responses, the listeners rated Diffwave
higher than DDSP slightly more frequently (123 vs. 99).
NSynth was rated the lowest most frequently (163 times).
The ranking breakdown showing how frequently each of
the 6 permutation of rankings between the 3 networks is
shown in 2. We ran a Wilcoxon test on pairings rankings of
each network by the listeners and found that the rankings
were different with high statistical significance (p < 0.05).

When ranking the objective metrics, it is clear that DDSP
is ranked the best because it has the best results in seven out

How frequently each ranking permutation occurs

ddsp,diff,nsynth  dk th,diff  diff,dos th diff,nsynth,d th,ddsp,diff  nsynth,diff,ddsp

Figure 2. The plot here describes how frequently a unique
permutation of rankings occurred. Diffwave is abbreivated
to “diff”.

of the eight metrics, with Diffwave and NSynth in second
and third place. However, the rankings from our listening
study tell us that the Diffwave is usually the preferred net-
work. This tells us that the metrics are perhaps not entirely
reflective of the perceptual audio quality of the networks.

S. CONCLUSION

We presented a systematic evaluation of three popular sys-
tems for neural audio synthesis, comparing them with a set
of previously used objective metrics as well as a listening
study. The results clearly show that (i) no previously used
objective metric captures the perceptual quality of the syn-
thesized sounds sufficiently well, (ii) any quality ranking
based on these objective metrics is questionable, (iii) of the
three evaluated audio generators, there is no clear listener
preference between DDSP and Diffwave, but NSynth is
rated lowly, and (iv) the subjects rate Nsynth worse than
the 8 Bit anchor but rate DDSP and Diffwave similar to the
anchor indicating that there is still considerable work to do
on the quality of neural audio synthesis

These results should give pause to research in the field
of neural audio synthesis. How can progress with respect
to the audio quality be measured if all available metrics
are unable to provide meaningful estimates of audio quality.
Many of the objective metrics that we discussed in this paper
were designed with the intent of measuring the performance
of the sound generating component of the networks, i.e.,
can the generator produce (i) a diverse set of sounds, (ii) a
distribution of samples that are close to the target samples
in a relevant dimension, and (iii) accurate reconstructions.

Our results indicate that measuring generator perfor-
mance is insufficient to measure audio quality. We believe
that research in this space should not only include sub-
jective results, it should also include greater efforts into
critically evaluating the audio quality of network outputs
with meaningful objective metrics.

In future work, we will investigate whether other ob-
jective metrics might be more meaningful than the ones
evaluated here, or will start a research project on develop-
ing a more meaningful quality measure for audio synthesis.
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