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Microwave Penetration and Attenuation in Desert
Soil: A Field Experiment with the Shuttle
Imaging Radar
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Abstract—Receivers buried in the Nevada desert were used with the
Shuttle Imaging Radar to measure microwave attenuation as a func-
tion of soil moisture in situ. Results agree closely with laboratory mea-
surements of attenuation and suggest that penetration of tens of cen-
timeters in desert soils is common for L-band (1.2-GHz) radar.

I. INTRODUCTION

LTHOUGH SIR-B was designed to produce radar

images for a variety of studies, the radar signals also
were used to measure microwave attenuation in natural
soils at two sites in the Nevada desert near Hawthorne,
NV, by the use of receivers buried at different depths.
This work was stimulated by the discovery in 1981 that
images obtained by the SIR-B predecessor, SIR-A, over
the Western Desert of Egypt and Sudan showed relic flu-
vial channels and other geologic features buried by a me-
ter or more of sand [1]. Calculations showed that the ex-
treme dryness of the soil allowed this penetration [2]. Fol-
low-up investigations of that discovery [3] showed that
particle size-frequency distribution of the sandy soil, lack
of clays, extremely low moisture conditions, and the SIR-
A sensor parameters all contributed to maximizing SIR-A
signal penetration. Quantitative measurements of micro-
wave attenuation in soils however, have been done mostly
in laboratory apparatus in which the material is packed
into a waveguide [4]. The objective for the experiment
described here was to directly measure microwave atten-
uation as a function of moisture content, in situ in natural
soils in order to support concurrent searches for buried
features in SIR-B images.

II. DESCRIPTIONS OF THE SITES

Two sites were used during the SIR-B mission: site 4
was about 10 km east of the town of Mina, NV, at 38°
26.8" N, 118° 00" W; and site B was about 10 km south
of Mina, at 38° 16.7" N, 118° 6.4" W. The area was

Manuscript received November 21, 1985; revised February 3, 1986.
This work was carried out by the Jet Propulsion Laboratory, California
Institute of Technology, under contract with NASA.

T. G. Farr and C. Elachi are with the Jet Propulsion Laboratory, Cali-
fornia Institute of Technology, Pasadena, CA 91109.

P. Hartl and K. Chowdhury are with the University of Stuttgart, Stutt-
gart, West Germany.

IEEE Log Number 8608588.

Fig. 1. View of the terrain typical to this study. In the foreground is a
receiver in its protective case. The antenna is in the upper housing and
a ground plane separates it from the electronics below. The data collec-
tion unit can be glimpsed beside the crouching figure in the background.

chosen because several parallel and crossing passes of
SIR-B were planned there. The area has an arid climate,
averaging about 250 mm of precipitation per year. Rain-
fall for June through September 1984, averaged 11 mm
per month at Hawthorne, NV. The last rain recorded at
Hawthorne before the flight was 1 mm on September 19.
Thus, it was expected that some microwave penetration
of the soils would be observed.

Site A was situated on an alluvial terrace lying about 5
m above the level of the adjacent wash. The area on which
the receivers were deployed was flat, about 20 X 100 m,
with a steep drop to the stream bed and road on two sides,
and shallow gullies on the other side. The closest signif-
icant hills were approximately 5 km away. The surface
was covered with limestone pebbles of a few centimeters
in size. Vegetation was sparse, and covered about 15 per-
cent of the surface. Fig. 1 is a general view of a similar
site, showing typical vegetation coverage, the receivers,
and the type of holes excavated for their burial. The sub-
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surface of site A contained layers of fine and coarse
rounded pebbles and cobbles, mostly less than 5 cm, but
with some cobbles up to 15 cm.

Site B was situated on a flat alluvial apron between
Rhodes Salt Marsh and the Excelsior Mountains, which
were about 5 km to the north. The surface was covered
with patches of sand and small pebbles with a few rocks
up to 10 cm. Vegetation was patchy, and covered about
15 percent of the surface.

III. DESCRIPTION OF THE RECEIVERS

The receivers, built at the University of Stuttgart, were
designed to be compact and rugged enough for field use.
The antenna, receiver electronics, and power supply were
housed in the plastic containers shown in Fig. 1. Signals
were sent to and from the receivers via optical fiber ca-
bles. The receivers were controlled and data stored by a
hand-held computer through an analog-to-digital con-
verter (ADC) interface. The controller is also visible in
Fig. 1.

After reception by the crossed-dipole antenna, the re-
ceived power was converted to a dc voltage. This dc volt-
age was then applied to a voltage-controlled oscillator,
and the resulting frequency was sent via the optical fiber
cable to the ADC and an 8-bit counter in the controller.
The output of the counter represented the power density
at the receiver after the measured gain pattern of the re-
ceiver antenna was factored in. This output was sampled
in 100-ms increments for about 2.5 min, and stored in
computer memory.

IV. REsSULTS

The recorded data were output on paper tape as a func-
tion of time. Each chart was then composed of the repro-
duction of the azimuth antenna pattern of SIR-B, as the
Shuttle flew overhead, and the attenuation of the trans-
mitted power according to the deployment mode of the
individual receiver (Fig. 2). Dividing the difference be-
tween the power observed at two receivers by the path
length between them yielded the attenuation as a function
of path length. Table I shows the attenuation as a function
of path length for several data takes for the sites A and B.
The values in Table I also can be used to calculate atten-
uation coefficient, skin depth, and penetration depth using
equations found in Ulaby et al. [S5, p. 847]. This analysis
assumes that scattering in the soil volume is negligible
compared to attenuation. We can use [5, eq. 11.39] to
express the power at depth z

P(z) = P(O+) exp [— S; kz') dz ']

where P(0+) is the power just below the surface, and %,
is the extinction coefficient. If scattering in the soil vol-
ume can be ignored, if the extinction coefficient is con-
stant with depth, and if we carry out the calculation be-
tween two buried receivers at depths z1 and z2, then the
equation reduces to
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Fig. 2. Graphs showing the received data as a function of time. The up-
permost curves for each site were collected by receivers deployed above
the surface, and the lower curves by receivers buried at the indicated
depths. (a) From data take 55.4, site A. Note the relatively wide azimuth
antenna pattern, due to the large incidence angle and the fact that the
site was about 2° off the center of the radar beam. (b) From data take
87.4, site B. The narrower pattern was the result of a smaller incidence
angle.

2
P(22) = P(z1) exp <—2a S 1 dz’>

2z

where the attenuation coefficient « = k,/2. Solving for «
gives

_ 10 log P(z2) — 10 log P(z1)
- 20(z2 — z1) ’

10 log P(z) was the value measured by the receivers. The
values presented in Table I as attenuation were calculated
from the difference between the receiver measurements,
divided by the difference in path length between them.
Thus, the values reported in Table I can be converted to
« by dividing by 20.

Since the radar waves enter the soil at an angle, the path
length difference between receivers 1 and 2 must be used
instead of their depths. Furthermore, because the index of
refraction of the soil is different from air, Snells Law must
be used to correct the path lengths derived from simple
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Fig. 3. A reproduction of a portion of Hoekstra and Delaney [4, Fig. 12],
showing their measurements of attenuation as a function of volume mois-
ture content for 0.5 and 4.0 GHz. An interpolation between these two
curves (see text) yields the curve labeled 1.2 GHz, with which our data

points (crosses) can be compared.

TABLE I
Site data inc. measured receiver path attenuation weight % penetration  skin
take angle ower depth length  (dB/m) moisture depth, § depth,6s
fage) @) (e (em) (gh,0/g soil)  (m) P (m)
-28.0 12 14
A 39.4 60.7 11.8 2.8 0.85 1.7
-32.5 45 52
-25.4 12 13.5
A 55.4 52.9 16.3 2.8 0.61 1.2
-31.5 45 51
-13.1 12 12
B 82.2 22.6 36.2 4.6 0.28 0.56
-21.8 35 36
-14.4 12 12.2
B 87.4 27.9 28.9 4.6 0.35 0.70
-21.2 35 35.6

geometry. Thus
path length = z/cos [sin~' (sin 6;/n)]

where n is the index of refraction. The values reported in
Table I as path lengths have taken refraction into account
with the assumption that the index of refraction is NE) (real
dielectric constant is 3).

Other quantities of interest now can be calculated from
81

penetration depth = 6, = 1/Qa)

skin depth = 6, = 1/a.

These are shown in Table I for the two sites.

Moisture content also was measured at several depths
both at the time of burial and recovery of the receivers.
The average of several measurements at depths between

the two receivers are shown in Table I. The measurements
of moisture content were made on the basis of weight (in
grams H,0/g soil); but the quantity used for comparison
with microwave attenuation is volume percent moisture
(grams H,0/cm?® soil). To convert weight percent to vol-
ume percent, we have used an average value of 1.5 g/cm3
for the density of the sandy, unconsolidated soils—yield-
ing 4.2 volume-percent moisture for site A, and 6.9 vol-
ume-percent moisture for site B. It should be noted that
these moisture contents are significantly higher than those
encountered in the study of the Egyptian Desert, where
moisture contents were typically less than 1 weight per-
cent. The values for attenuation as a function of volume
moisture content now can be compared with those derived
by Hoekstra and Delaney [4]. Our values are shown plot-
ted with their curves in Fig. 3. Hoekstra and Delaney [4]
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gave curves for 0.5 and 4.0 GHz, and not 1.2 GHz, so
that in order to compare our results with theirs, we de-
rived a curve at 1.2 GHz by interpolation. The interpo-
lation is not only a function of frequency, however, since
the complex dielectric constant also varies with fre-
quency. Ulaby et al. [5] give the effect of frequency and
the real (¢’ ) and imaginary (e”) parts of the dielectric con-
stant on the attenuation as

attenuation =

Cf(e"INe")

where C is a constant. We have used this relationship and
values for ¢’ and €” given in [4] to derive the curve shown
in Fig. 3 for 1.2 GHz. Fig. 3 shows the close agreement
between our measurements of in situ attenuation versus
soil moisture and the results of Hoekstra and Delaney [4].
Ulaby et al. [5, Fig. 11.26] show the relationship between
penetration depth 6, and volume moisture content for
10.0, 4.0, and 1.3 GHz. Our results also closely match
theirs for the 1.3-GHz case.

V. ConcLusioNs, FUTURE WORK

In situ measurements of microwave attenuation in de-
sert soils can be made in the field with compact receivers,
and results agree closely with laboratory measurements.
These measurements support the observations of subsur-
face features visible in radar images obtained at L-band
(1.2 GHz) over desert areas. At two sites in Nevada the
skin depth ranged from 0.7 to 1.7 m, even though the soil
moisture was much higher than that found in hyperarid
regions of the world.

Future work will involve different techniques of exca-
vation in order to disturb the overlying soil as little as
possible. In addition, more sites with a greater range of
soil moisture are planned to be visited. Aircraft, as well
as spaceborne radars will be used; however, spaceborne
radars have the advantage of covering a larger area with
a constant power density, assuring more consistent re-
sults. Polarization sensitivity is planned to be added to the
receivers by replacement of the crossed-dipole antenna,
in order to study the polarization dependence of attenua-
tion in desert soils.

Measurement of microwave attenuation is not limited
to desert soils, and plans call for both permafrost in Alaska
and ice in Antarctica or Greenland to be similarly probed.
Both permafrost and fresh-water ice have very low atten-
uation coefficients, similar to dry desert soils.
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