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Abstract. A major cryptanalytic computation is currently underway
on multiple platforms, including standard CPUs, FPGAs, PlayStations
and GPUs, to break the Certicom ECC2K-130 challenge. This challenge
is to compute an elliptic-curve discrete logarithm on a Koblitz curve
over F2131 . Optimizations have reduced the cost of the computation to
approximately 277 bit operations in 261 iterations.

GPUs are not designed for fast binary-field arithmetic; they are de-
signed for highly vectorizable floating-point computations that fit into
very small amounts of static RAM. This paper explains how to optimize
the ECC2K-130 computation for this unusual platform. The resulting
GPU software performs more than 63 million iterations per second, in-
cluding 320 million F2131 multiplications per second, on a $500 NVIDIA
GTX 295 graphics card. The same techniques for finite-field arithmetic
and elliptic-curve arithmetic can be reused in implementations of larger
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systems that are secure against similar attacks, making GPUs an in-
teresting option as coprocessors when a busy Internet server has many
elliptic-curve operations to perform in parallel.

Keywords: Graphics Processing Unit (GPU), Elliptic Curve Cryptog-
raphy, Pollard rho, qhasm.

1 Introduction

The elliptic-curve discrete-logarithm problem (ECDLP) is the number-theoretic
problem behind elliptic-curve cryptography (ECC): the problem of computing a
user’s ECC secret key from his public key. Pollard’s rho method solves this prob-
lem in O(

√
ℓ) iterations, where ℓ is the largest prime divisor of the order of the

base point. A parallel version of the algorithm by van Oorschot and Wiener [20]
provides a speedup by a factor of Θ(N) when running on N computers, if ℓ is
larger than a suitable power of N . In several situations a group automorphism
of small order m provides a further speedup by a factor of Θ(

√
m). No further

speedups are known for any elliptic curve chosen according to standard security
criteria; this is the end of the story.

However, these asymptotic iteration counts ignore many factors that have
an important influence on the cost of an attack. Understanding the hardness
of a specific ECDLP requires a more thorough investigation. The publications
summarized on www.keylength.com, giving recommendations for concrete cryp-
tographic key sizes, all extrapolate from such investigations. To reduce extrapo-
lation errors it is important to use as many data points as possible, and to push
these investigations beyond the ECDLPs that have been carried out before.

Certicom published a list of ECDLP prizes in 1997 [12] in order to “increase
the cryptographic community’s understanding and appreciation of the difficulty
of the ECDLP”. These challenges range from very easy exercises, solved in 1997
and 1998, to serious cryptanalytic challenges. The last Certicom challenge that
was publicly broken was a 109-bit ECDLP in 2004. Certicom had already pre-
dicted the lack of further progress: it had stated in [12, page 20] that the sub-
sequent challenges were “expected to be infeasible against realistic software and
hardware attacks, unless of course, a new algorithm for the ECDLP is discov-
ered.”

Since then new hardware platforms have become available to the attacker.
Processor design has moved away from increasing the clock speed and towards
increasing the number of cores. This means that implementations need to be
parallelized in order to make full use of the processor. Running a serial imple-
mentation on a recent processor might take longer than 5 years ago, because
the average clock speed has decreased, but if this implementation can be paral-
lelized and occupy the entire processor then the implementation will run much
faster. An extreme example of this high parallelism at reduced clock speed is the
NVIDIA GTX 295 graphics card. This card contains two G200b Graphics Pro-
cessing Units (GPUs); each GPU contains 30 cores; each core contains 8 ALUs;
each ALU is capable of performing a 32-bit operation every cycle. Each ALU
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operates at just 1.242 GHz, but 480 ALUs together have a tremendous amount
of computational power.

Certicom’s estimate a decade ago was that ECC2K-130, the first “infeasible”
challenge, would require (on average) 2700000000 “machine days” of computa-
tion. Our main result is that a cluster of just 534 graphics cards running our
software would solve ECC2K-130 in just 24 months.

In this paper we explain how we use Pollard’s rho algorithm to compute
ECDLP on GPUs. In particular, we give details on how we implement binary-
field multiplication, a problem that at first seems quite poorly suited to GPUs,
and on how we implement a complete ECDLP iteration function. Some of our
optimizations are specific to ECC2K-130, but most of our implementation tech-
niques can be reused in larger ECDLP computations. Furthermore, the binary-
field arithmetic operations that we optimize are also the primary bottlenecks in
various cryptographic computations; the same implementation techniques open
up the interesting possibility of using GPUs as high-performance coprocessors
to offload binary-field ECC computations from busy Internet servers.

This paper is part of a large collaborative project that has optimized ECDLP
computations for several different platforms and that aims to break ECC2K-
130. See [1] and http://www.ecc-challenge.info for more information about
the project. All of the platforms use the same ECC2K-130 iteration function,
allowing an objective comparison of the power of different platforms and putting
our GPU speeds in perspective: finishing the computation in two years would
require

• 1595 standard PCs (3.2 GHz AMD Phenom II X4 955 CPU) [1]; or
• 1231 PlayStation 3 computers (Cell CPU with 6 usable SPEs and 1 PPE)
[11]; or
• 534 GTX 295 graphics cards, as shown in this paper; or
• 308 XC3S5000-4FG676 FPGAs [13];

or any combination of the above.

2 The GTX 295 graphics card

The most impressive feature of GPUs is their theoretical floating-point perfor-
mance. Each of the 480 ALUs on a GTX 295 can dispatch a single-precision
floating-point multiplication (with a free addition) every cycle. There are also
120 “special-function units” that can each dispatch two single-precision floating-
point multiplications every cycle, for a total of 894 billion floating-point multi-
plications per second.

The most useful GPU arithmetic instructions for the ECC2K-130 computa-
tion are 32-bit logical instructions (ANDs and XORs) rather than floating-point
multiplications, but 596 billion 32-bit logical instructions per second are still
much more impressive than (e.g.) the 28.8 billion 128-bit logical instructions per
second performed by a typical 2.4 GHz Intel Core 2 CPU with 4 cores and 3
128-bit ALUs per core.



4 Bernstein, Chen, Cheng, Lange, Niederhagen, Schwabe, Yang

However, the GPUs also have many bottlenecks that make most applications
run slower, often one or two orders of magnitude slower, than the theoretical
throughput figures would suggest. The most troublesome bottlenecks are dis-
cussed in the remainder of this section and include a heavy divergence penalty,
high instruction latency, low SRAM capacity, high DRAM latency, and relatively
low DRAM throughput per ALU.

2.1. The dispatcher. The 8 ALUs in a GPU core are fed by a single dispatcher.
The dispatcher cannot issue more than one new instruction to the ALUs every
4 cycles. The dispatcher can send this one instruction to a warp containing 32
separate threads of computation, applying the instruction to 32 pieces of data in
parallel and keeping all 8 ALUs busy for all 4 cycles; but the dispatcher cannot
direct some of the 32 threads to follow one instruction while the remaining
threads follow another.

Branching is allowed, but if threads in a warp take different branches (“di-
verge”) then the threads taking one branch will no longer operate in parallel
with the threads in the other branch. For example, if 32 threads are split among
all three branches in the code

if(x)

if(y)

aaa

else

bbb

else

ccc

then the first threads will execute aaa while the other threads remain idle; next
the second threads will execute bbb while the other threads remain idle; and
finally the third threads will execute ccc while the other threads remain idle.
The total time is the sum of the times taken by aaa, bbb, ccc, rather than the
maximum of those times.

2.2. Instruction latency. Each thread follows its instructions strictly in order.
NVIDIA does not document the exact pipeline structure but states that “the
delays introduced by read-after-write dependencies can be ignored as soon as
there are at least 192 active threads per multiprocessor to hide them” [16, Section
5.1.2.6]. If 8 ALUs are fully occupied with 192 threads then each thread runs
every 24 cycles; evidently the latency of an arithmetic instruction is below 24
cycles.

One might think that a single warp of 32 threads can keep the 8 ALUs fully
occupied, if the instructions in each thread are scheduled for 24-cycle arithmetic
latency (i.e., if an arithmetic result is not used until 6 instructions later). How-
ever, our experiments showed that even with careful scheduling more threads are
required, in particular if instructions access shared memory. This does not mean
that one can achieve the best performance by running the maximum number of
threads that fit into the core. Threads share several critical resources, as dis-
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cussed below, so increasing the number of threads means reducing the resources
available to each thread.

The ECC2K-130 computation puts extreme pressure on shared memory and
registers, as discussed later in this paper; to minimize this pressure we ended up
using just 128 threads. Some parts of the computation would benefit from more
threads but the efficient Karatsuba multiplier described in Section 5 does not al-
low us to use more than 128 threads. We found experimentally that the penalties
of using 128 threads were somewhat smaller when we rescheduled instructions
to separate shared-memory accesses from each other.

2.3. SRAM: registers and shared memory. Each core has 16384 32-bit
registers; these registers are divided among the threads running on the core.
For example, if the core is running 256 threads, then each thread is assigned 64
registers. If the core is running 128 threads, then each thread is assigned 128
registers, although the high 64 registers are somewhat limited: the architecture
does not allow a high register as the second operand of an instruction. The
number of registers per thread is limited to 128 even if there are fewer than 128
threads.

The core also has 16384 bytes of shared memory that provide variable array
indexing and communication between threads. This memory is split into 16
banks, each of which can dispatch one 32-bit read or write every two cycles.
If the 16 threads in a half-warp read from the same location or 16 different
banks then there are no bank conflicts, but if the threads all read from different
locations of the same bank then they take 16 times as long.

Threads also have fast access to an 8192-byte constant cache. This cache can
broadcast a 32-bit value from one location to every thread simultaneously, but
it cannot read more than one location per cycle.

2.4. DRAM: global memory and local memory. The CPU makes data
available to the GPU by copying it into the DRAM on the graphics card outside
the GPU. The cores on the GPU can then load data from this global memory

and store results in global memory to be retrieved by the CPU. Global memory
is also a convenient temporary storage area for data that does not fit into shared
memory. However, global memory is limited to a throughput of just one 32-bit
load from each GPU core per cycle, with a latency of 400–600 cycles.

Each thread also has access to local memory. The name “local memory” might
suggest that this storage is fast, but in fact it is another area of DRAM, as slow as
global memory. Instructions accessing local memory automatically incorporate
the thread ID into the address being accessed, effectively partitioning the local
memory among threads without any extra address-calculation instructions.

There are no hardware caches for global memory and local memory. Pro-
grammers can, and must, set up their own schedules for copying data to and
from global memory.

2.5. Choice of GPU. We decided to focus on the GTX 295 because it provides
an excellent price-performance ratio. The price of a GTX 295 was only about
$500 when we began this project. We built several $2000 PCs, each containing
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two GTX 295s and a standard CPU, following the advice of Bernstein, Chen,
Chen, Cheng, Hsiao, Lange, Lin, and Yang in [7] and [6]; each PC is (considering
the extra cost of power and cooling) more than twice as expensive as a PC
containing a CPU alone, but it gives us several times better performance.

Similar GPUs are also widely available in computing clusters, which typically
use self-contained 1U rackmount Tesla S1060 units. Each S1060 contains 4 G200
(or G200b) GPUs and is microarchitecturally identical to a pair of slightly over-
clocked GTX 295s. The United States TeraGrid network included two such GPU
clusters when we began this project, namely Lincoln (384 GPUs) and Longhorn
(512 GPUs).

There are two other GPU architectures of note: AMD’s Evergreen (R8xx)
GPUs, as in the Radeon HD 5970, and NVIDIA’s very new Fermi (GF1xx) line
of GPUs, as in the GTX 480. All of these GPUs pose similar parallelization
challenges, but there are many differences in the details. The current dominance
of G200-based Tesla GPUs in computer clusters makes these GPUs the most
attractive target for now. We focus on the GTX 295 throughout this paper.

3 The ECDLP and parallel Pollard rho

The standard method for solving the ECDLP in prime-order subgroups is Pol-
lard’s rho method [17]. For large instances of the ECDLP, one usually uses
a parallelized rho method due to van Oorschot and Wiener [20]. This section
briefly reviews the ECDLP and the parallel rho method.

The ECDLP is the following problem: Given an elliptic curve E over a finite
field Fq and two points P ∈ E(Fq) and Q ∈ 〈P 〉, find an integer k such that
Q = [k]P .

Let ℓ be the order of P , and assume in the following that ℓ is prime. The
parallel rho method is a client-server approach in which each client does the
following:

1. Generate a pseudo-random starting point R0 as a known linear combination
of P and Q: R0 = a0P + b0Q;

2. apply a pseudo-random iteration function f to obtain a sequence Ri+1 =
f(Ri), where f is constructed to preserve knowledge about the linear com-
bination of P and Q;

3. for each i, after computing Ri, check whether Ri belongs to an easy-to-
recognize set D, the set of distinguished points, a subset of 〈P 〉;

4. if at some moment a distinguished point Ri is reached, send (Ri, ai, bi) to
the server and go to step 1.

The server receives all the incoming triples (R, a, b) and does the following:

1. Search the entries for a collision, i.e., two triples (R, a, b), (R′, a′, b′) with
R = R′ and b 6≡ b′ (mod ℓ);

2. obtain the discrete logarithm of Q to the base P as k = a′
−a

b−b′
modulo ℓ.
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The expected running time of this parallel version of Pollard’s rho algorithm
is approximately

√

πℓ/2 calls to the iteration function f , assuming perfectly
random behavior of f .

4 ECC2K-130 and the iteration function

The specific ECDLP addressed in this paper is given in the Certicom challenge
list [12] as Challenge ECC2K-130. The given elliptic curve is the Koblitz curve
E : y2 + xy = x3 + 1 over the finite field F2131 ; the two given points P and Q
have order ℓ, where ℓ is a 129-bit prime.

This section reviews the definition of distinguished points and the iteration
function used in [1]. For a more detailed discussion, an analysis of communication
costs, and a comparison to other possible implementation choices, the interested
reader is referred to [1].

4.1. Definition of the iteration function. A point R ∈ 〈P 〉 is distinguished
if HW(xR), the Hamming weight of the x-coordinate of R in normal-basis rep-
resentation, is smaller than or equal to 34. The iteration function is defined
as

Ri+1 = f(Ri) = σj(Ri) +Ri,

where σ is the Frobenius endomorphism and

j = ((HW(xRi
)/2) mod 8) + 3.

The restriction of σ to 〈P 〉 corresponds to scalar multiplication with a par-
ticular easily computed scalar r. For an input Ri = aiP + biQ, the output of f
will be Ri+1 = (rjai + ai)P + (rjbi + bi)Q.

Each walk starts by picking a random 64-bit seed s which is then expanded
deterministically into a linear combination R0 = a0P + b0Q. To reduce band-
width and storage requirements, the client does not report a distinguished triple
(R, a, b) to the server but instead transmits only s and a 64-bit hash of R. On the
occasions that a hash collision is found, the server recomputes the linear combi-
nations in P and Q for R = aP +bQ and R′ = a′P +b′Q from the corresponding
seeds s and s′. This has the additional benefit that the client does not need to
keep track of the coefficients a and b or counters for how often each Frobenius
power is used. This speedup is particularly beneficial for highly parallel archi-
tectures such as GPUs, which otherwise would need a conditional addition to
each counter in each step.

4.2. Computing the iteration function. The main task for each client is to
repeatedly compute the function f defined above. Each iteration starts with a
point R = (x, y), computes a normal-basis Hamming weight HW(x) and thus

j = ((HW(x)/2) mod 8) + 3, computes σj(R) = (x2
j

, y2
j

), and adds (x, y) to

(x2
j

, y2
j

) on E.
The addition on E requires 2 multiplications, one squaring, 6 additions, and

1 inversion in F2131 in affine Weierstrass coordinates; see, e.g., [8]. Inversions are
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significantly more expensive than multiplications but Montgomery’s trick [15]
reduces these expenses in a batch of inversions: it replaces m separate inversions
with 3(m − 1) multiplications and 1 inversion. For example, a 10-way batched
inversion takes 3 · (10 − 1) = 27 multiplications and 1 inversion; each of the
original inversions is thus replaced by 0.1 inversions and 2.7 multiplications.

The obvious way to compute x2
j

for 3 ≤ j ≤ 10 is to first square 3 times,
obtaining x2

3

, and then square repeatedly, at most 7 more times, until reaching
x2

j

. However, this involves several expensive branches depending on the value of
j. A branch-free strategy stated in [9] is to compute r = x2

3

, s = r+b0(r
2+r), t =

s + b1(s
4 + s), u = t + b2(t

16 + t) where j = 3 + b0 + 2b1 + 4b2, i.e., where
HW(x) = 2b0 + 4b1 + 8b2 + · · · . The computation s = r + b0(r

2 + r) is a

conditional squaring, computing s = r = x2
3

if b0 = 0 or s = r2 = x2
4

if b0 = 1,

i.e., s = x2
3+b0

; similarly t = x2
3+b0+2b1

and u = x2
3+b0+2b1+4b2

= x2
j

.
In total, each iteration in a batch of 10 iterations takes 4.7 multiplications,

0.1 inversions, 1 squaring, 2 3-squarings (where an m-squaring means a sequence
of m squarings), 2 conditional squarings, 2 conditional 2-squarings, 2 conditional
4-squarings, and 1 normal-basis Hamming-weight computation. As the batch size
increases, the number of multiplications per iteration converges to 5 while the
number of inversions per iteration converges to 0.

If each inversion is replaced by computing the (2131 − 2)nd power using the
sequence of multiplications and squarings shown in [9, Figure 5.3] then each
iteration in a batch of 10 iterations takes 5.5 multiplications, 1.3 squarings, 2.6
m-squarings for various m, 2 conditional squarings, 2 conditional 2-squarings, 2
conditional 4-squarings, and 1 normal-basis Hamming-weight computation.

4.3. Bitslicing. The next step in optimizing multiplications in F2131 , squarings
in F2131 , etc. is to decompose these arithmetic operations into the operations
available on the target platform.

Modern microprocessors operate on words of many bits, say n bits. The fast
XOR logical instruction reads two n-bit words, computes n bit XORs (additions
in F2) in parallel, and produces an n-bit output word. Similar comments apply
to other logical instructions: AND (multiplication in F2), OR, etc. For GPUs
a typical instruction is often described as operating on a 32-bit word, so one
might think that n = 32; but the same instruction is issued to many threads,
effectively increasing n to 32 times the number of threads.

If one n-bit word can be viewed as n independent elements of F2, then k
n-bit words can be viewed as n independent elements of the vector space Fk

2 , for
example representing n independent elements of the field F2k on a suitable basis.
If an operation in F2k can be carried out with T (k) additions and multiplications
in F2 then the same operation can be carried out in parallel on n elements in
F2k with T (k) XOR instructions and AND instructions.

This technique is called bitslicing. It was introduced by Biham [10] in an
implementation of the Data Encryption Standard. The speedups that can be
achieved from bitslicing binary-field arithmetic on a modern CPU were demon-
strated by Bernstein in [4]. We decided to use bitslicing on a GPU as it allows
very efficient use of logical operations in implementing binary-field operations.
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The final cost of our optimized bitsliced multiplier turned out to be smaller than
a lower bound for the cost of a traditional non-bitsliced table-based multiplier.

The most obvious challenge in efficient bitsliced arithmetic is to optimize
T (k), the number of bit operations required for an operation in F2k . However,
the requirement to work on nk bits in parallel creates additional challenges that
are particularly troublesome for GPUs: an n-bit GPU instruction is efficient only
if n is very large (32 bits times ≥128 threads), but if n is very large then the
cost of accessing nk bits becomes a bottleneck.

The rest of this section reviews the techniques that produce the smallest
number of bit operations known for the ECC2K-130 iteration function. The
rest of this paper explains how we made the iteration function run quickly on
the GPU: Section 5 analyzes 131-bit polynomial multiplication, and Section 6
analyzes the complete iteration function.

4.4. Choice of basis. There is no irreducible trinomial of degree 131 in the
polynomial ring F2[z]. The standard representation of F2131 is as F2[z] modulo
an irreducible pentanomial, such as z131 + z13 + z2 + z + 1. Multiplication on
the basis 1, z, z2, . . . , z130 of F2[z]/(z

131 + z13 + z2 + z + 1) involves one 131-bit
polynomial multiplication and just 455 extra bit operations.

However, the ECC2K-130 iteration involves not only several multiplications
but also also many squarings, including m-squarings, making normal bases par-
ticularly attractive. A squaring in normal basis corresponds to a simple cyclic
shift of the coefficients. An m-squaring corresponds to a cyclic shift by m posi-
tions. Working with x in normal basis also removes the need to convert x from
pentanomial basis to normal basis.

The main problem with normal bases is the cost of multiplication. However,
F2131 has a type-II optimal normal basis, and Shokrollahi’s type-II multiplier [18]
(see also [14]) has a surprisingly small overhead above the cost of polynomial
multiplication. Bernstein and Lange [9] recently reduced this overhead further
and showed that combining the optimal normal basis with an optimal polynomial

basis achieves a significantly lower cost than a pentanomial basis for the ECC2K-
130 iteration.

Our final GPU implementation uses this multiplier, as described in Section 6.
Here we give a short summary of the mathematics necessary for understanding
the implementation. For full details see [9].

Field elements such as x and y are represented on the permuted optimal
normal basis

(

ζ+ζ−1, ζ2+ζ−2, ζ3+ζ−3, . . . , ζ131+ζ−131
)

of F2131 , where ζ ∈ F2262

is a primitive 263rd root of 1. Squaring is a permutation of coefficients in this
basis, although no longer a simple cyclic shift. Multiplication has four steps:

• Convert each input to the optimal polynomial basis
(

ζ+ζ−1, (ζ+ζ−1)2, (ζ+

ζ−1)3, . . . , (ζ + ζ−1)131
)

. A streamlined recursive conversion takes just 325
bit operations.

• Apply 131-bit polynomial multiplication, obtaining a product of the form
a2(ζ + ζ−1)2 + a3(ζ + ζ−1)3 + · · ·+ a131(ζ + ζ−1)131 + · · ·+ a262(ζ + ζ−1)262.
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• Apply a double-size inverse conversion, obtaining the same product as a
linear combination of ζ + ζ−1, ζ2 + ζ−2, ζ3 + ζ−3, . . . , ζ262 + ζ−262. This
transformation takes just 779 bit operations.

• Reduce the product to the original basis
(

ζ+ζ−1, ζ2+ζ−2, ζ3+ζ−3, . . . , ζ131+

ζ−131
)

using the identities ζ262 + ζ−262 = ζ + ζ−1, ζ261 + ζ−261 = ζ2 + ζ−2,
etc. This transformation takes just 130 bit operations.

We use the name multprep for the initial conversion of an input from permuted
optimal normal basis to optimal polynomial basis. We use the name ppn for the
remaining steps, taking two inputs in optimal polynomial basis and delivering
an output in normal basis.

Sometimes the output of a multiplication is used again as input to another
multiplication, and is not used for any squarings. In such cases Bernstein and
Lange keep the lower half of the polynomial product in polynomial-basis repre-
sentation and use the conversion routine only to compute the polynomial reduc-
tion, ending up in polynomial-basis representation and skipping a subsequent
multprep. We use the name ppp for this operation, taking two inputs in optimal
polynomial basis and delivering an output in optimal polynomial basis.

The costs of either type of field multiplication, ppn or ppp, are dominated
by the costs of the 131-bit polynomial multiplication. The next section opti-
mizes polynomial multiplication for the GPU, and Section 6 optimizes the entire
iteration function for the GPU.

5 Polynomial multiplication on the GPU

With optimal polynomial bases (see Section 4.4), each iteration involves slightly
more than five 131-bit polynomial multiplications and only about 10000 extra bit
operations. We are not aware of any 131-bit polynomial multiplier using fewer
than 11000 bit operations; in particular, Bernstein’s multiplier [4, Section 2] uses
11961 bit operations.

These figures show that polynomial multiplication consumes more than 80%
of the bit operations in each iteration. We therefore placed a high priority on
making multiplication run quickly on the GPU, preferably below 200 cycles in
a single core. This section explains how we achieved this goal.

5.1. The importance of avoiding DRAM. We began by exploring an em-
barrassingly vectorized approach: T threads in a core work on 32T independent
multiplication problems in bitsliced form. The 32T × 2 inputs are stored as 262
vectors of 32T bits, and the 32T outputs are stored as 261 vectors of 32T bits.

The main difficulty with this approach is that, even if the outputs are per-
fectly overlapped with the inputs, even if no additional storage is required, the
inputs cannot fit into SRAM. For T = 128 the inputs consume 134144 bytes,
while shared memory and registers together have only 81920 bytes. Reducing T
to 64 (and tolerating a limit of 50% ALU utilization) would fit the inputs into
67072 bytes, but would also make half of the registers inaccessible (since each
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thread can access at most 128 registers), reducing the total capacity of shared
memory and registers to 49152 bytes.

There is more than enough space in DRAM, even with very large T , but
DRAM throughput then becomes a serious bottleneck. A single pass through the
input vectors, followed by a single pass through the output vectors, keeps the
DRAM occupied for 523T cycles (i.e., more than 16 cycles per multiplication),
and any low-memory multiplication algorithm requires many such passes.

We implemented and optimized several multiplication algorithms and com-
plete iteration functions using this approach, but our best result using this ap-
proach was only 26 million iterations per second on a GTX 295. The remainder
of this section describes a faster approach.

5.2. How to fit into shared memory. The SIMD programming model of
GPUs highly relies on the exploitation of data-level parallelism. However, data-
level parallelism does not require having each thread work on a completely in-
dependent computation: parallelism is also available within computations. For
example, the addition of two 32-way-bitsliced field elements is nothing but a
sequence of 131 32-bit xor operations; it naturally contains 131-way data-level
parallelism. Similarly, there are many ways to break 131-bit binary-polynomial
multiplication into several smaller-degree polynomial multiplications that can be
carried out in parallel.

Threads cannot communicate through registers, so having several threads
cooperate on a single computation requires the active data for the computation
to fit into shared memory. On the other hand, registers have more space than
shared memory; during multiplication we use some registers as spill locations
for data not involved in the multiplication, reversing the traditional direction of
data spilling from registers to memory.

Our final software carries out 128 independent 131-bit multiplications (i.e.,
four 32-way bitsliced 131-bit multiplications) inside shared memory and regis-
ters, with no DRAM access. This means that each multiplication has to fit within
1024 bits of shared memory. This would not have been a problem for schoolbook
multiplication, but it was a rather tight fit for the fast Karatsuba-type multi-
plication algorithm that we use (see below); more simultaneous multiplications
would have meant compromises in the multiplication algorithm.

We decided to use 128 threads. This means that 32 threads are cooperating
on each of the four 32-way bitsliced 131-bit multiplications. We expected, and
ran experiments to confirm, that this would be enough threads to hide most
latencies in the most time-consuming parts of the iteration function, particu-
larly multiplication. Our 131-bit multiplication algorithm allows close to 32-way
parallelization, as discussed below, although the parallelization is not perfect.

We would have had fewer latency problems from 192 or 256 threads, but
the overall benefit is small and overwhelmed by increased parallelization re-
quirements within each multiplication. In the opposite direction, we could have
reduced the parallelization requirements by running 96 or 64 threads, but below
128 threads the GPU performance drops almost linearly.
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5.3. Vectorized 128-bit multiplication. Our main task is now to multiply
131-bit polynomials, at each step using using 32 parallel bit operations to the
maximum extent possible. We repeat the resulting algorithm on 128 independent
inputs to obtain what the code actually does with 128 threads: namely, 128
separate multiplications of 131-bit polynomials, stored in bitsliced form as 4 ·
131 32-bit words, using 128 parallel 32-bit operations to the maximum extent
possible.

First consider the simpler task of multiplying 128-bit polynomials. This can
efficiently be performed by applying three levels of Karatsuba expansion. Each
level uses 2n xor instructions to expand a 2n-bit multiplication into three n-bit
multiplications, and then 5n − 3 xor instructions to collect the results (with
Bernstein’s “refined Karatsuba” from [3, page 7] and [4]).

Three levels of Karatsuba result in 27 times 16-bit polynomial multiplica-
tions. The inputs to these multiplications occupy a total of 864 bits, consuming
most but not all of the 1024 bits of shared memory available to each 131-bit
multiplication. The code from [5] for a 16-bit polynomial multiplication can be
scheduled to fit into 67 registers. It is applied to the 27 multiplications in parallel,
leaving 5 threads idle out of 32. In total 27 · 4 = 108 16-bit polynomial multipli-
cations on 32-bit words are carried out by 108 threads in this subroutine leaving
20 threads idle. Each thread executes 413 instructions (350 bit operations and
63 load/store instructions).

The initial expansion can be parallelized trivially. Operations on all three
levels can be joined and performed together on blocks of 16 bits per operand
using 8 loads, 19 xor instructions, and 27 stores per thread.

Karatsuba collection is more work: On the highest level (level 3), each block
of 3 times 32-bit results (with leading coefficient zero) is combined into a 64-bit
intermediate result for level 2. This takes 5 loads (2 of these conditional), 3 xor
operations and 3 stores per thread on each of the 9 blocks. Level 2 operates on
blocks of 3 64-bit intermediate results leading to 3 128-bit blocks of intermediate
results for level 1. This needs 6 loads and 5 xor operations for each of the 3 blocks.
The 3 blocks of intermediate results of this step do not need to be written to
shared memory and remain in registers for the following final step on level 1.
Level 1 combines the remaining three blocks of 128 bits to the final 256-bit result
by 12 xor operations per thread.

5.4. Vectorized 131-bit multiplication. To multiply 131-bit polynomials, the
inputs are split into a 128-bit low part and a 3-bit high part. The 128-bit multi-
plications of the two low parts are handled by a 128-bit multiplier as described
above. The 3×3-bit product of the high parts and the two 3×128-bit mixed prod-
ucts can be handled in a straightforward way: the 3×3-bit multiplication can be
carried out almost for free by an otherwise idle 16-bit multiplication thread; the
3×128-bit multiplications can be implemented straightforwardly by schoolbook
multiplication.

However, one can save some of the additions to obtain the final result, and
further streamline the code, by distributing the computations as follows. The 5
most significant bits of the final result only depend on the 5 most significant bits
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of each input. Thus they can be obtained by computing the product of these
bits (using the 16-bit multiplier) and by cutting off the 4 least significant bits
of the 9 resulting bits. Now the 2 most significant bits of the results from the
3×128-bit multiplications do not need to be computed and summed up anymore;
the 128 least significant bits of the 3×128-bit multiplications can be obtained
each by 6 loads for the 3 highest bits of each input, 3 · 128 combined load-and
instructions per input, and 2 ·128 xor instructions (some of them masked for the
2 least significant bits).

Overall the multiplier uses 13087 bit operations, and about 40% of the ALU
cycles are spent on these bit operations rather than on loads, stores, address
calculations, and other overhead. An extra factor of about 1.1 is lost from 32-way
parallelization, since the 32 threads are not always all active. For comparison,
the Toom-type techniques from [5] use only 11961 bit operations, saving about
10%, but appear to be more difficult to parallelize.

6 ECC2K-130 iterations on the GPU

Recall that polynomial multiplication, the topic of the previous section, con-
sumes more than 80% of the bit operations in the ECC2K-130 computation.
This does not mean that the 20% overhead can be ignored! Imagine, for exam-
ple, that the polynomial-multiplication code is carrying out useful bit operations
in 40% of its cycles, while the remaining code fits much less smoothly into the
GPU and is carrying out useful bit operations in only 5% of its cycles. The total
time would then be triple the polynomial-multiplication time.

This section discusses several aspects of the overhead in the ECC2K-130
computation. Our main goal, as in the previous section, is to identify 32-way
parallelism in the bit operations inside each 131-bit operation. This is often
more challenging for the “overhead” operations than it is for multiplication, and
in some cases we change algorithms to improve parallelism. All of these opera-
tions work entirely in shared memory, except where global memory is explicitly
mentioned below.

6.1. Basis conversion (multprep). As explained in Section 4.4 we keep most
elements of F2131 in (permuted) normal basis. Before those elements are multi-
plied we convert them from normal basis to polynomial basis.

Consider an element a of F2131 in (permuted) normal basis:

a = a0(ζ + ζ−1) + a1(ζ
2 + ζ−2) + · · ·+ a130(ζ

131 + ζ−131).

On the first two levels of the basis conversion algorithm the following sequence
of operations is executed on bits a0, a62, a64, a126:

a62 ← a62 + a64, then

a0 ← a0 + a126, then

a64 ← a64 + a126, then

a0 ← a0 + a62.
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Meanwhile the same operations are performed on bits a1, a61, a65, a125; on bits
a2, a60, a66, a124; and so on through a30, a32, a94, a96. We assign these 31 groups
of bits to 32 threads, keeping almost all of the threads busy.

Merging levels 2 and 3 and levels 4 and 5 works in the same way. This
assignment keeps 24 out of 32 threads busy on levels 2 and 3, and 16 out of 32
threads busy on levels 4 and 5. This assignment of operations to threads also
avoids almost all memory-bank conflicts (see Section 2).

6.2. Multiplication with reduction (ppp and ppn). Recall that a ppp oper-
ation produces a product in polynomial basis, suitable for input to a subsequent
multiplication. A ppn operation produces a product in normal basis, suitable for
input to a squaring.

The main work in ppn, beyond polynomial multiplication, is a conversion of
the product from polynomial basis to normal basis. This conversion is almost
identical to multprep above, except that it is double-size and in reverse order.
The main work in ppp is a more complicated double-size conversion, with similar
parallelization.

6.3. Squaring and m-squaring (sq, msq and sqseq). Squaring (subroutine
sq) and m-squaring (subroutine msq) are simply permutations in normal basis,
costing 0 bit operations, but this does not mean that they cost 0 cycles.

The obvious method for 32 threads to permute 131 bits is for them to pick
up the first 32 bits, store them in the correct locations, pick up the next 32 bits,
store them in the correct locations, etc.; each thread performs 5 loads and 5
stores, with most of the threads idle for the final load and store. The addresses
determined by the permutation for different m-squarings can be kept in constant
memory. However, this approach triggers two GPU bottlenecks.

The first bottleneck is shared-memory bank throughput. Recall from Sec-
tion 2 that threads in the same half-warp cannot simultaneously store values
to the same memory bank. To almost completely eliminate this bottleneck we
wrote a greedy search tool that decides on a good order to pick up 131 bits,
trying to avoid all memory bank conflicts for both the loads and the stores. For
almost all values of m, including the most frequently used ones, this tool found
a conflict-free assignment. For two values of m the assignment involves a few
bank conflicts, but these values are used only in inversion, not in the main loop.

The second bottleneck is constant-cache throughput. If thread i loads from a
constant array at position i then the constant cache serves only one thread per
cycle. To eliminate this bottleneck we move these loads out of the main loop and
dedicate 10 registers per thread to hold 20 load and 20 store positions for the 4
most-often used m-squarings, packing 4 1-byte positions in one 32-bit register.
Unpacking the positions costs just one shift and one mask instruction for the
two middle bytes, a mask instruction for the low byte, and a shift instruction
for the high byte.

6.4. Hamming-weight computation (hamming and below). The Hamming-
weight computation (the hamming subroutine) receives a bitsliced input and com-
putes a bitsliced output. More specifically, the first 8 bits of the input value x
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are overwritten with bits h0, . . . , h7 such that the Hamming weight of the input
value x is

∑7

i=0
hi2

i. During the parallel computation of these 8 bits also other
bits of x are overwritten. The basic building block for the parallel computation
is a full adder, which has three input bits b1, b2, b3 and uses 5 bit operations to
compute 2 output bits c0, c1 such that b1 + b2 + b3 = c12 + c0. When the full
adder overwrites one of the input bits with c1 this bit gets a weight of 2. If three
such bits with a weight of 2 are input to a full adder, one of the output bits will
have a weight of 4. More generally: If three bits with a weight of 2i enter a full
adder, one output bit will have a weight of 2i, the other one a weight of 2i+1.
At the beginning of the computation all 131 bits have a weight of 20.

Because there are many input bits, it is easy to keep many threads active in
parallel. In the first addition round 32 threads perform 32 independent full-adder
operations, 96 bits with weight 20 are transformed into 32 bits with weight 20

and 32 bits with weight 21. This leaves 131− 96+ 32 = 67 bits of weight 20 and
32 bits of weight 21.

In the second round, 22 threads pick up 66 bits of weight 20 and produce 22
bits of weight 20 and 22 bits of weight 21. At the same time 10 other threads
pick up 30 bits of weight 21 and produce 10 bits of weight 21 and 10 bits of
weight 22. This leaves 67− 66+22 = 23 bits of weight 20, 32− 30+22+10 = 34
bits of weight 21, and 10 bits of weight 22.

In the third round 7 threads perform full-adder operations on 21 input bits
with weight 20, 11 threads perform full-adder operations on 33 input bits of
weight 21, and 3 threads perform full-adder operations on 9 input bits of weight
22.

This parallel computation needs 13 rounds to compute the bits h0, . . . , h7, i.e.
8 bits with weight 20, . . . , 27. The implementation actually uses a somewhat less
parallel approach with 21 rounds, two of these rounds being half-adder operations
which receive only 2 input bits and take only 2 bit operations. This has the
benefit of simplifying computation of the input positions as a function of the
thread ID.

Once the Hamming weight is computed the subroutine below tests whether
the weight is below 34, i.e., whether the point is distinguished.

6.5. Kernel-launch overhead, register spills, etc. GPU code is organized
into kernels called from the CPU. Calling (launching) a kernel takes several
microseconds on top of any time needed to copy data between global memory and
the CPU. To eliminate these costs we run a single kernel for several seconds. The
kernel consists of a loop around a complete iteration; it performs the iteration
repeatedly without contacting the CPU. Any distinguished points are masked
out of subsequent updates; distinguished points are rare, so negligible time is
lost computing unused updates.

We stream a batch of iterations in a simple way between global memory and
shared memory; this involves a small number of global-memory copies in each
iteration. See Section 4.2 for further discussion of batching. We avoid spilling
any additional data to DRAM; in particular, we avoid all use of local memory.
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All of this sounds straightforward but in fact required completely redesign-
ing our programming environment. To explain this we briefly review NVIDIA’s
standard programming environment and the problems that we encountered with
it.

Non-graphical applications for NVIDIA GPUs are usually programmed in
CUDA, a C-like language designed by NVIDIA. NVIDIA’s nvcc compiler trans-
lates a *.cu CUDA file into a *.ptx file in a somewhat machine-independent
language called PTX. NVIDIA’s ptxas compiler translates this *.ptx file into a
machine-specific binary *.cubin file. The *.cubin file is loaded onto the GPU
and run.

NVIDIA’s register allocators were designed to handle small kernels consisting
of hundreds of instructions; their memory-use scaling appears to be quadratic
with the kernel size, and their time scaling appears to be even worse. For medium-
size kernels we found NVIDIA’s compilers intolerably slow; even worse, the re-
sulting code involved frequent spills to local memory, dropping performance by
an order of magnitude. For larger kernels the compilers ran out of memory and
crashed.

We experimented with writing code in the PTX language, but this language
still requires compilation by ptxas; even though ptxas is labelled as an “assem-
bler” it turns out to be the culprit in NVIDIA’s register-allocation problems.
To control register allocation we eventually resorted to the reverse-engineered
assembler cudasm by van der Laan [19]. We fixed some bugs in cudasm and,
to improve usability, extended Bernstein’s qhasm programming language [2] to
support cudasm. We used qhasm on top of cudasm to implement the whole ker-
nel: more than 90000 instructions after macro processing for batch size 32. We
then designed our own assembly-level function-call convention and merged large
stretches of instructions into functions, reducing instruction-cache misses and
making the code size independent of the batch size. This allowed us to increase
the batch size to 128, making the per-iteration inversion cost negligible.

6.6. Overall results. Table 1 reports timings of all major building blocks in
our software. For example, in the multprep row of the table, the cycles/iteration
column is 52, indicating that multprep was responsible for 52 cycles in each
iteration. The calls/iteration column is 4.12, indicating that an average iteration
involved 4.12 calls to multprep; in fact, a batch of 128 iterations involved 527
calls to multprep. The cycles/call column is 12.

We collected these numbers by performing the following experiment. On a
typical pass through the main loop (specifically, the 10000th pass), inside each
thread, we checked the GTX 295’s hardware cycle half-counter before and after
each use of multprep, and tallied the cycles spent inside multprep. We repeated
this experiment 20 times, with 128 threads in each experiment, yielding a total
of 20 · 128 = 2560 cycle counts. We divided the cycle counts by 16384 because
each pass through the main loop performs 16384 = 128 · 128 iterations: our
implementation always handles 128 iterations in parallel, and on top of this we
chose a batch size of 128 as mentioned above. The average of these cycle counts
was 52. Table 1 also reports standard deviations: e.g., 52± 0.21.
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After measuring one operation we removed the cycle counters and placed
them around each occurrence of another operation. Only one operation is mea-
sured at a time. Cycle counting is not free, so the sum of times measured for
the individual operations is slightly more than the time measured for the entire
main loop. The operations shown in Table 1 are as follows:

• ppp multiplies two field elements in polynomial basis, producing output in
polynomial basis.
• ppn multiplies two field elements in polynomial basis, producing output in
normal basis.
• multprep converts from normal basis to polynomial basis.

• sqseq is the sequence of squarings used to compute x2
j

: a 3-squaring, a
conditional squaring, a conditional 2-squaring, and a conditional 4-squaring.
• msq is an m-squaring for any m ∈ {1, 2, 3, 4, 8, 16, 32, 65}.
• add adds two field elements.
• cadd is conditional field addition, i.e., addition masked by an extra bit.
• hamming computes Hamming weight.
• below checks for a distinguished point.
• readfen copies a field element from global memory to shared memory.
• writefen copies a field element the other way.
• readbit copies a bit from global memory to shared memory.
• writebit copies a bit the other way.
• copy copies a field element within shared memory.

There are some additional rows in the table showing total time spent in 131-bit
polynomial multiplication; total time spent in the 27xmult16 subroutine; total
time spent on global-memory access; and total time spent in inversion.

Each of the instructions in our software handles 128 iterations, but is also
followed by 128 threads, keeping the GPU core busy for at least 16 cycles. The
number of cycles spent per iteration is therefore at least 0.125 times the number
of instructions. For example, 27xmult16 occurs 5.04 times per iteration and
involves 413 instructions, accounting for 0.125 · 5.04 · 413 ≈ 260 cycles in each
iteration. The actual number of cycles spent on 27xmult16 is about 25% higher
than this; the gap is explained in part by instruction-cache misses and in part
by the delays for complex instructions discussed in Section 2.

The complete kernel uses 1164 cycles per iteration on average on a single
core on a GTX 295 graphics card. Therefore we achieve 63 million iterations per
second on a single card (60 cores, 1.242 GHz). The whole ECC2K-130 computa-
tion would be finished in two years (on average; the rho method is probabilistic)
using 534 GTX 295 graphics cards.
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