

THE QUEST FOR ARTIFICIAL INTELLIGENCE

Artificial intelligence (AI) is a field within computer science that is attempting to build enhanced intelligence into computer systems. This book traces the history of the subject, from the early dreams of eighteenth-century (and earlier) pioneers to the more successful work of today's AI engineers. AI is becoming more and more a part of everyone's life. The technology is already embedded in face-recognizing cameras, speech-recognition software, Internet search engines, and health-care robots, among other applications. The book's many diagrams and easy-to-understand descriptions of AI programs will help the casual reader gain an understanding of how these and other AI systems actually work. Its thorough (but unobtrusive) end-of-chapter notes containing citations to important source materials will be of great use to AI scholars and researchers. This book promises to be the definitive history of a field that has captivated the imaginations of scientists, philosophers, and writers for centuries.

Nils J. Nilsson, Kumagai Professor of Engineering (Emeritus) in the Department of Computer Science at Stanford University, received his doctorate in electrical engineering from Stanford in 1958. He then spent twenty-three years at the Artificial Intelligence Center of SRI International working on statistical and neural-network approaches to pattern recognition, co-inventing the A* heuristic search algorithm and the STRIPS automatic planning system, directing work on the integrated mobile robot Shakey, and collaborating in the development of the PROSPECTOR expert system. Professor Nilsson returned to Stanford in 1985 and served as Chairman of the Department of Computer Science, taught courses in artificial intelligence and machine learning, and conducted research on flexible robots. He has served on the editorial boards of Artificial Intelligence and the Journal of Artificial Intelligence Research. He was also an area editor for the Journal of the Association for Computing Machinery. He is a past president and Fellow of the Association for the Advancement of Artificial Intelligence and a Fellow of the American Association for the Advancement of Science. Professor Nilsson has also published five textbooks on artificial intelligence.

The Quest for Artificial Intelligence

A History of Ideas and Achievements

Nils J. Nilsson
Stanford University

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org
Information on this title: www.cambridge.org/9780521122931

© Nils J. Nilsson 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United States of America

 $A\ catalog\ record\ for\ this\ publication\ is\ available\ from\ the\ British\ Library.$

Library of Congress Cataloging in Publication data

Nilsson, Nils J., 1933-

The quest for artificial intelligence: a history of ideas and achievements / Nils J. Nilsson.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-521-11639-8 (hardback) – ISBN 978-0-521-12293-1 (pbk.)

1. Artificial intelligence – History. 2. Artificial intelligence – Philosophy. I. Title.

Q335.N55 2010

006.3 - dc22 2009022604

ISBN 978-0-521-11639-8 Hardback ISBN 978-0-521-12293-1 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

> For Grace McConnell Abbott, my wife and best friend

Contents

Prej	face	page xiii
	PART I BEGINNINGS	1
1	Dreams and Dreamers	3
2	Clues	10
	2.1 From Philosophy and Logic	10
	2.2 From Life Itself	15
	2.3 From Engineering	25
	part II early explorations: 1950s and 1960s	47
3	Gatherings	49
	3.1 Session on Learning Machines	49
	3.2 The Dartmouth Summer Project	52
	3.3 Mechanization of Thought Processes	56
4	Pattern Recognition	62
	4.1 Character Recognition	62
	4.2 Neural Networks	64
	4.3 Statistical Methods	73
	4.4 Applications of Pattern Recognition to Aerial Reconnaissance	74
5	Early Heuristic Programs	81
	5.1 The Logic Theorist and Heuristic Search	81
	5.2 Proving Theorems in Geometry	85
	5.3 The General Problem Solver	87
	5.4 Game-Playing Programs	89
6	Semantic Representations	96
	6.1 Solving Geometric Analogy Problems	96
	6.2 Storing Information and Answering Questions	98
	6.3 Semantic Networks	100
7	Natural Language Processing	103
	7.1 Linguistic Levels	103
	7.2 Machine Translation	107
	7.3 Question Answering	110

viii	Contents	
8	1960s' Infrastructure 8.1 Programming Languages 8.2 Early AI Laboratories	114 114 115
	8.3 Research Support8.4 All Dressed Up and Places to Go	118 120
	PART III EFFLORESCENCE: MID-1960s TO MID-1970s	123
9	Computer Vision	125
	9.1 Hints from Biology9.2 Recognizing Faces9.3 Computer Vision of Three-Dimensional Solid Objects	126 127 128
10	"Hand-Eye" Research	141
	10.1 At MIT 10.2 At Stanford 10.3 In Japan 10.4 Edinburgh's "FREDDY"	141 142 145 145
11	Knowledge Representation and Reasoning	149
	 11.1 Deductions in Symbolic Logic 11.2 The Situation Calculus 11.3 Logic Programming 11.4 Semantic Networks 11.5 Scripts and Frames 	149 152 153 154 156
12	Mobile Robots	162
	12.1 Shakey, the SRI Robot12.2 The Stanford Cart	162 176
13	Progress in Natural Language Processing	181
	13.1 Machine Translation13.2 Understanding	181 182
14	Game Playing	193
15	The Dendral Project	197
16	Conferences, Books, and Funding	202
	PART IV APPLICATIONS AND SPECIALIZATIONS: 1970s to Early 1980s	207
17	Speech Recognition and Understanding Systems	209
	17.1 Speech Processing17.2 The Speech Understanding Study Group17.3 The DARPA Speech Understanding Research Program	209 211 212
	17.4 Subsequent Work in Speech Recognition	220

	Contents	ix
18	Consulting Systems	224
	18.1 The SRI Computer-Based Consultant	224
	18.2 Expert Systems	229
19	Understanding Queries and Signals	244
	19.1 The Setting	244
	19.2 Natural Language Access to Computer Systems	247
	19.3 HASP/SIAP	252
20	Progress in Computer Vision	258
	20.1 Beyond Line-Finding	258
	20.2 Finding Objects in Scenes	262
	20.3 DARPA's Image Understanding Program	267
21	Boomtimes	271
	PART V "NEW-GENERATION" PROJECTS	275
22	The Japanese Create a Stir	277
	22.1 The Fifth-Generation Computer Systems Project	277
	22.2 Some Impacts of the Japanese Project	281
23	DARPA's Strategic Computing Program	286
	23.1 The Strategic Computing Plan	286
	23.2 Major Projects	289
	23.3 AI Technology Base	294
	23.4 Assessment	297
	PART VI ENTR'ACTE	303
24	Speed Bumps	305
	24.1 Opinions from Various Onlookers	305
	24.2 Problems of Scale	319
	24.3 Acknowledged Shortcomings	325
	24.4 The "AI Winter"	327
25	Controversies and Alternative Paradigms	331
	25.1 About Logic	331
	25.2 Uncertainty	332
	25.3 "Kludginess" 25.4 About Behavior	333 334
	25.5 Brain-Style Computation	339
	25.6 Simulating Evolution	341
	25.7 Scaling Back AI's Goals	344
	PART VII THE GROWING ARMAMENTARIUM: FROM THE 1980s ONWARD	347
26	Reasoning and Representation	349
	26.1 Nonmonotonic or Defeasible Reasoning	349

X	Contents	
	26.2 Qualitative Reasoning 26.3 Semantic Networks	352 354
27	Other Approaches to Reasoning and Representation	365
	 27.1 Solving Constraint Satisfaction Problems 27.2 Solving Problems Using Propositional Logic 27.3 Representing Text as Vectors 27.4 Latent Semantic Analysis 	365 368 373 376
28	Bayesian Networks	381
	 28.1 Representing Probabilities in Networks 28.2 Automatic Construction of Bayesian Networks 28.3 Probabilistic Relational Models 28.4 Temporal Bayesian Networks 	381 387 391 393
29	Machine Learning	398
	29.1 Memory-Based Learning 29.2 Case-Based Reasoning 29.3 Decision Trees 29.4 Neural Networks 29.5 Unsupervised Learning 29.6 Reinforcement Learning 29.7 Enhancements	398 400 402 408 413 415 422
30	Natural Languages and Natural Scenes	431
	30.1 Natural Language Processing 30.2 Computer Vision	431 436
31	Intelligent System Architectures	455
	31.1 Computational Architectures31.2 Cognitive Architectures	456 467
	PART VIII MODERN AI: TODAY AND TOMORROW	479
32	Extraordinary Achievements 32.1 Games 32.2 Robot Systems	481 481 488
33	Ubiquitous Artificial Intelligence	501
	33.1 AI at Home 33.2 Advanced Driver Assistance Systems 33.3 Route Finding in Maps 33.4 You Might Also Like 33.5 Computer Games	501 502 503 503 504
34	Smart Tools	507
	34.1 In Medicine 34.2 For Scheduling	507 509

	Contents	xi
	34.3 For Automated Trading	509
	34.4 In Business Practices	510
	34.5 In Translating Languages	511
	34.6 For Automating Invention	511
	34.7 For Recognizing Faces	512
35	The Quest Continues	515
	35.1 In the Labs	516
	35.2 Toward Human-Level Artificial Intelligence	525
	35.3 Summing Up	534
Index		539

Preface

Artificial intelligence (AI) may lack an agreed-upon definition, but someone writing about its history must have some kind of definition in mind. For me, artificial intelligence is that activity devoted to making machines intelligent, and intelligence is that quality that enables an entity to function appropriately and with foresight in its environment. According to that definition, lots of things – humans, animals, and some machines - are intelligent. Machines, such as "smart cameras," and many animals are at the primitive end of the extended continuum along which entities with various degrees of intelligence are arrayed. At the other end are humans, who are able to reason, achieve goals, understand and generate language, perceive and respond to sensory inputs, prove mathematical theorems, play challenging games, synthesize and summarize information, create art and music, and even write histories. Because "functioning appropriately and with foresight" requires so many different capabilities, depending on the environment, we actually have several continua of intelligences with no particularly sharp discontinuities in any of them. For these reasons, I take a rather generous view of what constitutes AI. That means that my history of the subject will, at times, include some control engineering, some electrical engineering, some statistics, some linguistics, some logic, and some computer science.

There have been other histories of AI, but time marches on, as has AI, so a new history needs to be written. I have participated in the quest for artificial intelligence for fifty years — all of my professional life and nearly all of the life of the field. I thought it would be a good idea for an "insider" to try to tell the story of this quest from its beginnings up to the present time.

I have three kinds of readers in mind. One is the intelligent lay reader interested in scientific topics who might be curious about what AI is all about. Another group, perhaps overlapping the first, consists of those in technical or professional fields who, for one reason or another, need to know about AI and would benefit from a complete picture of the field – where it has been, where it is now, and where it might be going. To both of these groups, I promise no complicated mathematics or computer jargon, lots of diagrams, and my best efforts to provide clear explanations of how AI programs and techniques work. (I also include several photographs of AI people. The selection of these is somewhat random and doesn't necessarily indicate prominence in the field.)

A third group consists of AI researchers, students, and teachers who would benefit from knowing more about the things AI has tried, what has and hasn't worked, and good sources for historical and other information. Knowing the history of a field is

xiv Preface

important for those engaged in it. For one thing, many ideas that were explored and then abandoned might now be viable because of improved technological capabilities. For that group, I include extensive end-of-chapter notes citing source material. The general reader will miss nothing by ignoring these notes. The main text itself mentions Web sites where interesting films, demonstrations, and background can be found. (If links to these sites become broken, readers may still be able to access them using the "Wayback Machine" at http://www.archive.org.)

The book follows a roughly chronological approach, with some backing and filling. My story may have left out some actors and events, but I hope it is reasonably representative of AI's main ideas, controversies, successes, and limitations. I focus more on the ideas and their realizations than on the personalities involved. I believe that to appreciate AI's history, one has to understand, at least in lay terms, something about how AI programs actually work.

If AI is about endowing machines with intelligence, what counts as a machine? To many people, a machine is a rather stolid thing. The word evokes images of gears grinding, steam hissing, and steel parts clanking. Nowadays, however, the computer has greatly expanded our notion of what a machine can be. A functioning computer system contains both hardware and software, and we frequently think of the software itself as a "machine." For example, we refer to "chess-playing machines" and "machines that learn," when we actually mean the programs that are doing those things. The distinction between hardware and software has become somewhat blurred because most modern computers have some of their programs built right into their hardware circuitry.

Whatever abilities and knowledge I bring to the writing of this book stem from the support of many people, institutions, and funding agencies. First, my parents, Walter Alfred Nilsson (1907–1991) and Pauline Glerum Nilsson (1910–1998), launched me into life. They provided the right mixture of disdain for mediocrity and excuses (Walter), kind care (Pauline), and praise and encouragement (both). Stanford University is literally and figuratively my alma mater (Latin for "nourishing mother"). First as a student and later as a faculty member (now emeritus), I have continued to learn and to benefit from colleagues throughout the university and especially from students. SRI International (once called the Stanford Research Institute) provided a home with colleagues who helped me to learn about and to "do" AI. I make special acknowledgment to the late Charles A. Rosen, who persuaded me in 1961 to join his Learning Machines Group there. The Defense Advanced Research Projects Agency (DARPA), the Office of Naval Research (ONR), the Air Force Office of Scientific Research (AFOSR), the U.S. Geological Survey (USGS), the National Science Foundation (NSF), and the National Aeronautics and Space Administration (NASA) all supported various research efforts I was part of during the last fifty years. I owe thanks to all.

To the many people who have helped me with the actual research and writing for this book, including anonymous and not-so-anonymous reviewers, please accept my sincere appreciation together with my apologies for not naming all of you personally in this preface. There are too many of you to list, and I am afraid I might forget to mention someone who might have made some brief but important suggestions. Anyway, you know who you are. You are many of the people whom I mention in

Preface xv

the book itself. However, I do want to mention Heather Bergman of Cambridge University Press; Mykel Kochenderfer, a former student; and Wolfgang Bibel of the Darmstadt University of Technology. They all read carefully early versions of the entire manuscript and made many helpful suggestions. (Mykel also provided invaluable advice about the LATEX typesetting program.)

I also want to thank the people who invented, developed, and now manage the Internet, the World Wide Web, and the search engines that helped me in writing this book. Using Stanford's various site licenses, I could locate and access journal articles, archives, and other material without leaving my desk. (I did have to visit libraries to find books. Publishers, please allow copyrighted books, especially those whose sales have now diminished, to be scanned and made available online. Join the twenty-first century!)

Finally, and most importantly, I thank my wife, Grace, who cheerfully and patiently urged me on.

In 1982, the late Allen Newell, one of the founders of AI, wrote, "Ultimately, we will get real histories of Artificial Intelligence..., written with as much objectivity as the historians of science can muster. That time is certainly not yet."

Perhaps it is now.