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Preface

This text focuses on the physics of liquid transport in micro- and nanofabricated sys-
tems. It evolved from a graduate course I have taught at Cornell University since 2005,
titled “Physics of Micro- and Nanoscale Fluid Mechanics,” housed primarily in the Me-
chanical and Aerospace Engineering Department but attracting students from Physics,
Applied Physics, Chemical Engineering, Materials Science, and Biological Engineering.
This text was designed with the goal of bringing together several areas that are often
taught separately — namely, fluid mechanics, electrodynamics, and interfacial chemistry
and electrochemistry — with a focused goal of preparing the modern microfluidics re-
searcher to analyze and model continuum fluid-mechanical systems encountered when
working with micro- and nanofabricated devices. It omits many standard topics found in
other texts — turbulent and transitional flows, rheology, transport in gel phase, Van der
Waals forces, electrode kinetics, colloid stability, and electrode potentials are just a few
of countless examples of fascinating and useful topics that are found in other texts, but
are omitted here as they are not central to the fluid flows I wish to discuss.

Although I hope that this text may also serve as a useful reference for practicing
researchers, it has been designed primarily for classroom instruction. It is thus occa-
sionally repetitive and discursive (where others might state results succinctly and only
once) when this is deemed useful for instruction. Worked sample problems are inserted
throughout to assist the student, and exercises are included at the end of each chapter
to facilitate use in classes. Solutions for qualified instructors are available from the pub-
lisher at http://www.cambridge.org/kirby. This text is not a summary of current research
in the field and omits any discussion of microfabrication techniques or any attempt to
summarize the technological state of the art.

The text considers, in turn, (a) low-Reynolds-number fluid mechanics and hydraulic
circuits; (b) outer solutions for microscale flow, focusing primarily on the unique aspects
of electroosmotic flow outside the electrical double layer; (c) inner solutions for mi-
croscale flow, focusing on sources of interfacial charge and modeling of electrical double
layers; and (d) unsteady and nonequilibrium solutions, focusing on nonlinear electroki-
netics, dynamics of electrical double layers, electrowetting, and related phenomena. In
each case, several applications are selected to motivate the presentation, including mi-
crofluidic mixing, DNA and protein separations, microscale fluid velocity measurements,
dielectrophoretic particle manipulation, electrokinetic pumps, and the like.

I select notation with the goal of helping students new to the field and with the un-
derstanding that this (on occasion) leads to redundant or unwieldy results. I minimize
use of one symbol for multiple different variables, so the radius in spherical coordinates
(r) is typeset with a symbol different from the radius in cylindrical coordinates (%) and
the colatitudinal angle ¥ in spherical coordinates is distinguished from the polar coor-
dinate in cylindrical coordinates (0). Because I teach from this text using a chalkboard,
I use symbols that I can reproduce on a chalkboard — thus I avoid the use of the Greek
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letter v for the kinematic viscosity v = mn/p, because I am utterly unable to make it dis-
tinguishable from the y velocity v. Vectors, though they are placed in boldface to make
them stand out, are also written with (admittedly redundant) superscripted arrows to
match the chalkboard presentation.

This material is used for a semester-long graduate course at Cornell. Chapters 1,
2, 5,7, and 8, as well as the appendices, are not covered in class as they are considered
review or supplementary material. The remainder of the text is covered in approximately
forty-two 50-minute classroom sessions.

I would like to acknowledge a number of people who helped with various aspects
of this text. In particular, Dr. Elizabeth Strychalski and Professors Stephen Pope and
Claude Cohen at Cornell, Professor Shelley Anna of Carnegie-Mellon University, Pro-
fessor Kevin Dorfman of the University of Minnesota, Professor Nicolas Green of the
University of Southampton, Donald Aubrecht of Harvard University, Professor Sumita
Pennathur of UCSB, and Professor Aaron Wheeler of the University of Toronto were
kind enough to offer useful suggestions. Professor Amy Herr of the University of Cali-
fornia, Berkeley, used a draft of this text for her class during spring 2009; her insight and
the feedback from her students were both immensely helpful. Professor Martin Bazant
of the Massachusetts Institute of Technology provided materials helpful in completing
the bibliography for several of the chapters. The students that have taken my class since
2004 have all contributed to this text in some way, but I would like to thank my stu-
dent researchers Alex Barbati, Ben Hawkins, Sowmya Kondapalli, and Vishal Tandon
in particular for their input, and my student Michael Allen for careful proofreading.
Ben Hawkins and Dr. Jason Gleghorn contributed a number of the figures and helped
to write material that was included in the chapters on Stokes flow and dielectrophoresis.
David J. Griffiths (Reed College) provided files that assisted with typesetting. Gabe Ter-
rizzi created many of the figures; his contributions were immensely helpful. Greg Parker
(gparker@chorus.net) designed the cover.

Although many people assisted with review of this text, I am solely responsible for
any errors, and I hope that readers will notify me or the publisher of those that they find.
Errata will be maintained at http://www.cambridge.org/kirby.

Brian J. Kirby
Ithaca, NY
May 2010
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Page of first use or

Symbol Meaning definition
A area 61
a Helmbholtz free energy 324
a coefficient 112
a phase lag angle 69
a rotation angle 158
o thermal diffusivity 80
a acceleration 255
a particle radius 171
a; activity 413
B compressibility 75
B coefficient 236
b slip length XXXVi
B applied magnetic field 391
B Brillouin function 104
Ci species molar concentration 407
Cp specific heat 80
c passive scalar 80
C capacitance 117
C constant of integration xliii
Cy compliance 66
C complex number 465
Cp drag coefficient 188
r 2D vortex strength 163
r circulation Xiv
r surface chemical site density 229
r magnitude of injected sample 90
v surface tension XX1
Vi natural logarithm of species concentration 259
X electrokinetic coupling matrix 65
Xe electric susceptibility 100
Xm magnetic susceptibility 98
d depth 140
d diameter XXV
D scalar diffusivity 80
D; species diffusivity 252
D electric displacement 100
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Symbol Meaning definition
Du Dukhin number 263
3 Dirac delta function 458
5 identity tensor xvi
\% del operator 426
e eccentricity 188
e fundamental charge 201
el singlet potential 475
e pair potential 476
emt potential of mean force 227
E electric field 97
€ electrical permittivity 98
€ complex electrical permittivity for sinusoidal fields 113
€g Stern layer permittivity 360
€ electrical permittivity of free space 100
& relative permittivity, i.e., dielectric constant 101
€ reactive permittivity 115
e’ dissipative permittivity 115
€L potential well depth 4717
£ strain rate tensor X
ge dielectric increment 413
F Faraday constant 99
F force 108
} force per unit volume vi
fam Clausius—Mossotti factor 393
fad adjusted distribution function 480
fa distribution function 217
fde direct correlation function 482
frc total correlation function 482
M Mayer f function 480
fo Henry’s function 288
f electrophoretic correction factor 287
) electric potential 97
¢ electric potential difference from bulk 133
®0 total potential drop across the double layer 133
by velocity potential 153
by complex velocity potential 158
¢® azimuthal coordinate 419
P cross-correlation 189
4 zeta potential 139
G Gibbs free energy xXi
G electrical conductance 117
G, excess surface conductance 262
g gravitational acceleration vi
8i chemical potential 227
g electrochemical potential 227
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G hydrodynamic interaction tensor 187
e Oseen—-Burgers tensor 187
H capillary height XXV
H induced magnetic field 98
h height xliii
M dynamic viscosity Xviii
i current density 110
ip exchange current density 112
1 current 64
1 second moment of area 309
1. ionic strength 408
j square root of minus 1 157
;‘ scalar flux density 80
9 Joukowski transform 171
k spring constant 325
k chemical reaction rate 409
kye viscoelectric coefficient 235
ks Boltzmann constant 104
K, acid dissociation constant 409
Keq equilibrium constant 409
Ky solubility product 412
K 2D doublet strength 165
K Debye screening parameter 288
A molar conductivity 256
A 2D source strength 160
\B Bjerrum length 478
D Debye length 202
\Hs hard-sphere packing length 213
As Stern layer thickness 360
Lo polymer contour length 301
Le polymer end-to-end length 303
K polymer Kuhn length 312
Ly polymer persistence length 299
L length 61
L electrical inductance 117
L depolarization factor 384
m mass 184
M magnetization 98
nw viscous mobility 252
UDEP dielectrophoretic mobility 374
HEK electrokinetic mobility 265
IEO electroosmotic mobility 138
WEP electrophoretic mobility 252
Hmag magnetic permeability 98
Hmag,0 magnetic permeability of free space 98
Na Avogadro’s number 112
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Nop number of base pairs in DNA molecule 301
n normal coordinate 106
p pressure vi
P dipole moment 104
pK., negative logarithm of acid dissociation constant 410
pH negative logarithm of molar proton concentration 410
pOH negative logarithm of molar hydroxyl ion 411
concentration

pzc point of zero charge 230
P perimeter 63
P probability density function 313
Pe mass transfer Peclet number 79
w dummy frequency integration variable 115
\ stream function viii
Us Stokes stream function ix
Ve electric stream function 469
P electric polarization 100
P pressure interaction tensor 187
0 volumetric flow rate 60
q electric charge 97
q" electric areal charge density 359
p fluid density vi
PE net charge density 99
r radial coordinate — spherical coordinates 418
Th hydraulic radius 63
Ar radial distance — spherical coordinates 98
Ar distance vector 98
2 radial coordinate — cylindrical coordinates 418
A2 radial distance — cylindrical coordinates 157
Re Reynolds number 442
R universal gas constant 112
R electrical resistance 117
R radius of channel xlv
R radius of curvature xxii
R separation resolution 267
Ry hydraulic resistance 61
(re) radius of gyration 303
s arc length 302
S entropy 324
S Schwarz—Christoffel transform 473
g conductivity 110
oL Lennard—Jones “bond length” 477
g complex electrical conductivity 114
O effective surface conductivity 210
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Sk Stokes number 186
St Strouhal number 442
t time vii
T Kelvin temperature XXi
z’ torque 109
z’ Maxwell stress tensor 107
T stress tensor Xvi
T characteristic time 103
0 polar coordinate — cylindrical coordinates 418
] contact angle Xxii
6o corner angle 170
v colatitude coordinate — spherical coordinates 418
A6 polar coordinate of distance vector 157
u velocity vector vii
u complex velocity 159
UEK electrokinetic velocity 269
UEO electroosmotic velocity 140
Ugp electrophoretic velocity 255
Uy radial velocity — cylindrical coordinates ix
Uy radial velocity — spherical coordinates ix
Uy circumferential velocity — cylindrical coordinates ix
Uy circumferential velocity — spherical coordinates ix
u molecular internal energy 324
Vv voltage 106
4 volume 66
o) angular frequency xlvii
® vorticity Xiii
@ rotation rate tensor Xi
w width 90
x x coordinate 418
3 hard-sphere packing parameter 215
I3 thermodynamic efficiency 143
y y coordinate 418
Y Young’s modulus 309
z z coordinate 418
z valence magnitude for symmetric electrolytes 203
Zi species valence 99
Z partition function 326
Z impedance 119
Zy hydraulic impedance 69
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Subscript Example Meaning
0 Do phasor or sinusoid magnitude
0 wo value at reference state
00 Ciico value in freestream or in bulk
bend Ubend bending
conv }'Conv, i convective
diff Jait.i diffusive
edl qoy electrical double layer
eff et effective
ext E‘ext extrinsic
H upy high
L ur, low
m E€m suspending medium
n E, normal
p Pp particle
pre ’i':pre isotropic (pressure) components
str Iy streaming
t Ut tangential
visc ?Vise deviatoric (viscous) components
w Pw water
Superscript, accent Example(s) Meaning
° g7 value at reference condition
! ¢,y dummy integration variable
! F., I per unit length
" F’, q" per unit area
r ., f derivatives of functions
! e reactive component
" e’ dissipative component
- u spatially averaged
N Z analytic representation of real parameters
) i, ?‘ vector or pseudovector
- 7,8 rank 2 tensor
- X, d unit vector
" e molar value
* d*, p* nondimensionalized quantity
() (Le), (rg) time- or ensemble-averaged property
A Ap, Ax difference in property
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