THE ANGULAR MOMENTUM OF LIGHT

Recent developments in the angular momentum of light present fresh challenges to longestablished concepts and pave the way for new and wide-ranging applications. The scope for structured light such as optical vortices, in particular, now extends from microfluidics to quantum information.

This comprehensive edited collection deals with light carrying spin and orbital angular momentum, covering both fundamental and applied aspects. Written by internationally leading specialists, the chapters have been compiled to reflect the latest scientific progress and to address the multitude of theoretical, experimental and technical issues associated with this vibrant and exciting field.

The volume is an authoritative reference for academic researchers and graduate students engaged in theoretical or experimental study of optical angular momentum and its applications. It will also benefit professionals in physics, optics and optical engineering, chemistry and biology.

DAVID L. ANDREWS is Professor of Chemical Physics at the University of East Anglia where he leads theoretical research on fundamental photonics and molecular energy transport. He is a Fellow of the SPIE, the Institute of Physics and the Royal Society of Chemistry.

MOHAMED BABIKER is Professor of Physics at The University of York and has previously held this role at the University of Essex. Professor Babiker has been researching light beams with orbital angular momentum for the past 20 years. He is a Fellow of the Institute of Physics.

THE ANGULAR MOMENTUM OF LIGHT

Edited by

DAVID L. ANDREWS University of East Anglia

MOHAMED BABIKER The University of York

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

> > Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781107006348

© Cambridge University Press 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printed and bound in the United Kingdom by the MPG Books Group

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

The angular momentum of light / edited by David L. Andrews and Mohamed Babiker.

pages cm

Includes bibliographical references and index. ISBN 978-1-107-00634-8 (Hardback)

 Angular momentum.
 Quantum optics. I. Andrews, David L., 1952– II. Babiker, Mohamed. QC446.3.A54A54 2012

535'.15-dc23

2011052383

ISBN 978-1-107-00634-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	List o	List of contributors p		
	Prefe	ace		XV
1	Ligh	Light beams carrying orbital angular momentum		
	J. B. Götte and S. M. Barnett			
	1.1	Introdu	uction	1
	1.2	Mecha	Mechanical properties of optical fields	
		1.2.1	Energy of the electromagnetic field	3
		1.2.2	Linear momentum of the electromagnetic field	5
		1.2.3	Angular momentum of the electromagnetic field	6
		1.2.4	Spin and orbital angular momentum	6
	1.3	Wave of	equations	8
		1.3.1	Helmholtz equation	8
		1.3.2	Paraxial approximation	11
	1.4	Paraxi	al and non-paraxial optics	12
		1.4.1	Paraxial light beams	12
		1.4.2	Non-paraxial light beams	20
	1.5	Angula	ar momentum of light beams	21
		1.5.1	Angular momentum flux	21
		1.5.2	Azimuthal phase structure	24
	1.6	Generating light beams with orbital angular momentum		
	References		27	
2	Vort	ex trans	formations and vortex dynamics in optical fields	31
	G. M	lolina-Te	rriza	
	2.1	Introdu	uction	31
	2.2	Optica	l vortices	32
		2.2.1	Morphology of noncanonical vortices	33
		2.2.2	Multiple vortices	35
	2.3	Equati	ons of evolution for the isolated vortices	36
		2.3.1	Dynamics of a single vortex in linear homogeneous media	. 37
		2.3.2	Inversion of the topological charge of a vortex	38

vi			Contents		
		2.3.3 Experi2.3.4 Vortice	mental demonstration of the vortex inversion es and angular momentum	41 42	
		2.3.5 Anothe	er interpretation of the charge inversion	43	
	2.4	Interactions be	tween vortices	44	
		2.4.1 GRade	ed INdex media as a laboratory for vortex interactions	45	
		2.4.2 Vortex	interaction in GRIN media	46	
		2.4.3 Interac	ction of two vortices	47	
	2.5	Conclusion and	1 discussion	49	
	Refe	ences		49	
3	Vect	r beams in free	space	51	
	E. J. Galvez				
	3.1	Introduction		51	
	3.2	Spatial modes		52	
		3.2.1 Hermi	te-Gauss and Laguerre-Gauss beams	52	
		3.2.2 Relatio	ons between first-order Hermite–Gauss		
		and La	guerre–Gauss beams	53	
	3.3	A review of po	larization modes	55	
	3.4	Vector beams		57	
		3.4.1 Theore	etical description of first-order vector beams	57	
		3.4.2 Higher	-order vector beams	61	
	3.5	Experimental a	pproaches	64	
		3.5.1 Experi	mental methods of production	64	
		3.5.2 Detect	ion of vector beams by polarization projection	66	
	3.6	Vector beams in	n non-classical states of light	68	
	3.7 Conclusions				
	Refe	ences		69	
4	Opti	al beams with o	orbital angular momentum in nonlinear media	71	
	<i>A. S.</i>	Desyatnikov and	Y. S. Kivshar		
	4.1	Introduction		71	
		4.1.1 Vortex	solitons	72	
		4.1.2 Azimu	thal modulational instability	74	
		4.1.3 Two-se	oliton spiraling	74	
		4.1.4 Solitor	1 clusters and necklaces	76	
	4.2	Azimuthons		77	
		4.2.1 Theore	etical results	78	
		4.2.2 Experi	mental results	81	
	4.3	Solitons in non	local media	83	
		4.3.1 Stabili	zation of nonlocal solitons	83	
		4.3.2 Nonloo	cal azimuthons	85	
		4.3.3 Self-tr	ansforming nonlocal solitons	87	
	4.4	Suppression of	collapse	89	

	Contents		vii		
	4.5	Conclu	usions	91	
	Refe	rences		92	
5	Rav	optics, v	vave optics and quantum mechanics	98	
	G. Nienhuis				
	5.1 Introduction				
	5.2	Evolut	Evolution with a quadratic Hamiltonian		
		5.2.1	Quantum and classical evolution	100	
		5.2.2	Ladder operators generating basis sets of Gaussian solutions	102	
		5.2.3	Fundamental solution	103	
		5.2.4	Basis sets of the solutions of the Schrödinger equation	105	
		5.2.5	Stationary states and eigenenergies	105	
		5.2.6	Basis transformations	106	
	5.3	Quanti	um harmonic oscillator in two dimensions	107	
		5.3.1	Hermite–Gaussian eigenstates	108	
		5.3.2	Laguerre–Gaussian eigenstates	109	
		5.3.3	General Hermite–Laguerre states	110	
		5.3.4	Basis sets of non-stationary solutions of the harmonic		
			oscillator	112	
		5.3.5	Angular momentum	112	
		5.3.6	Oscillation between Fourier transforms	113	
	5.4	Paraxi	al wave optics as a Hamiltonian system	114	
		5.4.1	Propagation and ray operators	114	
		5.4.2	Ladder operators and basis sets of modes	116	
	5.5	Basis s	sets of paraxial beams and harmonic oscillators	118	
		5.5.1	Equivalence of free modes and oscillator states	118	
		5.5.2	Classical oscillations and rays of light	120	
		5.5.3	Shape-invariant modes	121	
		5.5.4	Astigmatic modes	122	
		5.5.5	Fourier relations of general paraxial beams	123	
	5.6	Astign	natic optical resonators	124	
		5.6.1	Equivalent lens guide	124	
		5.6.2	Stability condition of an optical resonator	125	
		5.6.3	Structure and frequencies of resonator modes	126	
		5.6.4	Rays as displaced modes	127	
	57	5.6.5	Geometric mode	130	
	5./	Summ	ary and conclusions	152	
	Kefe	rences		155	
6	Quantum formulation of angle and orbital angular momentum				
	J. B. Götte and S. M. Barnett				
	6.I	Introduction			
	6.2	Quanti	um theory of rotation angles	138	

viii		Contents		
		6.2.1 Angle and orbital angular momentum states	138	
		6.2.2 Commutator for angle and orbital angular momentum	140	
		6.2.3 Physical states	141	
	6.3	Intelligent and minimum uncertainty states	144	
		6.3.1 Intelligent states	144	
		6.3.2 Constrained minimum uncertainty product states	149	
		6.3.3 Large angular uncertainties	151	
	6.4	Fractional orbital angular momentum	152	
		6.4.1 Construction of fractional orbital angular		
		momentum states	153	
		6.4.2 Overlap of fractional orbital angular momentum states	154	
		6.4.3 Orbital angular momentum distribution of fractional states	156	
	Refe	rences	159	
7	Dyna	amical rotational frequency shift	162	
	I. Bio	alynicki-Birula and Z. Bialynicka-Birula		
	7.1	Introduction	162	
	7.2	Doppler shift	163	
	7.3	Dynamical rotational frequency shift	165	
	7.4	Atom on a turntable	167	
	7.5	Observation of the dynamical rotational frequency shift	170	
	7.6	Conclusions	172	
	Refe	rences	172	
8	Spin	-orbit interactions of light in isotropic media	174	
	K. Y. Bliokh, A. Aiello and M. A. Alonso			
	8.1	Introduction	174	
		8.1.1 Spin-orbit interaction in quantum physics	174	
		8.1.2 Angular momenta and spin-orbit interactions of light	174	
		8.1.3 History and current motivation	176	
	8.2	Geometric phases, angular momenta, and energy flows	178	
		8.2.1 Transversality, rotations, and Berry phase	178	
		8.2.2 Coordinate, momentum, and angular momentum	184	
		8.2.3 Poynting energy flows	188	
	8.3	Spin-orbit interactions in non-paraxial fields	190	
		8.3.1 Free-space solutions	190	
		8.3.2 Focusing by a high-NA lens	196	
		8.3.3 Scattering by small particles	199	
	<u> </u>	8.3.4 Imaging and microscopy	201	
	8.4	Spin-orbit interactions in locally paraxial fields	206	
		8.4.1 Hall effects from tilt of the beam	206	
		8.4.2 Beam shifts upon reflection and refraction	209	
		8.4.3 Geometrodynamics of light in a gradient-index medium	220	

	Contents		ix	
	8.5	Conclusion	230	
	Refer	rences	233	
9	Quar	ntum electrodynamics, angular momentum and chirality	246	
	David L. Andrews and Mohamed Babiker			
	9.1	Introduction	246	
	9.2	Quantum fields	247	
	9.3	Interactions with matter	251	
	9.4	Parametric and non-parametric processes	254	
	9.5	Parity issues	256	
	9.6	Chirality	258	
	9.7	Conclusion	259	
	Refer	rences	260	
10	Trap	ping of charged particles by Bessel beams	264	
	I. Bia	lynicki-Birula, Z. Bialynicka-Birula and N. Drozd		
	10.1	Introduction	264	
	10.2	Electric and magnetic fields of Bessel beams	265	
	10.3	Motion of charged particles in a Bessel beam	267	
	10.4	Ponderomotive potential	271	
	10.5	Trapping of particles by superpositions of Bessel beams	275	
		10.5.1 Trapping of particles along a helix	275	
		10.5.2 Trapping of particles by crossed Bessel beams	278	
		10.5.3 Trapping of particles by a standing Bessel wave	279	
	10.6	Outlook	281	
	Refer	rences	283	
11	Theo	ry of atoms in twisted light	284	
	М. Ва	abiker, D. L. Andrews and V. E. Lembessis		
	11.1	Introduction	284	
	11.2	Overview	285	
	11.3	OAM transfer	286	
	11.4	Radiation forces-cooling and trapping	287	
		11.4.1 Two-level atoms in twisted light	287	
		11.4.2 Transient forces	289	
	11.5	Steady state forces	291	
		11.5.1 Steady state light-induced torque	291	
		11.5.2 Dipole potential	292	
		11.5.3 Doppler shift	293	
		11.5.4 Atom dynamics	294	
	11.6	Multiple beams	295	
		11.6.1 Optical molasses in two and three dimensions	298	
	11.7	Three-level atoms in LG beams	299	
	11.8	Surface plasmonic optical vortices (SPOVs)	304	

Х	Contents	
	11.9 Conclusions	310
	References	311
12	An experimentalist's introduction to orbital angular momentum	
	for quantum optics	314
	J. Romero, D. Giovannini, S. Franke-Arnold and M. J. Padgett	-
	12.1 Introduction	314
	12.2 Conservation of OAM	314
	12.3 Single photon OAM and quantum correlations	316
	12.4 Two-photon state	318
	12.5 Analogy with polarisation	318
	12.6 Tests of quantum mechanics in higher-dimensional OAM spaces	321
	12.7 Spiral bandwidth and dimensionality	324
	12.8 Conclusions	326
	References	327
13	Measurement of light's orbital angular momentum	330
	M. P. J. Lavery, J. Courtial and M. J. Padgett	
	13.1 Introduction	330
	13.2 Spinning trapped particles	331
	13.3 Counting spiral fringes	334
	13.4 Diffraction effects from apertures	336
	13.5 Diffractive holographic filters	339
	13.6 More complex holograms	340
	13.7 The rotational Doppler effect	343
	13.8 A Dove prism interferometer	344
	13.9 Optical transformation	346
	13.10 Summary	348
	Keterences	349
14	Efficient generation of optical twisters using helico-conical beams	352
	V. R. Daria, D. Palima and J. Glückstad	
	14.1 Introduction	352
	14.2 Far-field projection of helico-conical beams	353
	14.3 Projecting multiple optical twisters and twister-chains	357
	14.4 Optical setup	260
	14.5 Experimental results	360
	References	363
15		265
15	Self-similar modes of concrent diffusion with orbital angular momentum	365
	0. Firstenderg, M. Snuker, K. Pugatch and N. Davidson	266
	15.1 Content diffusion 15.2 Diffusion of orbital angular momentum	267
	15.2 Diffusion of ofonal angular modes of diffusion	307
	15.5 Dagaene-Gaussian modes of annusion	5/1

16

Cambridge University Press 978-1-107-00634-8 - The Angular Momentum of Light Edited by David L. Andrews and Mohamed Babiker Frontmatter More information

	Contents	xi	
15.4	Experiments with vortex modes	375	
	15.4.1 Expansion	375	
	15.4.2 Contraction	377	
15.5	Fractional and varying OAM	379	
15.6	Non-diffusing modes with OAM	381	
15.7	Summary	381	
Refer	ences	382	
Quar	tum entanglement of orbital angular momentum	385	
<i>M</i> . <i>P</i> .	Van Exter, E. R. Eliel and J. P. Woerdman		
16.1	Introduction	385	
16.2	Theory of OAM entanglement	386	
16.3	Issues in OAM entanglement	389	
	16.3.1 OAM conservation and Schmidt modes	390	
	16.3.2 Dimensionalities ($K_{2D} vs K_{az}$) and optical etendue N	390	
	16.3.3 Generated vs detectable entanglement	391	
16.4	Experimental analysis of OAM states	391	
	16.4.1 Experimental tools for OAM measurement	391	
	16.4.2 Production of phase plates	392	
	16.4.3 OAM analysis with mode-selective detectors	393	
	16.4.4 OAM analysis with bucket detectors	397	
16.5	Concluding discussion and challenges	403	
Refer	References		
Index		407	

Contributors

A. Aiello

Universität Erlangen-Nürnberg, Institut für Optik, Information und Photonik, Staudtstrasse 7/B2, Erlangen, D-91058, Germany

M. A. Alonso

University of Rochester, The Institute of Optics, Rochester, New York, NY 14627, USA

D. L. Andrews

University of East Anglia, School of Chemistry, Norwich Research Park, Norwich, NR4 7TJ, UK

M. Babiker

University of York, Department of Physics, York, YO10 5DD, UK

S. M. Barnett

Scottish Universities Physics Allliance (SUPA), Department of Physics, University of Strathclyde, John Anderson Building, Glasgow, G4 0NG, UK

Z. Bialynicka-Birula

Institute of Physics, Lotnikow 32/46, Warszawa, 2668, Poland

I. Bialynicki-Birula

Center for Theoretical Physics, Lotnikow 32/46, Warszawa, 2668, Poland

K. Y. Bliokh

National University of Ireland, Applied Optics Group, School of Physics, Galway, Ireland

J. Courtial

University of Glasgow, School of Physics and Astronomy, Kelvin Building, Glasgow, G12 8QQ, UK

V. R. Daria

The Australian National University, Research School of Physics and Engineering, and John Curtin School of Medical Research, Canberra, ACT 0200, Australia

N. Davidson

Weizmann Institute of Science, Department of Physics of Complex Systems, Rehovot, 76100, Israel

A. S. Desyatnikov

The Australian National University, Nonlinear Physics Centre, Research School of Physics and Engineering, Canberra, ACT 0200, Australia

Contributors

xiii

N. Drozd

Center for Theoretical Physics, Lotnikow 32/46, Warszawa 2668, Poland E. R. Eliel

Universiteit Leiden, Huygens Laboratory, Niels Bohrweg 2, Leiden, 2333 CA, The Netherlands

O. Firstenberg

Technion – Israel Institute of Technology, Department of Physics, Haifa, 32000, Israel

S. Franke-Arnold

University of Glasgow, School of Physics and Astronomy, Kelvin Building, Glasgow, G12 8QQ, UK

E. J. Galvez

Colgate University, Department of Physics and Astronomy, 13 Oak Drive, Hamilton, New York, NY 13345, USA

D. Giovannini

University of Glasgow, School of Physics and Astronomy, Kelvin Building, Glasgow, G12 8QQ, UK

J. Glückstad

Technical University of Denmark, DTU Fotonik, Dept of Photonics and Engineering, Anker Engelundsvej 1, 101A, Lyngby, DK-2800 Kgs., Denmark

J. B. Götte

University of Bristol, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK

Y. S. Kivshar

The Australian National University, Nonlinear Physics Centre, Research School of Physics and Engineering, Canberra, ACT 0200, Australia

M. P. J. Lavery

University of Glasgow, School of Physics and Astronomy, Kelvin Building, Glasgow, G12 8QQ, UK

V. E. Lembessis

King Saud University, Department of Physics and Astronomy, P.O. Box 2455, Riyadh 11451, Saudi Arabia

G. Molina-Terriza

Macquarie University, Faculty of Science, Dept of Physics and Astronomy, C5C-350 Level 3 West, Sydney, NSW 2109, Australia

G. Nienhuis

Universiteit Leiden, Huygens Laboratorium, Postbus 9504, Leiden 2300, The Netherlands

M. J. Padgett

University of Glasgow, School of Physics and Astronomy, Kelvin Building, Glasgow, G12 8QQ, UK

D. Palima

Technical University of Denmark, DTU Fotonik, Dept of Photonics and Engineering, Anker Engelundsvej 1, 101A, Lyngby, DK-2800 Kgs., Denmark xiv

Contributors

R. Pugatch
Weizmann Institute of Science, Department of Physics of Complex Systems, Rehovot, 76100, Israel
J. Romero
University of Glasgow, School of Physics and Astronomy, Kelvin Building, Glasgow, G12 8QQ, UK
M. Shuker
Technion – Israel Institute of Technology, Department of Physics, Haifa, 32000, Israel
M. P. van Exter
Universiteit Leiden, Huygens Laboratory, Niels Bohrweg 2, Leiden, 2333 CA, The Netherlands
J.P. Woerdman
Universiteit Leiden, Huygens Laboratory, Niels Bohrweg 2, Leiden, 2333 CA, The Netherlands

Preface

For any sceptic of the continued capacity of science to uncover new truth, to pave the way for previously unimagined applications, there is hardly a better corrective than to invite reflection on recent discoveries in the science of light. It may be unscientific to say that light is unfathomable, but it certainly is a characteristic of the subject that there is always more to be learned, just when the utmost depths seem within grasp. There is no better illustration than the specific subject of the volume before you.

It has long been known that light conveys energy, and the associated linear momentum has also been understood since the days of Maxwell and Bartoli.¹ With angular momentum the history is more recent, and the property a little less straightforward. What we quickly learned is that light has a propensity to convey angular momentum, depending on its state. The pioneering work in which Beth² established a link with circular polarisation is nonetheless already three-quarters of a century old. Once the quantum theory of light was developed, many would have surmised that the science was complete, the concept of angular momentum so beautifully related to the unit spin of the photon–the hallmark of a boson. But what has been discovered in the past quarter century has shown that the spin angular momentum is only half the story – and the other half has no ending yet in sight.

Recent developments in the angular momentum of light are leading to new and wideranging applications, even as the subject presents fresh challenges to long established and cherished concepts. The present volume of contributed chapters has been compiled to reflect how far the science has now progressed, and to address the multitude of theoretical, experimental and technical issues associated with this vibrant and exciting field. The chapters are as follows.

In Chapter 1, Götte and Barnett formally introduce orbital angular momentum, the topic that has opened the door to a broader understanding of angular momentum in light. The twisted wave-front structures that deliver such features have a characteristic form whose vortex properties are then discussed by Molina-Terriza in Chapter 2. Chapter 3 by Galvez describes the detailed relationships between polarization and wave-front morphology, revealing the connectivity between spin and orbital angular momentum. Desyatnikov

¹ J. C. Maxwell, A Treatise on Electricity and Magnetism, Vol. 2 (Macmillan, London, 1873); A. Bartoli, Il calorico raggiante e il secondo principio di termodynamica, Il Nuovo Cimento 15, 196–202 (1884).

² R. A. Beth, Mechanical detection and measurement of the angular momentum of light, *Phys. Rev.* **50**, 115–25 (1936).

xvi

Preface

and Kivshar address the additional complexities that arise when twisted light propagates through an optically nonlinear medium, in Chapter 4. In Chapter 5, Nienhuis provides a study of the connections between ray optics, wave optics and quantum mechanics, associated with optical angular momentum. In a second contribution by Götte and Barnett, Chapter 6 continues the theme with an analysis of the interplay between discrete and quantum mechanically uncertain angular properties. Chapter 7 by Bialynicki-Birula and Bialynicka-Birula then provides the theory of rotational frequency shift, a dynamically controllable feature that affords another tier of opportunities for application.

In Chapter 8, Bliokh et al. give a detailed account of the interactions between the two forms of optical angular momentum, spin and orbital. Theory continues with Chapter 9 by Andrews and Babiker, detailing the quantum electrodynamical basis for the interactions of optical vortices, lending insights into the connected issues of chirality and propagated angular momentum. In a second contribution by Bialynicki-Birula et al., Chapter 10 focuses attention on the trapping of charged particles by Bessel beams, a theme continued in a second contribution by Babiker et al., addressing charged and uncharged atoms in Laguerre-Gaussian light, in Chapter 11. As an introduction to specifically quantum optical applications, Romero et al. describe in Chapter 12 the practical aspects of producing and deploying light with orbital angular momentum. In Chapter 13, also from Padgett's group, the means of experimentally determining and separating beams with such angular momentum are described. More experimental detail is provided in Chapter 14 by Daria *et al.*, concerning the efficient generation and deployment of twisted optical beams. In Chapter 15, Firstenberg *et al.* address the issues of coherent diffusion, and finally in Chapter 16 van Exter et al. return to a distinctly quantum mechanical topic, developing and exploiting the orbital angular momentum of light to achieve azimuthal entanglement.

For the editors it has been a particular pleasure to undertake the responsibility of collating contributions from an outstanding set of authors, who include many of the key players in recent developments. On behalf of all our readers, we express our indebtedness to them for bringing a new level of clarity and accessibility to this fascinating subject.