
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Nov 20, 2024

SignalP 5.0 improves signal peptide predictions using deep neural networks

Almagro Armenteros, Jose Juan; Tsirigos, Konstantinos D.; Sønderby, Casper Kaae; Petersen, Thomas
Nordahl; Winther, Ole; Brunak, Søren; von Heijne, Gunnar; Nielsen, Henrik

Published in:
Nature Biotechnology

Link to article, DOI:
10.1038/s41587-019-0036-z

Publication date:
2019

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Almagro Armenteros, J. J., Tsirigos, K. D., Sønderby, C. K., Petersen, T. N., Winther, O., Brunak, S., von Heijne,
G., & Nielsen, H. (2019). SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature
Biotechnology, 37, 420-423. https://doi.org/10.1038/s41587-019-0036-z

https://doi.org/10.1038/s41587-019-0036-z
https://orbit.dtu.dk/en/publications/81834ff1-756e-456c-afef-55eddd18f4a4
https://doi.org/10.1038/s41587-019-0036-z


 1 

SignalP 5.0 improves signal peptide predictions using 
deep neural networks 
 
  
José Juan Almagro Armenteros1,9, Konstantinos D. Tsirigos1,2,3,4,9, Casper Kaae 
Sønderby5, Thomas Nordahl Petersen6, Ole Winther5,7, Søren Brunak1,8, Gunnar von 
Heijne2,3 and Henrik Nielsen1,* 
 

1Department of Bio and Health Informatics, Technical University of Denmark, Kgs 
Lyngby, Denmark  
2Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 
Sweden.  
3Science for Life Laboratory, Stockholm University, Solna, Sweden 
4Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 
Berlin, Germany  
5Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, 
Denmark 
6National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark 
7Department of Applied Mathematics and Computer Science, Technical University of 
Denmark, Kgs Lyngby, Denmark  
8Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein 
Research, Faculty of Health and Medical Sciences, University of Copenhagen, 
Copenhagen, Denmark  

9These authors have contributed equally to the presented work. 
 

*Correspondence should be addressed to Henrik Nielsen 
(hnielsen@bioinformatics.dtu.dk) 
 
 

  

mailto:hnielsen@bioinformatics.dtu.dk


 2 

Signal peptides (SPs) are short amino acid sequences in the N-terminus of many newly-

synthesized proteins that target their passenger proteins for transfer across, or integration 

into, membranes. Previous tools have been used to predict SPs from amino acid 

sequence, but most cannot distinguish between specific types of signal peptides that 

occur in different organisms. Here, we present a deep neural network-based approach that 

improves SP prediction across all domains of life and distinguishes between three types 

of prokaryotic SPs.  

 
Signal peptides (SPs) are found in a large number of nascent polypeptide chains in 

virtually all organisms and facilitate protein targeting to membrane-embedded export 

machineries in Bacteria1, Archaea2 and Eukaryotes3. SPs are found in secreted or 

transmembrane proteins, as well as proteins that reside inside specific organelles in 

eukaryotic cells. The general secretory pathway (Sec) is found in all domains of life and 

directs protein translocation across the plasma membrane in prokaryotes and the 

endoplasmic reticulum membrane in eukaryotes. Bacteria, Archaea, chloroplasts and 

some mitochondria also contain another major pathway termed Tat (Twin-Arginine 

Translocation). This pathway recognizes generally longer and less hydrophobic SPs that 

have a distinctive pattern usually containing two consecutive arginines (R-R) in the N-

terminal region4. In contrast to the Sec pathway, which transports proteins in an unfolded 

state, the Tat pathway actively translocates folded proteins across the lipid membrane 

bilayer.  

 

During or after translocation through the membrane, a signal peptidase removes the SP. 

For the most well-known type of SPs, this enzyme is called Signal Peptidase (SPase) I or 
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LepB in Bacteria, and orthologs of it are found in Archaea and in Eukaryotes, where it 

constitutes the only signal peptidase operating at the endoplasmic reticulum membrane. 

Bacterial lipoproteins are cleaved by a second signal peptidase, termed Signal Peptidase 

II or Lsp, which cleaves SPs that contain a conserved ‘lipobox’ in their C-terminus. This 

motif contains a cysteine immediately following the CS5. This cysteine site is found in 

both Bacteria and Archaea (although the actual SPase II has not been identified in 

Archaea6) and is vital to membrane anchoring7. Lastly, prokaryotic Type IV pilins are 

typically cleaved by a third signal peptidase, known as SPase III or prepilin peptidase 

(PilD) in bacteria and PibD in Archaea8. While bacteria contain Sec substrates that can be 

processed by SPase I, SPase II or SPase III, Tat substrates are only processed by SPase I 

or II. 

 

Many algorithms to predict the presence of SPs and the location of their cleavage sites 

from amino acid sequences have been developed. SignalP was among the first publicly 

available methods9, and has attracted a large number of users. Since then, several updates 

to this software have been published. While version 19 was based on artificial neural 

networks, version 210 additionally introduced hidden Markov models; version 311 

enhanced the cleavage site predictions, and version 412 improved the discrimination 

between signal peptides and transmembrane helices. However, all previous versions have 

only been capable of predicting Sec-translocated SPs cleaved by SPase I; to predict Tat 

translocation or SPase II cleavage, more specialized tools were needed. Some of these 

methods are indeed appropriate only for one type of SPs (e.g. Sec/SPII or Tat/SPI) and 

thus cannot differentiate between all three classes (Supplementary Table 1). 
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Here, we present SignalP 5.0, a deep Neural Network-based method combined with 

Conditional Random Field classification and optimized transfer learning for improved SP 

prediction. The deep recurrent Neural Network architecture is better suited for 

recognizing sequence motifs of varying length, such as SPs, than traditional feed-forward 

Neural Networks. The Conditional Random Field imposes a defined grammar on the 

prediction and obviates the need for the post-processing step used in earlier versions of 

SignalP. Finally, the transfer learning makes it possible to obtain a decent performance 

also on small divisions of the dataset, notably the archaeal sequences (see Online 

Methods for details). 

 

SignalP 5.0 distinguishes three types of signal peptides in prokaryotes: Sec substrates 

cleaved by SPase I (Sec/SPI), Sec substrates cleaved by SPase II (Sec/SPII), and Tat 

substrates cleaved by SPase I (Tat/SPI).  SignalP 5.0 cannot identify Tat substrates 

cleaved by SPase II, although these are known to exist13. Nor have we been able to 

construct a sufficiently large dataset of SPase III-cleaved proteins for training a machine 

learning method and therefore our algorithm is not able to identify SPaseIII processed 

Sec substrates.  

 

We trained and tested SignalP 5.0 on four groups of organisms (Eukaryotes, Archaea, 

Gram-positive bacteria, and Gram-negative bacteria) and four types of proteins: Sec/SPI, 

Sec/SPII, Tat/SPI and ‘Other’ (globular proteins without SP and transmembrane (TM) 

proteins with an experimentally verified TM segment within the first 70 amino acids 
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(AAs)). In total, the training data consisted of 20,758 proteins (Supplementary Table 2). 

After collecting the protein sequences, we clustered them using CD-HIT14 at 20% 

sequence identity. The dataset was homology-partitioned into five sets. Each set had the 

same distribution of organisms and types of proteins. For each protein, the AAs were 

encoded using the normalized BLOSUM6215 matrix such that each position in the 

sequence became a vector of length 20 containing the AA substitution probabilities. The 

labels for each AA were: Sec/SPI signal, Tat/SPI signal, Sec/SPII signal, outer region, 

inner region, transmembrane in-out, transmembrane out-in, SPI CS and SPII CS (Online 

Methods). 

 

We benchmarked SignalP 5.0 against 18 SP prediction algorithms–as many as currently 

are available either as web-servers or standalone packages (Supplementary Table 1). 

One particular method, Signal-BLAST16, essentially does a BLAST17 database look-up 

rather than a prediction from scratch and we observed that most of the proteins in our 

benchmark datasets were correctly predicted because they were identical to one of the 

proteins in Signal-BLAST’s reference database. Because its performance therefore would 

be artificially high, Signal-BLAST was excluded from our benchmark (Supplementary 

Note 1)  

 

Prediction performance for all SP detection algorithms was measured using the Matthews 

Correlation Coefficient (MCC)18, where both true and false positive and negative 

predictions are counted at the sequence level.  We used precision and recall to assess 

Cleavage Site (CS) predictions, where precision is defined as the fraction of CS 
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predictions that are correct, and recall is the fraction of real SPs that are predicted as the 

correct SP type and have the correct CS assigned.  

 

SignalP 5.0 achieved an overall MCC of 0.938, 0.907, 0.890 and 0.966 for predicting 

Sec/SPI SPs for Archaea, Gram-negative bacteria, Gram-positive bacteria and Eukaryotes 

respectively. When tested on Sec/SPII SPs, SignalP 5.0 achieved MCCs of 0.956, 0.960 

and 0.957 for Archaea, Gram-negative and Gram-positive bacteria, respectively. Finally, 

on Tat/SPI SPs, SignalP 5.0 had MCCs of 0.977, 0.981 and 0.868 for Archaea, Gram-

negative and Gram-positive bacteria, respectively (Supplementary Table 3). In 

Supplementary Table 4, we demonstrate SignalP 5.0’s discrimination performance on 

the different types of signal peptides with a confusion matrix, which shows the numbers 

of real and predicted examples in each class of sequences. Regarding CS precision, 

SignalP 5.0’s performance varies between 0.630 and 0.970, whereas its CS recall varies 

between 0.579 and 0.970 (Supplementary Table 5).  

 

To demonstrate the reliability of SignalP 5.0, we studied the probability distribution of 

correct and incorrect predictions. Prediction confidence was assessed by examining the 

probabilities of the most likely class predicted by the model from the AA sequences 

(Supplementary Note 2 and Supplementary Fig. 1).  

 

A common problem in CS prediction is that experimental data used to train prediction 

algorithms can have erroneous or uncertain annotations. To account for this uncertainty, 

we considered a window of one, two and three AAs around the annotated CS position, 
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assuming that, if the annotation was incorrect, the correct position should be nearby. We 

reported a correct prediction if the predicted CS was within that window. The same was 

done for all other methods that were used in our benchmark (Supplementary Note 2 and 

Supplementary Fig. 2).  

 

To construct an independent benchmark set for comparing the performance of SignalP 

5.0 against all other prediction methods, we did a 20% homology reduction with CD-HIT 

between our training dataset and the dataset used for training the most recently published 

method, DeepSig19 (which used SignalP4’s training dataset). The result was a reduced 

benchmark dataset of 8,811 proteins (derived from the 20,758 proteins of the training 

dataset). While the benchmark set is independent with regards to eukaryotic and bacterial 

Sec/SPI data, this is not the case for the Sec/SPII, Tat/SPI and archaeal datasets, where 

many proteins were directly obtained from the training datasets of specialized predictors. 

In Supplementary Table 2, we report the constitution of the datasets for each organism 

type and category, both for training and for comparison.  

 

Given that some methods were designed for a specific type of SPs and that not all 

methods run on all organism groups, we carried out three separate benchmarks (Sec/SPI, 

Sec/SPII and Tat/SPI SPs). Furthermore, because SignalP 5.0 is the only method capable 

of simultaneously predicting all types of SPs, each benchmark was run twice: first with 

only the respective SP type as ‘positive’ dataset and TM/Globular proteins as ‘negative 

dataset’ and then with adding the two remaining SP types to the ‘negative’ dataset. 

Importantly, the performance of SignalP 5.0 is measured on a cross-validated mode, 
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unlike the methods specialized for archaeal, Sec/SPII or Tat/SPI prediction, which 

contained some (or many) of the proteins of the benchmark already in their respective 

training datasets. 

 

Benchmarks results are summarized in Figs 1-2 and Supplementary Tables 7-12. 

SignalP 5.0 has the best SP discrimination across all organisms in the Sec/SPI 

benchmark, with the exception of Gram-positive bacteria where it ranks second after 

SignalP 4.1 (Supplementary Table 7 and Fig. 1).  It also has the highest CS recall in 

Eukaryotes and Bacteria, and the second highest CS recall in Archaea after PRED-

SIGNAL20, which, however, is a specialized method, trained on archaeal sequences only. 

Finally, Regarding CS precision SignalP 5.0 achieved the highest CS precision across all 

organisms compared with all existing methods (Supplementary Table 8 and Fig. 1).  

 

The performance of the otherwise quite successful methods Philius21, Phobius22 and 

SPOCTOPUS23 on eukaryotic data was notably poorer than previously reported12. The 

reason for this discrepancy is that, in the current benchmark dataset, the number of 

eukaryotic SPs is much lower than in the previous study12 (210 now versus 3,462 before), 

which makes the eukaryotic part of the evaluation dataset much more imbalanced than 

before. Finally, the performance of TOPCONS224, which is the only consensus method 

tested in our benchmark, is high in Bacteria, but not in Archaea or Eukaryotes, where it 

ranks below average. For CS predictions, it is clear that the consensus method is not 

ideal, but this was also not within the intended scope of this tool (Supplementary Tables 

7-8 and Fig. 1).  
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In the Sec/SPII SPs benchmark, SignalP 5.0 had superior performance across all metrics 

for all organisms, outperforming methods that were designed and optimized specifically 

for this this particular type of SPs (Supplementary Tables 9-10 and Fig. 2).  

 

 SignalP 5.0 performs as well as PRED-TAT25 and TATFIND26 for predicting Tat/SPI 

SPs in Archaea and Gram-negative bacteria, although PRED-TAT has better prediction 

performance in Gram-positive bacteria. PRED-TAT achieved the highest CS recall in 

Bacteria, while SignalP 5.0 displayed the best CS prediction in Archaea. SignalP 5.0 

demonstrated superior CS precision compared with PRED-TAT in Archaea and Gram-

positive bacteria, although PRED-TAT achieved the highest CS precision in Gram-

negative bacteria. TATFIND does not make CS predictions, and could therefore not be 

evaluated. When including Sec/SPI and Sec/SPII SPs in the ‘negative’ dataset, SignalP 

5.0 performs as well as PRED-TAT in Archaea and has the highest CS prediction scores 

in Gram-negative and Gram-positive bacteria (Supplementary Tables 11-12 and Fig. 2).  

 

We used SignalP 5.0 to annotate two well-annotated reference proteomes; Escherichia 

coli (strain K12) and Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's 

yeast). In both cases, SignalP 5.0 accurately detects all but one experimentally verified 

Sec/SPI SPs.  The analysis also identified potentially new SPs, with high probability, 

which may be interesting candidates for verification (Supplementary Note 3). Not only 

is SignalP 5.0 capable of predicting proteome-wide SPs across all organisms; it can also 
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classify them into Sec/SPI, Sec/SPII and Tat/SPI SPs, in most cases better than 

specialized predictors.   
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Figure 1. Performance comparison of signal peptide prediction algorithms across Archaea, 
Eukaryotes, Gram-negative bacteria and Gram-positive bacteria on Sec/SPI SPs. Performance 
was measured using the MCC detection and Cleavage Site recall and precision metrics. 
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Figure 2. Performance comparison of signal peptide prediction algorithms on Sec/SPII and 
Tat/SPI substrates in Archaea, Gram-negative and Gram positive bacteria using the MCC 
detection and Cleavage Site recall and precision as metrics. 
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Online Methods  
 
Sequence data 
 
For eukaryotic and bacterial Sec/SPI signal peptides, we relied on the UniProt 

Knowledgebase release 2018_0427.  Only reviewed entries (i.e. from 

UniProtKB/SwissProt) were used, and hypothetical proteins were not included. We 

discarded protein sequences shorter than 30 amino acids and we only considered signal 

peptides which had experimental evidence (ECO: 0000269) for the cleavage site. Gram-

positive bacteria were defined as Firmicutes plus Actinobacteria. We did not include 

Tenericutes (Mycoplasma and related genera) since they do not seem to have a type I 

signal peptidase at all28. Gram-negative bacteria were defined as all other bacteria. All 

sequences were shortened to the 70 N-terminal AAs. For archaeal Sec/SPI signal 

peptides, we added the (few) experimentally verified proteins from SwissProt to the ones 

from the PRED-SIGNAL method. 
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For Tat/SPI signal peptides, we relied on a combination of the training set of the PRED-

TAT method (which had experimentally verified Tat proteins for Gram-negative and 

Gram-positive bacteria) together with the ‘Twin arginine translocation (Tat) signal 

profile’ (PS51318) entry from the PROSITE database29. The status of PROSITE matches 

against Swiss-Prot entries is manually assessed during the curation process. Swiss-Prot 

curators evaluate the quality of the match according to the match score, the likelihood of 

the protein to contain such a domain and the appearance in other members of the protein 

family. The ‘positive’ status does not necessarily mean that the presence of the domain 

has been experimentally proven, but rather that the protein most probably contains such a 

domain according to the evaluation of the curators. For Archaea, we used proteins that 

were identified in the literature as being Tat/SPI (from the PRED-SIGNAL datasets) 

together with proteins belonging to the PS51318 entry of PROSITE.  

 

A similar strategy was followed for the collection of the Sec/SPII dataset, where we used 

the respective PROSITE entry (‘Prokaryotic membrane lipoprotein lipid attachment site 

profile’ - PS51257), together with experimentally verified lipoproteins, taken from the 

PRED-LIPO30 datasets. It should be noted that there was no overlap between the lists 

from these two PROSITE entries, i.e. we found no examples of proteins that belonged to 

both the Tat/SPII group. 

 

We must stress here that, as it can be seen from Supplementary Table 1, the number of 

Sec/SPI signal peptides is relatively low as compared to the Tat/SPI and Sec/SPII types. 

This is due to the fact that, for Tat/SPI and Sec/SPII signal peptides, we relied mainly on 
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the PROSITE annotation and the PRED-TAT, PRED-SIGNAL and PRED-LIPO 

datasets, whereas, for Sec/SPI signal peptides, we used the annotation from UniProt. In 

2014, UniProt adopted new evidence ontology. Before the change, an annotation was 

regarded as experimental if it lacked qualifiers such as ‘Potential’, ‘Probable’ or ‘By 

similarity’; after the change, only annotations with a specific literature reference are 

annotated as being experimental (evidence code ECO:0000269). If we compare the 

number of experimental Sec/SPI SPs between the current version of SwissProt and the 

2014_09 version (the last one before adopting the new scheme), then we observe 1,371 

Eukaryotic, 280 Gram-negative and 118 Gram-positive Sec/SPI SPs that have lost their 

‘experimental’ status (i.e. are missing the ECO: 0000269 annotation). SignalP 5.0 

identifies 1,338/1,371 (97.59%) of the Eukaryotic Sec/SPI SPs and, of them 1,089 with a 

correct CS position (79.43%). In Gram-negative bacteria, the corresponding numbers are 

222/280 (79.29%) for identification of Sec/SPI SPs and 195/280 (69.64%) for correct CS 

prediction. Finally, in Gram-positive bacteria, 105/118 (88.98%) of them were correctly 

identified, and 85/118 (72.03%) were found to have the same CS as the annotated one. 

These results are quite close to the overall performance of SignalP 5.0, indicating that 

these proteins could be correct SPs; however, we could not trust their experimental status, 

which is why we did not include them. 

 

For transmembrane (TM) proteins, we relied on the TOPDB31 database, which contains 

topological models of TM proteins based on either structural data (where there is 

interplay with the PDB_TM32 database) or other experimental techniques, such as fusion 

with reporter enzymes, glycosylation studies, protease accessibility, immunolocalisation, 
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etc. If a TM protein was found to also contain an SP, then this protein was classified 

under the SP dataset. 

 

Finally, we collected a globular proteins dataset, again from UniProt 2018_04, i.e. 

proteins with a subcellular location annotated as cytosolic (cytosolic, nuclear, 

mitochondrial, plastid, and/or peroxisomal in eukaryotes) and not belonging to the 

secretory pathway with experimental evidence (note that UniProt uses the term 

‘cytoplasm’ for cytosol).  

 

Methods for comparison  

In addition to the previous version of SignalP (SignalP 4.1), 17 other methods were 

selected for comparison of predictive performances Supplementary Table 2. Most of the 

methods were downloaded and run locally on our computers or through their respective 

websites. For the methods Signal-3L 2.033, Signal-BLAST, Signal-CF34 and SPEPlip35, 

we wrote Perl scripts to automate the process of submitting a sequence and collecting the 

results. Signal-BLAST was eventually excluded from the benchmark (Supplementary 

Note 1). 

 

SignalP 5.0 model architecture  

SignalP 5.0 has three main novelties compared to previous versions: a) a powerful deep 

learning architecture36 b) optimization using transfer learning37 between multiple 

prediction tasks and c) Conditional Random Field (CRF) classification 38,39.  
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Deep Learning Model 

The deep learning model (Supplementary Fig. 3), is composed of three primary 

components: 1) one-dimensional convolutions akin to learnable non-linear PSSMs, 

capturing short range correlations, 2) bidirectional Long-Short Term Memory (LSTM)40  

cells capturing long range sequence dependencies and 3) a Conditional Random Field 

(CRF) for predicting the class labels. 

 

Transfer and multimodal learning 

Deep learning models require relatively large amounts of data in order to train the models 

without overfitting and, as described above, we collected a dataset substantially larger 

than datasets previously used to successfully train Deep Learning models on protein 

sequences (see. e.g. Armenteros et al.41 or Zhou & Troyanskaya42). However, some of the 

categories still had limited amounts of data available (Supplementary Table 2). To 

improve performance in organism groups with little data (notably Archaea), SignalP 5.0 

utilizes transfer learning between taxonomic groups as well as multimodal learning 

predicting several related tasks using the same model. We trained a single unified model 

for Archaea, Gram-positive bacteria, Gram-negative bacteria and Eukaryotes, which 

improves performance on the low-data task since the model can learn generally useful 

features across all taxonomic groups. To inform the model about which taxonomic group 

a protein belongs to, we input an additional four-dimensional indicator vector into the 

LSTM cells of the model. To further improve performance, we employ multimodal 

learning, predicting both the individual amino acid labels as well as the global signal 

peptide type. Overall, transfer learning and multimodal learning means that, instead of 
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having eight models, each specialized to one group and one task, we use a single model 

that works for all the groups and performs both predictions at once. 

 

Conditional Random Field 

The CRF models a joint distribution of the sequential labels y = y1 … yT given the input 

sequence x = x1 … xT using the following restricted form: 

( ) ( ) ( )( ) ( )
1

1

,
1 1

1| exp exp
t t t

T T

y t y y
t t

p y x h
Z h

ψ ϕ
+

−

= =

= =∏ ∏  

where h = h1 . . . hT is the output of the core neural network model directly below the 

CRF, Z(h) is the normalization constant of the distribution p(y|x), ψ(ht) is a linear model 

which takes ht as input and has the number of classes C outputs and φt is a trainable 

transition matrix with C × C parameters: 

( )t th W h bψ ψψ = +  

1,t ty y Wϕϕ
+
=  

Due to the chain structure, inference can be carried out exactly using dynamic 

programming in O(TC2)43. During training, where (x, y) is observed, we need to compute 

Z(h) for each training sequence as part of the likelihood p(y|x). During prediction, where 

only x is observed, we can calculate either the most probable sequence argmaxy p(y|x) 

(using the Viterbi decoding algorithm) or the marginal probabilities p(yt |x), t = 1, . . . , T. 

To make a single global prediction of whether a signal peptide is present or not in a 

protein, we take the average of the marginal probabilities across the sequence (nine 

classes: Sec/SPI signal, Tat/SPI signal, Sec/SPII signal, outer region, inner region, 

transmembrane in-out, transmembrane out-in, Sec SPI/Tat SPI cleavage site and Sec/SPII 
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cleavage site) and perform an affine linear transformation into four classes (Sec/SPI, 

Sec/SPII, Tat/SPI, Other), ( )1
1 |T

s s ttl W p y x
T =
 =   
∑ , so as to get the logit of a categorical 

distribution over the presence or not of a signal peptide. To predict the location of the 

cleavage site, we use Viterbi decoding, since this ensures that a predicted sequence of 

signal peptide positions is always followed by prediction of a cleavage site. 

 

 

Neural Network structure and optimization details 

In this section, the neural network structure is described in more detail. The model is 

described sequentially going from the protein sequence input to predictions where the 

output of a layer is used as input for the next: 

1. 1D convolution with 32 filters and a kernel width of three. 

2. Bidirectional LSTM with 64 hidden units in the forward and backward models. 

To include the taxonomic group information in the model, a four-dimensional 

group indicator vector is concatenated to the input of the LSTM cells as illustrated 

in Supplementary Fig. 3.  

3. 1D convolution with 64 filters and kernel widths five. 

4. 1D convolution with nine filters (matching the number of position-specific 

classes) and kernel widths one. 

5. Conditional Random Field for predictions. We calculate both the individual 

marginal probabilities of the labels at each position using the forward-backward 

algorithm and the global most likely label assignment for the entire sequence 

using Viterbi decoding. To predict the global label of the protein sequence, we 
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average the marginal probabilities across the sequence producing a 9x1 vector. 

We linearly map that vector to a 4x1 vector followed by a softmax function 

producing the global label prediction. 

We used ReLu activation functions in all fully connected and convolutional layers and 

dropout was used to avoid overfitting44. The loss function consists of the sum of two 

terms, one for the individual amino acid label predictions and one for the global protein 

label prediction. Both terms are the cross-entropy between the predicted label distribution 

and the true observed label. All parameters were optimized using Stochastic Gradient 

Descent (SGD) on the loss function with mini batches of size 128 and a learning rate of 

0.005. We optimized hyperparameters using Bayesian optimization45 and five-fold nested 

cross-validation. The inner four folds were used to train four different models, each using 

three folds as training data and one fold as validation data, identifying thus the best set of 

hyperparameters (learning rate, LSTM hidden units, number of convolutional filters, 

convolutional filter width). After optimization, the fifth fold was used to assess the test 

performance and the procedure was repeated using each of the five folds as the test set. 

The advantage of this approach is that we obtain an unbiased test performance for the 

whole dataset at the expense of having to train 5x4 models. All the experiments were run 

using the Tensorflow library46. 

 

The incorporation of the aforementioned techniques improves the performance of SignalP 

5.0 on both the signal type and the cleavage site prediction. Supplementary Table 6 

shows a comparison of the performance on the total training set (20,758 proteins) of the 

model using CRF and the organism group information, the model without the group 



 22 

information and the model without CRF. The four models achieve similar performances, 

even though there are some differences worth mentioning. Regarding signal peptide 

detection, the CRF does not improve the performance considerably. However, its use is 

beneficial for the cleavage site prediction, where the difference in performance is 

significantly higher. Regarding the use of transfer learning, it is clear that the models 

without this feature are the ones with the worst performance on the signal peptide 

detection. For instance, on archaeal proteins, the model has a performance of 0.913, 

while, for the model that utilizes transfer learning, the performance climbs to 0.966. 
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Supplementary Figure 1 

Boxplot of the probability of the predicted class for correct and incorrect predictions 

A probability close to 1 means a highly reliable prediction. For Archaea, Gram-Positive and Gram-Negative the probability threshold is 
0.25, as there are four possible classes (Sec/SPI, Tat/SPI, Sec/SPII and Other). For Eukarya this threshold is 0.5, as it has only two 
classes (Sec/SPI and Other). A probability close to this threshold means a very unreliable prediction. All classes, namely Sec/SPI, 
Tat/SPI, Sec/SPII and Other are combined in this plot. 



 
 

 
Supplementary Figure 2 

Performance of SignalP 5.0 on cleavage site detection when considering a window of 0, 1, 2 and 3 amino acids centered on the real 
cleavage site. 

Insert figure caption here by deleting or overwriting this text; captions may run to a second page if necessary. To ensure accurate 
appearance in the published version, please use the Symbol font for all symbols and Greek letters. 

 
 



 
 

 
Supplementary Figure 3 

The SignalP 5.0 Neural Network architecture. 

Insert figure caption here by deleting or overwriting this text; captions may run to a second page if necessary. To ensure accurate 
appearance in the published version, please use the Symbol font for all symbols and Greek letters. 
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Supplementary Material  

Supplementary Note 1 

The special case of Signal-BLAST 

Signal-BLAST runs BLAST against a pre-constructed database of signal peptides, and, if it finds 

a hit with high similarity, it essentially conducts a database look-up (current version of Signal-

BLAST uses Uniprot  2017_6 as reference). Because of that, we sought to find out how many of 

the proteins in our datasets fall under the “look-up” category. Interestingly, out of the 7,457 

proteins in Eukaryotes, modes (parameter sets) 1, 2 and 3 of Signal-BLAST find 7,444 /7,457 

(99.8%) with 100% identical sequence in the reference database, and only mode 4 is different 

with 3,160 /7,457 (42.4%). In this benchmark, the overall MCC of modes 1, 2 and 3 was almost 

equal to 1.0, while for the mode 4 it merely reached 0.145. In Archaea, out of 182 proteins, there 

are 126 (for modes 1, 2 and 3) or 109 (from mode 4) proteins with a 100% identity, which 

translates into 69.2% or 59.8% of the total proteins in this set. In Gram-negative bacteria, out of 

783 proteins, there are 723 (for modes 1, 2 and 3) or 684 (from mode 4) proteins with a 100% 

identity in the reference database (constituting 92.3% or 87.4% of them). Finally, in Gram-

positive bacteria, out of 389 proteins, there are 343 (for modes 1, 2 and 3) or 324 (from mode 4) 

proteins with 100% identity to one of the proteins in the reference database, i.e. 88.2% or 83.2% 

of them. Based on this finding, the Signal-BLAST method was not included in our benchmark, 

since its predictive performance would be artificially high. Signal-BLAST further exemplifies 

that the idea of using sequence similarity alone is probably not suited for the task of SP 

prediction, since, if no homology is found, then the prediction performance is very low. 
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Supplementary Note 2 

Signal peptide classification and Cleavage Site prediction reliability 

We observed that correctly classified proteins have a prediction confidence close to 1, even 

though some outliers were present. The median of these probabilities for Archaea, Gram-positive 

bacteria, Gram-negative bacteria and Eukaryotes is 0.996, 0.995, 0.997 and 0.999 respectively. 

In contrast, incorrectly classified proteins have wider probability distributions, ranging between 

0.4 and 1.0. The median of these probabilities for Archaea, Gram-Positive, Gram-Negative and 

Eukaryotes is 0.914, 0.707, 0.800 and 0.788, respectively, highlighting the lower prediction 

confidence of incorrect predictions.  

CS prediction performance for Tat/SPI and Sec/SPI proteins increased across all domains in 

relation to window size (Supplementary Figure 2). For Eukaryotes, recall increases from 0.802 

to 0.923 when considering a window of three amino acids, indicating that a high proportion of 

the erroneous predictions are within 3 AAs of the annotated CS position. We can therefore 

conclude that, when predicting the SPase I CS with SignalP 5.0, we can be highly confident that 

the real CS will be located in a window of three AAs around the predicted CS. For Sec/SPII SPs, 

the cleavage site performance is very high and is not improved by considering a wider window, 

reflecting that the SPase II CS is dependent on the presence of a cysteine residue. 

 

 

 

 



3 

Supplementary Note 3 

Proteomic analysis using SignalP 5.0 

For Escherichia coli, UniProt reports 498 proteins with a SP, 137 of which are experimentally 

verified and 361 predicted by various ways. Out of the 137 SPs, 122 are Sec/SPI, 11 are Sec/SPII 

and 4 are Tat/SPI SPs. SignalP 5.0 predicts 612 SPs in total, out of which 414 Sec/SPI, 161 

Sec/SPII and 37 Tat/SPI. When we compare the UniProt annotated SPs to the SignalP 5.0 

predicted ones, we observe that SignalP 5.0 detects 136/137 experimental SPs, together with 

their respective type (misses one Tat/SPI SP). Regarding CS prediction, 131/137 are predicted to 

have precisely the same CS, whereas, 5/137 are within the ±3 window. 

The respective analysis for Saccharomyces cerevisiae is as follows: UniProt annotation reports 297 

proteins, 37 of which are experimentally annotated and 260 are predicted by various ways. 

SignalP 5.0 predicts 314 Sec/SPI SPs in total. When we compare the UniProt annotated SPs to 

the SignalP 5.0 predicted ones, we observe that SignalP 5.0 detects 36/37 experimental SPs. 

Regarding CS prediction, 29/37 are predicted to have precisely the same CS, while, a further of 

2/37 are within the ±3 window.  

These two analyses show us that SignalP 5.0’s confident predictions can potentially help towards 

a better annotation of proteomes. 
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Method URL Organism 
Prediction 

type 

SignalP 5.0 http://www.cbs.dtu.dk/services/SignalP/ A | E | P | N 
S | L | T | 
O 

SignalP 4.112 http://www.cbs.dtu.dk/services/SignalP-4.1/ E | P | N S | O 

DeepSig19 https://deepsig.biocomp.unibo.it/deepsig/ E | P | N S | O 

LipoP47 http://www.cbs.dtu.dk/services/LipoP/ A | P | N S | L | O 

Philius21 http://www.yeastrc.org/philius/pages/philius/runPhilius.jsp A | E | P | N S | O 

Phobius22 http://phobius.sbc.su.se/ A | E | P | N S | O 

PolyPhobius48 http://phobius.sbc.su.se/poly.html A | E | P | N S | O 

PRED-LIPO30 http://bioinformatics.biol.uoa.gr/PRED-LIPO/ A | P | N S | L | O 

PRED-
SIGNAL20 

http://bioinformatics.biol.uoa.gr/PRED-SIGNAL/ A | E | P | N S | O 

PRED-TAT25 http://www.compgen.org/tools/PRED-TAT/ A | E | P | N S | T | O 

PrediSi49 http://www.predisi.de/ E | P | N S | O 

Signal-3L 2.033 http://www.csbio.sjtu.edu.cn/bioinf/Signal-3L/ E | P | N S | O 

Signal-
BLAST17 

http://sigpep.services.came.sbg.ac.at/signalblast.html A | E | P | N S | O 

Signal-CF34 http://www.csbio.sjtu.edu.cn/bioinf/Signal-CF/ E | P | N S | O 

SOSUIsignal50 
http://harrier.nagahama-i-
bio.ac.jp/sosui/sosuisignal/sosuisignal_submit.html 

E | P | N S | O 

SPEPlip35 http://gpcr.biocomp.unibo.it/cgi/predictors/spep/pred_spepcgi.cgi E | P | N S | L | O 

SPOCTOPUS23 http://octopus.cbr.su.se/ A | E | P | N S | O 

TATFIND26 http://signalfind.org/tatfind.html A | E | P | N T | O 

TatP51 http://www.cbs.dtu.dk/services/TatP/ A | P | N T | O 

TOPCONS224 http://www.topcons.net/ A | E | P | N S | O 

 

 

 

http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/SignalP-4.1/
https://deepsig.biocomp.unibo.it/deepsig
http://www.cbs.dtu.dk/services/LipoP/
http://www.yeastrc.org/philius/pages/philius/runPhilius.jsp
http://phobius.sbc.su.se/
http://phobius.sbc.su.se/poly.html
http://bioinformatics.biol.uoa.gr/PRED-LIPO/
http://bioinformatics.biol.uoa.gr/PRED-SIGNAL/
http://www.compgen.org/tools/PRED-TAT/
http://www.predisi.de/
http://www.csbio.sjtu.edu.cn/bioinf/Signal-3L/
http://sigpep.services.came.sbg.ac.at/signalblast.html
http://www.csbio.sjtu.edu.cn/bioinf/Signal-CF/
http://harrier.nagahama-i-bio.ac.jp/sosui/sosuisignal/sosuisignal_submit.html
http://harrier.nagahama-i-bio.ac.jp/sosui/sosuisignal/sosuisignal_submit.html
http://gpcr.biocomp.unibo.it/cgi/predictors/spep/pred_spepcgi.cgi
http://octopus.cbr.su.se/
http://signalfind.org/tatfind.html
http://www.cbs.dtu.dk/services/TatP/
http://www.topcons.net/
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Supplementary Table 1. The full list of methods used for benchmarking of SignalP 5.0. In the ’Organism‘ 
column, where we specify the type of organisms each method was designed for or can work with, ’A‘ 
stands for Archaea, ’E‘ for Eukaryotes, ’N‘ for Gram-negative bacteria and ’P‘ for Gram-positive bacteria. 
In the ’Prediction type‘ column, where we specify which type of predictions each method can produce, 
’S‘ stands for Sec/SPI signal peptides, ’L‘ for Lipoprotein (Sec/SPII) signal peptides, ’T‘ for Tat/SPI signal 
peptides and ’O‘ for other (globular and/or transmembrane proteins). 

 

Type Archaea Eukaryotes Gram-negative bacteria Gram-positive bacteria 

Sec/SPI signals 60 (50) 2,614 (210) 509 (90) 189 (25) 

Sec/SPII signals 28 (19) -- 1,063 (442) 449 (201) 

Tat/SPI signals 27 (22) -- 334 (98) 95 (74) 

Globular 78 (63) 13,612 (6,929) 202 (103) 140 (64) 

TM 44 (28) 1,044 (318) 220 (50) 50 (25) 

Total 237 (182) 17,270 (7,457) 2,328 (783) 923 (389) 

 

Supplementary Table 2. The composition of the training and test datasets used during the development 
of SignalP 5.0 with the benchmark dataset numbers in parentheses  

 
 
 

SignalP 5.0 
(cross-val) 

Archaea Gram-negative bacteria Gram-positive bacteria Eukaryotes 
MCC1 MCC2 MCC1 MCC2 MCC1 MCC2 MCC 

Sec/SPI 0.938 0.933 0.907 0.918 0.890 0.882 0.966 
Sec/SPII 0.956 0.938 0.960 0.960 0.957 0.957 - 
Tat/SPI 0.977 0.958 0.981 0.981 0.868 0.866 - 

 

Supplementary Table 3. Cross-validated performance of SignalP 5.0 on SP detection over the whole 
training dataset (20,758 proteins). ‘MCC1’ refers to signal peptide vs non-signal peptide detection when 
the positive dataset is comprised by Sec/SPI SPs and the negative dataset by TM+Globular proteins only; 
‘MCC2’ refers to signal peptide vs non-signal peptide detection when the positive dataset is comprised 
by Sec/SPI SPs and the negative dataset by Sec/SPII SPs,Tat/SPI SPs, TM and Globular proteins. 
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SignalP 5.0 
(cross-val) Sec/SPI Sec/SPII Tat/SPI Other 

Total dataset (real/predicted) 
Sec/SPI 3,254 (339) 22 (7) 8 (1) 88 (28) 
Sec/SPII 24 (14) 1,503 (637) 2 (2) 11 (9) 
Tat/SPI 13 (9) 8 (6) 433 (177) 2 (2) 
Globular 40 (21) 1 (1) 0 (0) 13,991 (7,137) 

TM 64 (17) 1 (0) 2 (1) 1,291 (403) 
Archaea (real/predicted) 

Sec/SPI 56 (46) 1 (1) 0 (0) 3 (3) 
Sec/SPII 1 (1) 26 (17) 1 (1) 0 (0) 
Tat/SPI 0 (0) 0 (0) 26 (21) 1 (1) 
Globular 0 (0) 0 (0) 0 (0) 78 (63) 

TM 1 (1) 0 (0) 0 (0) 43 (27) 
Eukaryotes (real/predicted) 

Sec/SPI 2,550 (194) - - 64 (16) 
Globular 39 (21) - - 13,573 (6,908) 

TM 49 (13) - - 995 (305) 
Gram-negative bacteria (real/predicted) 

Sec/SPI 474 (76) 18 (6) 3 (0) 14 (8) 
Sec/SPII 19 (9) 1,040 (430) 1 (1) 3 (2) 
Tat/SPI 2 (2) 3 (2) 329 (94) 0 (0) 
Globular 0 (0) 1 (1) 0 (0) 201 (102) 

TM 9 (2) 1 (0) 2 (1) 208 (47) 
Gram-positive bacteria (real/predicted) 

Sec/SPI 174 (23) 3 (0) 5 (1) 7 (1) 
Sec/SPII 4 (4) 437 (190) 0 (0) 8 (7) 
Tat/SPI 11 (7) 5 (4) 78 (62) 1 (1) 
Globular 1 (0) 0 (0) 0 (0) 139 (64) 

TM 5 (1) 0 (0) 0 (0) 45 (24) 
 

Supplementary Table 4 . Confusion matrices for the different type of predictions that SignalP 5.0 makes 
on the training and the benchmark (in brackets) dataset.  
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SignalP 5.0 
(cross-val) 

Archaea Gram-negative bacteria Gram-positive bacteria Eukaryotes 
0 ±1 ±2 ±3 0 ±1 ±2 ±3 0 ±1 ±2 ±3 0 ±1 ±2 ±3 

CS recall 
Sec/SPI 0.683 0.767 0.800 0.833 0.868 0.894 0.908 0.912 0.767 0.799 0.825 0.841 0.802 0.849 0.896 0.923 
Sec/SPII 0.929 0.929 0.929 0.929 0.970 0.970 0.970 0.972 0.955 0.955 0.955 0.955 - - - - 
Tat/SPI 0.630 0.667 0.741 0.815 0.757 0.802 0.850 0.883 0.579 0.611 0.695 0.705 - - - - 
CS precision 
Sec/SPI 0.707 0.793 0.828 0.862 0.877 0.903 0.917 0.921 0.744 0.744 0.800 0.815 0.795 0.841 0.887 0.914 
Sec/SPII 0.963 0.963 0.963 0.963 0.970 0.970 0.970 0.972 0.964 0.964 0.964 0.964 - - - - 
Tat/SPI 0.630 0.667 0.741 0.815 0.755 0.800 0.848 0.881 0.663 0.699 0.795 0.807 - - - - 

 
 
Supplementary Table 5. Cross-validated performance of SignalP 5.0 on CS recall and precision over the whole training dataset (20,758 
proteins).  
 
 

 CRF and transfer 
learning Only CRF Only transfer 

learning 
No CRF nor transfer 

learning 
Signal peptide 
accuracy  0.986 0.981 0.984 0.981 

Cleavage site 
accuracy 0.808 0.790 0.637 0.626 

 

Supplementary Table 6. Comparison of the model performance with and without CRF and transfer learning. Since all taxonomic groups were 
combined for this analysis, we report just the accuracy of SignalP 5.0 (i.e. the fraction of correctly identified signal peptides and the fraction of 
correctly predicted cleavage sites) 
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Method Archaea Eukaryotes Gram-negative bacteria Gram-positive bacteria 
MCC1 MCC2 MCC MCC1 MCC2 MCC1 MCC2 

SignalP 5.0 0.922 0.917 0.883 0.860 0.830 0.922 0.760 
SignalP 4.1  n.d. n.d. 0.808 0.851 0.248 0.949 0.148 
DeepSig n.d. n.d. 0.819 0.792 0.166 0.870 0.115 
LipoP 0.829 0.604 0.363 0.787 0.483 0.922 0.403 
Philius 0.765 0.447 0.421 0.802 0.127 0.843 0.075 
Phobius 0.813 0.514 0.510 0.818 0.132 0.818 0.074 
PolyPhobius 0.752 0.453 0.456 0.844 0.144 0.852 0.111 
PrediSi n.d. n.d. 0.553 0.802 0.244 0.781 0.121 
PRED-LIPO 0.796 0.586 0.234 0.775 0.398 0.896 0.410 
PRED-SIGNAL 0.897 0.584 0.272 0.724 0.098 0.830 0.114 
PRED-TAT 0.788 0.626 0.326 0.769 0.187 0.830 0.189 
Signal-3L 2.0 n.d. n.d. 0.597 0.806 0.110 0.922 0.106 
Signal-CF n.d. n.d. 0.326 0.561 0.106 0.558 0.084 
SOSUIsignal n.d. n.d. 0.375 0.693 0.108 0.722 0.047 
SPEPlip n.d. n.d. 0.655 0.746 0.498 0.646 0.350 
SPOCTOPUS 0.765 0.408 0.492 0.860 0.127 0.922 0.109 
TOPCONS2 0.765 0.432 0.477 0.860 0.131 0.897 0.071 

 

Supplementary Table 7. Benchmarking of Sec/SPI signal peptide detection predictions. The highest 
performance values have been highlighted in bold. ‘MCC1’ refers to signal peptide vs non-signal peptide 
detection when the positive dataset is comprised by Sec/SPI SPs and the negative dataset by 
TM+Globular proteins only; ‘MCC2’ refers to signal peptide vs non-signal peptide detection when the 
positive dataset is comprised by Sec/SPI SPs and the negative dataset by Sec/SPII SPs,Tat/SPI SPs, TM 
and Globular proteins. 

 

 

 



9 

 

Method Archaea Eukaryotes Gram-negative bacteria Gram-positive bacteria 
0 ±1 ±2 ±3 0 ±1 ±2 ±3 0 ±1 ±2 ±3 0 ±1 ±2 ±3 

CS recall 
SignalP 5.0 0.660 0.740 0.780 0.820 0.729 0.762 0.795 0.833 0.733 0.767 0.800 0.800 0.840 0.840 0.880 0.880 
SignalP 4.1 n.d. n.d. n.d. n.d. 0.695 0.729 0.762 0.786 0.644 0.711 0.733 0.744 0.840 0.840 0.840 0.840 
DeepSig n.d. n.d. n.d. n.d. 0.624 0.652 0.690 0.724 0.600 0.656 0.667 0.678 0.760 0.760 0.840 0.840 
LipoP 0.480 0.620 0.660 0.720 0.343 0.386 0.419 0.448 0.733 0.767 0.789 0.789 0.600 0.600 0.640 0.640 
Philius 0.580 0.680 0.700 0.700 0.619 0.686 0.743 0.781 0.700 0.744 0.789 0.811 0.600 0.600 0.600 0.600 
Phobius 0.540 0.640 0.660 0.700 0.667 0.700 0.738 0.786 0.644 0.722 0.789 0.811 0.600 0.600 0.600 0.600 
PolyPhobius 0.560 0.680 0.680 0.700 0.681 0.733 0.776 0.833 0.644 0.733 0.811 0.822 0.680 0.680 0.720 0.720 
PrediSi n.d. n.d. n.d. n.d. 0.652 0.695 0.719 0.767 0.722 0.789 0.811 0.822 0.640 0.640 0.760 0.800 
PRED-LIPO 0.480 0.600 0.660 0.680 0.095 0.114 0.152 0.181 0.467 0.522 0.567 0.600 0.760 0.760 0.760 0.760 
PRED-SIGNAL 0.800 0.900 0.900 0.900 0.224 0.290 0.329 0.362 0.444 0.522 0.622 0.644 0.680 0.680 0.720 0.720 
PRED-TAT 0.580 0.720 0.800 0.820 0.410 0.510 0.571 0.614 0.711 0.767 0.800 0.822 0.720 0.720 0.760 0.760 
Signal-3L 2.0 n.d. n.d. n.d. n.d. 0.648 0.686 0.733 0.762 0.644 0.700 0.722 0.733 0.800 0.800 0.840 0.840 
Signal-CF n.d. n.d. n.d. n.d. 0.652 0.676 0.724 0.762 0.689 0.711 0.744 0.778 0.720 0.720 0.800 0.800 
SOSUIsignal n.d. n.d. n.d. n.d. 0.176 0.329 0.467 0.576 0.267 0.367 0.567 0.622 0.200 0.240 0.280 0.440 
SPEPlip n.d. n.d. n.d. n.d. 0.710 0.733 0.771 0.810 0.611 0.678 0.722 0.733 0.680 0.680 0.720 0.720 
SPOCTOPUS 0.340 0.480 0.520 0.560 0.390 0.533 0.686 0.757 0.467 0.689 0.833 0.867 0.640 0.760 0.800 0.880 
TOPCONS2 0.480 0.600 0.620 0.640 0.371 0.505 0.638 0.729 0.544 0.622 0.733 0.767 0.240 0.320 0.400 0.440 
CS precision 
SignalP 5.0 0.771 0.688 0.812 0.812 0.671 0.702 0.732 0.732 0.742 0.775 0.809 0.809 0.600 0.600 0.629 0.629 
SignalP 4.1  n.d. n.d. n.d. n.d. 0.613 0.643 0.672 0.693 0.151 0.167 0.172 0.175 0.083 0.083 0.083 0.083 
DeepSig n.d. n.d. n.d. n.d. 0.604 0.631 0.668 0.700 0.131 0.144 0.146 0.148 0.073 0.073 0.080 0.080 
LipoP 0.484 0.375 0.516 0.562 0.159 0.178 0.194 0.207 0.327 0.342 0.351 0.351 0.153 0.153 0.163 0.163 
Philius 0.425 0.362 0.438 0.438 0.151 0.168 0.182 0.191 0.106 0.112 0.119 0.122 0.054 0.054 0.054 0.054 
Phobius 0.395 0.333 0.407 0.432 0.226 0.237 0.250 0.267 0.098 0.110 0.120 0.124 0.054 0.054 0.054 0.054 
PolyPhobius 0.395 0.326 0.395 0.407 0.176 0.190 0.201 0.216 0.097 0.110 0.122 0.124 0.060 0.060 0.063 0.063 
PrediSi n.d. n.d. n.d. n.d. 0.273 0.291 0.301 0.321 0.144 0.157 0.162 0.164 0.062 0.062 0.074 0.078 
PRED-LIPO 0.455 0.364 0.5 0.515 0.069 0.083 0.110 0.131 0.212 0.237 0.258 0.273 0.216 0.216 0.216 0.216 
PRED-SIGNAL 0.489 0.435 0.489 0.489 0.066 0.085 0.096 0.106 0.076 0.089 0.106 0.110 0.060 0.060 0.064 0.064 
PRED-TAT 0.493 0.397 0.548 0.562 0.080 0.099 0.111 0.119 0.125 0.135 0.141 0.145 0.082 0.082 0.087 0.087 
Signal-3L 2.0 n.d. n.d. n.d. n.d. 0.322 0.341 0.365 0.379 0.113 0.123 0.127 0.129 0.074 0.074 0.078 0.078 
Signal-CF n.d. n.d. n.d. n.d. 0.105 0.109 0.117 0.123 0.102 0.105 0.110 0.115 0.059 0.059 0.065 0.065 
SOSUIsignal n.d. n.d. n.d. n.d. 0.037 0.069 0.098 0.121 0.040 0.055 0.086 0.094 0.018 0.021 0.025 0.039 
SPEPlip n.d. n.d. n.d. n.d. 0.366 0.378 0.398 0.418 0.276 0.307 0.327 0.332 0.187 0.187 0.198 0.198 
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SPOCTOPUS 0.293 0.207 0.317 0.341 0.120 0.164 0.211 0.233 0.067 0.098 0.119 0.124 0.056 0.066 0.070 0.077 
TOPCONS2 0.366 0.293 0.378 0.390 0.107 0.146 0.184 0.210 0.081 0.093 0.110 0.115 0.022 0.029 0.036 0.039 

 

Supplementary Table 8. Benchmarking of Sec/SPI signal peptide cleavage site predictions, measured as recall and precision. The highest 
performance values have been highlighted in bold. 
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Method Archaea Gram-negative bacteria Gram-positive bacteria 
MCC1 MCC2 MCC1 MCC2 MCC1 MCC2 

SignalP 5.0 0.936 0.910 0.945 0.946 0.917 0.923 
LipoP 0.836 0.755 0.791 0.833 0.798 0.822 
PRED-LIPO 0.766 0.743 0.629 0.707 0.775 0.775 
SPEPlip n.d. n.d. 0.857 0.884 0.845 0.843 

 

Supplementary Table 9. Benchmarking of Sec/SPII signal peptide detection predictions. The highest 
performance values have been highlighted in bold. ‘MCC1’ refers to signal peptide vs non-signal peptide 
detection when the positive dataset is comprised by Sec/SPII SPs and the negative dataset by 
TM+Globular proteins only; ‘MCC2’ refers to signal peptide vs non-signal peptide detection when the 
positive dataset is comprised by Sec/SPII SPs and the negative dataset by Sec/SPI SPs,Tat/SPI SPs, TM 
and Globular proteins. 

 

Method Archaea Gram-negative bacteria Gram-positive bacteria 
0 ±1 ±2 ±3 0 ±1 ±2 ±3 0 ±1 ±2 ±3 

CS recall 
SignalP 
5.0 

0.895 0.895 0.895 0.895 0.964 0.964 0.964 0.968 0.925 0.925 0.925 0.925 

LipoP 0.684 0.684 0.737 0.737 0.860 0.860 0.860 0.862 0.831 0.831 0.831 0.831 
PRED-
LIPO 

0.632 0.632 0.632 0.632 0.717 0.717 0.717 0.719 0.816 0.816 0.816 0.816 

SPEPlip n.d. n.d. n.d. n.d. 0.912 0.912 0.914 0.914 0.876 0.876 0.876 0.876 
CS precision 
SignalP 
5.0 

0.944 0.944 0.944 0.944 0.970 0.970 0.970 0.975 0.959 0.959 0.959 0.959 

LipoP 0.765 0.765 0.824 0.824 0.969 0.969 0.969 0.972 0.944 0.944 0.944 0.944 
PRED-
LIPO 

0.923 0.923 0.923 0.923 0.969 0.969 0.969 0.972 0.921 0.921 0.921 0.921 

SPEPlip n.d. n.d. n.d. n.d. 0.969 0.969 0.971 0.971 0.936 0.936 0.936 0.936 
 

Supplementary Table 10. Benchmarking of Sec/SPII signal peptide cleavage site predictions, measured as 
recall and precision. The highest performance values have been highlighted in bold. 
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Method Archaea Gram-negative bacteria Gram-positive bacteria 
MCC1 MCC2 MCC1 MCC2 MCC1 MCC2 

SignalP 5.0 0.972 0.948 0.958 0.965 0.859 0.889 
PRED-TAT 0.972 0.948 0.958 0.948 0.903 0.853 
TatP 0.824 0.667 0.787 0.689 0.752 0.680 
TATFIND 0.972 0.902 0.893 0.910 0.793 0.800 

  

Supplementary Table 11. Benchmarking of Tat/SPI signal peptide detection predictions. The highest 
performance values have been highlighted in bold. ‘MCC1’ refers to signal peptide vs non-signal peptide 
detection when the positive dataset is comprised by Tat/SPI SPs and the negative dataset by 
TM+Globular proteins only; ‘MCC2’ refers to signal peptide vs non-signal peptide detection when the 
positive dataset is comprised by Tat/SPI SPs and the negative dataset by Sec/SPI SPs, Sec/SPII SPs, TM 
and Globular proteins. 

 

Method Archaea Gram-negative bacteria Gram-positive bacteria 
0 ±1 ±2 ±3 0 ±1 ±2 ±3 0 ±1 ±2 ±3 

CS recall 
SignalP 5.0 0.591 0.636 0.727 0.773 0.684 0.724 0.745 0.776 0.595 0.622 0.676 0.689 
PRED-TAT 0.500 0.545 0.636 0.636 0.735 0.755 0.776 0.806 0.622 0.622 0.635 0.689 
TatP 0.318 0.409 0.500 0.500 0.653 0.673 0.694 0.704 0.446 0.473 0.514 0.581 
TATFIND n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 
CS precision 
SignalP 5.0 0.591 0.636 0.727 0.727 0.698 0.740 0.760 0.760 0.698 0.730 0.794 0.794 
PRED-TAT 0.500 0.545 0.636 0.636 0.713 0.733 0.752 0.782 0.590 0.590 0.603 0.654 
TatP 0.269 0.346 0.423 0.423 0.427 0.440 0.453 0.460 0.355 0.376 0.409 0.462 
TATFIND n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

 

Supplementary Table 12. Benchmarking of Tat/SPI signal peptide cleavage site predictions, measured as 
recall and precision. The highest performance values have been highlighted in bold. 

 

 

 


