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Abstract. This paper introduces and analyzes an algorithm to compile
a series of exclusive-or operations. The compiled series is quite efficient,
almost always beating the so-called “Four Russians” approach, and uses
no temporary storage beyond its outputs. The algorithm is reasonably
fast and surprisingly simple.

1 Introduction

Consider the 4-bit-to-4-bit F2-linear function L : F4
2 → F4

2 defined by
L(x0, x1, x2, x3) = (x0⊕ x1⊕ x2⊕ x3, x0⊕ x2⊕ x3, x0⊕ x1⊕ x2, x0⊕ x3);
i.e.,
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Evaluating L directly from its definition takes 8 bit xors: xor x0 and
x1, then xor x2, then xor x3, obtaining (Lx)0; xor x0 and x2, then xor
x3, obtaining (Lx)1; xor x0 and x1, then xor x2, obtaining (Lx)2; finally
xor x0 and x3, obtaining (Lx)3. However, this computation has several
obvious redundancies, and a closer look shows that L can be computed
in just 4 xors:
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Similarly, if x0, x1, x2, x3 are (e.g.) 128-bit vector registers, then the 8
vector xors in (x0 ⊕ x1 ⊕ x2 ⊕ x3, x0 ⊕ x2 ⊕ x3, x0 ⊕ x1 ⊕ x2, x0 ⊕ x3) can
be replaced by 4 vector xors.

This paper presents an algorithm that, given the matrix for a p-bit-
to-q-bit F2-linear function L : Fp

2 → Fq
2, prints code to compute L. The

resulting code has several attractive features:

• Minimal input loads: The code reads each of the p input bits exactly
once, in order, except that it skips unused bits.
• Minimal storage: The code writes only to the q output bits and does

not need any extra storage.
• Low algebraic complexity: Heuristics for large p, q suggest that for

most functions L the code uses approximately pq/(lg q − lg lg q) xors.
Computer experiments support these heuristics.
• Low two-operand complexity: On two-operand platforms (platforms

that allow “set a to a⊕ b” but not “set a to b⊕ c”), the code requires
only p extra copies.

The compilation algorithm per se is reasonably fast: for each line of code
that it prints, it uses a logarithmic number of vector comparisons and one
vector xor. The algorithm is also surprisingly simple.

Applications. Bitsliced binary-finite-field arithmetic has recently set
software speed records for public-key cryptography; see [6]. The software
described in [6] spends most of its time in short hand-optimized linear
computations such as

vec h0 = h[i];
vec h12 = h[i + n] ^ h[i + 2 * n];
vec h34 = h[i + 3 * n] ^ h[i + 4 * n];
vec h56 = h[i + 5 * n] ^ h[i + 6 * n];
vec h7 = h[i + 7 * n];
vec x0 = u[i];
vec x12 = u[i + n] ^ u[i + 2 * n];
vec x3 = u[i + 3 * n];
vec h1 = h12 ^ h0 ^ u2[i];
vec b = h34 ^ h12 ^ u2[i + n];
vec c = h34 ^ h56 ^ u3[i];
vec h6 = h7 ^ h56 ^ u3[i + n];
h[i + n] = h1;
h[i + 2 * n] = b ^ h0 ^ x0;
h[i + 3 * n] = c ^ h1 ^ x12 ^ x0 ^ u4[i];



h[i + 4 * n] = h6 ^ b ^ x12 ^ x3 ^ u4[i + n];
h[i + 5 * n] = h7 ^ c ^ x3;
h[i + 6 * n] = h6;

where each ^ is a 128-bit vector xor. Unfortunately, hand optimization is
time-consuming even for small examples.

This paper’s algorithm can be used as a baseline compilation technique
for all F2-linear functions L. In many cases the algorithm is competitive
with the best hand-optimized code, saving time for the programmer. The
algorithm can also be applied to extremely large examples: for example,
I have used it to generate fast unrolled bitsliced normal-basis conversion
functions for the cryptanalytic computation described in [4], converting
a 131 × 131 basis-conversion matrix into a sequence of 3380 xors and
converting a 163× 163 matrix into a sequence of 5078 xors.

One should not think of this algorithm as magically discovering every
fast linear computation in the literature. For example, if ϕ ∈ F2[x] is a
polynomial of degree n, then the F2-linear function f 7→ f2 on F2[x]/ϕ,
with basis 1, x, . . . , xn−1, can be computed with n1+o(1) xors by fast-
multiplication techniques. For most choices of ϕ, feeding the same linear
function to this paper’s algorithm would use many more xors, at least for
large n.

2 The algorithm

An efficient multi-scalar-multiplication method appears in [8, Section 4]
with credit to Bos and Coster. To compute n0x0 + n1x1 + n2x2 + · · · ,
where n0 ≥ n1 ≥ n2 ≥ · · · ≥ 0, Bos and Coster recursively compute
(n0 − n1)x0 + n1(x0 + x1) + n2x2 + · · · . They use a more complicated
step in the case that n0 is much larger than n1, since subtracting n1 from
n0 is then ineffective at reducing n0, although this case rarely occurs for
random scalars.

A transposed version of the Bos–Coster method computes multiples
n0x, n1x, n2x, . . ., where n0 ≥ n1 ≥ n2 ≥ · · · , by recursively computing
(n0− n1)x, n1x, n2x, . . . and then adding output 1 into output 0. (Coster
gives credit for this algorithm to Brun; however, I do not see any evidence
that Brun considered the construction of addition chains.)

This paper’s algorithm has the same outline but uses xor instead of
subtraction: it computes several dot products L0x, L1x, L2x, . . ., where
L0 ≥ L1 ≥ L2 ≥ · · · , by recursively computing (L0 ⊕ L1)x, L1x, L2x, . . .
and then xoring output 1 into output 0. The case that L0 is much larger
than L1 (specifically, that it has its most significant bit at a different



position) is much more common here, and requires different treatment:
the algorithm reduces L0 by simply clearing its most significant bit.

Details. The input to the algorithm is a q × p matrix of bits, viewed
as a sequence of q rows L0, L1, . . . , Lq−1 ∈ Fp

2, where p and q are non-
negative integers. The p bits Lj [0], Lj [1], . . . , Lj [p − 1] of Lj specify the
linear function x0, x1, . . . , xp−1 7→ Lj [0]x0⊕Lj [1]x1⊕ · · · ⊕Lj [p− 1]xp−1;
the algorithm produces code that computes these q linear functions. The
algorithm works as follows:

• If q = 0: Stop. (There is nothing to compute.)
• If p = 0: Generate code that sets each output bit to 0. Stop.
• Find j ∈ {0, 1, . . . , q − 1} that maximizes Lj in reverse lexicographic

order (i.e., maximizes Lj [p−1]; secondarily maximizes Lj [p−2]; etc.).
• If Lj [p − 1] = 0: Define L′k as (Lk[0], . . . , Lk[p − 2]) for each k ∈
{0, 1, . . . , q − 1}. Recursively apply the algorithm to L′0, L

′
1, . . . , L

′
q−1.

Stop. (All Lk[p− 1] are 0; i.e., xp−1 is unused.)
• If q ≥ 2: Find i ∈ {0, 1, . . . , q − 1} − {j} that maximizes Li in reverse

lexicographic order. If Li[p − 1] = 1: Define L′k = Lk for each k ∈
{0, 1, . . . , q − 1}, except that L′j = Lj ⊕ Li. Recursively apply the
algorithm to L′0, L

′
1, . . . , L

′
q−1. Generate code that xors output bit i

into output bit j. Stop.
• Define L′k = Lk for each k ∈ {0, 1, . . . , q − 1}, except that L′j [p− 1] =

0. Recursively apply the algorithm to L′0, L
′
1, . . . , L

′
q−1. Generate code

that xors input bit p− 1 into output bit j. Stop.

The recursive steps in the algorithm can and should store L′ on top of L,
eliminating the space for L′ and almost all of the time to compute L′. If
the output code is generated in reverse order then the recursive steps can
be replaced by tail-recursive steps, eliminating all other storage. If the
rows, or pointers to the rows, are stored in a heap then identifying the
two largest rows takes only a logarithmic number of row comparisons.

The code generated by this algorithm starts with code to set each
output bit to 0. Except in the extreme case Lj = 0, the code to set output
bit j to 0 can and should be merged with a subsequent xor involving
output bit j, turning the xor into a copy. One can, as an option for three-
operand architectures, merge the copies with further xors, although in
some cases this is incompatible with reading each input exactly once.

A transposed version of the same algorithm writes each of the output
bits exactly once, in order, and otherwise works entirely within the p
input bits.



Example. Consider the four rows appearing at the start of this paper:
L0 = (1 1 1 1); L1 = (1 0 1 1); L2 = (1 1 1 0); L3 = (1 0 0 1).

The largest row in reverse lexicographic order is L0 = (1 1 1 1), and
the second largest is L1 = (1 0 1 1). The last instruction in the compiled
code is to xor output bit 1 into output bit 0. The goal of the previous
instructions is to compute L′0 = (0 1 0 0); L′1 = (1 0 1 1); L′2 = (1 1 1 0);
L′3 = (1 0 0 1). Here L′0 = L0 ⊕ L1.

The largest remaining row is L′1 = (1 0 1 1), followed by L′3 = (1 0 0 1).
The second-to-last instruction in the compiled code is to xor output bit
3 into output bit 1. The goal of the previous instructions is to compute
L′′0 = (0 1 0 0); L′′1 = (0 0 1 0); L′′2 = (1 1 1 0); L′′3 = (1 0 0 1). Here L′′1 =
L′1 ⊕ L′3.

The largest remaining row is L′′3 = (1 0 0 1), followed by L′′2 = (1 1 1 0).
The third-to-last instruction in the compiled code is to xor input bit 3
into output bit 3. The goal of the previous instructions is to compute
L′′′0 = (0 1 0); L′′′1 = (0 0 1); L′′′2 = (1 1 1); L′′′3 = (1 0 0).

The largest remaining row is L′′′2 = (1 1 1), followed by L′′′1 = (0 0 1).
The fourth-to-last instruction in the compiled code is to xor output bit
1 into output bit 2. Et cetera. The algorithm finishes with the following
sequence of instructions:

• Store 0 in output bit 0.
• Store 0 in output bit 1.
• Store 0 in output bit 2.
• Store 0 in output bit 3.
• Xor input bit 0 into output bit 3.
• Xor output bit 3 into output bit 2.
• Xor input bit 1 into output bit 0.
• Xor output bit 0 into output bit 2.
• Xor input bit 2 into output bit 1.
• Xor output bit 1 into output bit 2.
• Xor input bit 3 into output bit 3.
• Xor output bit 3 into output bit 1.
• Xor output bit 1 into output bit 0.

Eliminating 0 produces the following sequence of instructions:

• Copy input bit 0 into output bit 3.
• Copy output bit 3 into output bit 2.
• Copy input bit 1 into output bit 0.
• Xor output bit 0 into output bit 2.
• Copy input bit 2 into output bit 1.



• Xor output bit 1 into output bit 2.
• Xor input bit 3 into output bit 3.
• Xor output bit 3 into output bit 1.
• Xor output bit 1 into output bit 0.

Optional copy elimination produces the following sequence of three-
operand instructions:

• Xor input bit 1 and input bit 0, producing output bit 2.
• Xor input bit 2 into output bit 2.
• Xor input bit 3 to input bit 0, producing output bit 3.
• Xor output bit 3 to input bit 2, producing output bit 1.
• Xor output bit 1 to input bit 1, producing output bit 0.

3 Experimental results

A straightforward implementation of this paper’s algorithm, including
zero elimination (but not copy elimination), is available from http://
binary.cr.yp.to/linearmod2.html. Running

wget http://binary.cr.yp.to/linearmod2/sort1.cpp
g++ -o sort1 sort1.cpp
echo 1111101111101001 | ./sort1 4 4 > test.c
gcc -o test test.c
./test

applies the algorithm to the function L shown at the beginning of this
paper; creates a test program test.c for the resulting code; and prints
5, indicating that all 4 outputs were computed using a total of 5 xors.

More generally, ./sort1 p q reads q×p input bits, applies this paper’s
algorithm, and prints a test program that includes the resulting code. The
program packs each matrix row into four unsigned long long variables,
so it is limited to p ∈ {0, 1, 2, . . . , 256}, but it allows any q ∈ {1, 2, 3, . . .}
that fits into memory. The test program prints the algebraic complexity
of the code, i.e., the number of xors. The test program also checks that
the code computes the desired outputs; if this check fails, the program
prints 999999999.

Table 3.1 shows the average algebraic complexity, divided by pq, of
this code for 10000 random q× p matrices obtained from /dev/urandom,
the Linux cryptographic random number generator. Table 3.2 shows the
standard deviation of the algebraic complexity. For example, for (p, q) =
(64, 128), the two tables have entries 0.1922 and 0.0011 respectively; this

http://binary.cr.yp.to/linearmod2.html
http://binary.cr.yp.to/linearmod2.html


p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

q = 1 0.00000 0.12535 0.26980 0.37604 0.43864 0.47102 0.48548 0.49192 0.49588
q = 2 0.00000 0.10705 0.23604 0.34278 0.39923 0.42865 0.44310 0.45128 0.45476
q = 4 0.00000 0.08594 0.20378 0.30151 0.35778 0.38589 0.40016 0.40726 0.41060
q = 8 0.00000 0.05613 0.16508 0.25995 0.31452 0.34270 0.35636 0.36294 0.36655

q = 16 0.00000 0.03096 0.12111 0.21510 0.26961 0.29670 0.31020 0.31687 0.32030
q = 32 0.00000 0.01562 0.07705 0.17217 0.22477 0.25136 0.26477 0.27134 0.27468
q = 64 0.00000 0.00781 0.04239 0.13501 0.18583 0.21194 0.22499 0.23148 0.23475

q = 128 0.00000 0.00391 0.02148 0.10544 0.15372 0.17938 0.19223 0.19864 0.20186
q = 256 0.00000 0.00195 0.01074 0.07889 0.12824 0.15304 0.16575 0.17209 0.17527
q = 512 0.00000 0.00098 0.00537 0.05251 0.10657 0.13178 0.14431 0.15062 0.15377

q = 1024 0.00000 0.00049 0.00269 0.02962 0.08683 0.11403 0.12686 0.13315 0.13629
q = 2048 0.00000 0.00024 0.00134 0.01507 0.07298 0.10034 0.11248 0.11878 0.12192
q = 4096 0.00000 0.00012 0.00067 0.00754 0.06516 0.08859 0.10062 0.10683 0.10998

Table 3.1. Average number of xors for 10000 random q × p matrices. All xor chains
were produced by this paper’s algorithm with zero elimination.

algorithm evaluated 10000 random 64-bit-to-128-bit linear maps using
approximately 0.1922 · 128 · 64 ≈ 1575 xors on average, with standard
deviation approximately 0.0011 · 128 · 64 ≈ 9.

Heuristic analysis. To understand the performance of this algorithm
for q = 128, assume that exactly 64 of the 128 input rows involve the most
significant input bit xp−1. Performing 64 xors of adjacent rows typically
produces 6 or more clear bits in each new row:

• At most 1 of the new rows can start with xp−2: scanning through the
sorted rows produces only one transition from . . . , 0, 1 to . . . , 1, 1.
• At most 2 of the new rows can start with xp−3: one for the transition

from . . . , 0, 1, 1 to . . . , 1, 1, 1, and one for the transition from . . . , 0, 0, 1
to . . . , 1, 0, 1.
• At most 4 of the new rows can start with xp−4.
• At most 8 of the new rows can start with xp−5.
• At most 16 of the new rows can start with xp−6.
• The remaining 33 new rows must start with xp−7 or beyond.

At this point there are about 33 rows starting with xp−2, and the next 33
xors typically produce 5 or more clear bits. After a few more iterations
the algorithm settles down on a steady state consuming fewer than 30
xors for each bit.

For general q, the steady state appears to have approximately q/c rows
starting with the most significant bit, where c ∈ R satisfies 2c = q/c. The



p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

q = 1 0.00000 0.21671 0.22778 0.17718 0.12495 0.08752 0.06241 0.04426 0.03132
q = 2 0.00000 0.12370 0.13096 0.10243 0.07333 0.05152 0.03644 0.02538 0.01796
q = 4 0.00000 0.05794 0.07686 0.06064 0.04254 0.03003 0.02127 0.01500 0.01065
q = 8 0.00000 0.01891 0.04178 0.03413 0.02456 0.01708 0.01200 0.00846 0.00593

q = 16 0.00000 0.00300 0.01972 0.01845 0.01307 0.00914 0.00633 0.00447 0.00320
q = 32 0.00000 0.00016 0.00720 0.01008 0.00699 0.00486 0.00334 0.00234 0.00167
q = 64 0.00000 0.00000 0.00148 0.00610 0.00395 0.00266 0.00187 0.00131 0.00091

q = 128 0.00000 0.00000 0.00010 0.00399 0.00231 0.00157 0.00106 0.00073 0.00052
q = 256 0.00000 0.00000 0.00000 0.00241 0.00148 0.00092 0.00062 0.00043 0.00030
q = 512 0.00000 0.00000 0.00000 0.00107 0.00087 0.00056 0.00037 0.00026 0.00018

q = 1024 0.00000 0.00000 0.00000 0.00024 0.00043 0.00033 0.00023 0.00016 0.00011
q = 2048 0.00000 0.00000 0.00000 0.00002 0.00026 0.00022 0.00014 0.00010 0.00007
q = 4096 0.00000 0.00000 0.00000 0.00000 0.00019 0.00015 0.00009 0.00006 0.00004

Table 3.2. Standard deviation of the number of xors for the same q × p matrices
used in Table 3.1. All xor chains were produced by this paper’s algorithm with zero
elimination.

algorithm thus uses approximately pq/(lg q − lg lg q) xors. This heuristic
also suggests that the algorithm uses O(pq) vector comparisons; perhaps
this can be proven.

Modifications. One can completely sort the input rows, compute xors of
adjacent rows having the first bit set, sort the rows again (by sorting the
xors and merging with the other rows), handle all rows having the second
bit set, etc. This sorting does not significantly slow down the algorithm,
and might even speed up the algorithm, for example by allowing non-
comparison-based sorting algorithms such as radix sort.

Perhaps more importantly, this sorting allows several variations in
how the first-bit-set rows are handled:

• The algorithm chooses the second-largest row as a source to xor into
the largest row. One can instead choose, e.g., the row that produces
the smallest xor; sorting allows this row to be located more quickly.
There are many plausible heuristics here.
• The algorithm reduces the first-bit-set rows in order, ending with the

smallest of these rows. One can instead choose to reduce the rows
from both ends, finishing with an intermediate row, such as a row
that shares many leading bits with a non-first-bit-set row.
• One can dynamically choose an order to reduce the first-bit-set rows,

for example tracing a low-Hamming-distance spanning tree.

Note that some of these changes also increase parallelism.



One can also permute inputs at the start of, or during, the algorithm.
This produces different—and perhaps faster—computations of the same
outputs, at the expense of the feature that the inputs are read in order.
Perhaps there is a heuristic that chooses good permutations.

4 Comparison to input partitioning

“Input partitioning” is the following classic method to compute q sums
of subsequences of x0, x1, . . . , xp−1:

• Partition {0, 1, . . . , p− 1} into p/c parts of size c. This description
assumes for simplicity that p is a multiple of c.
• For each part, and for each nonempty subset S of the part, compute

the subset sum
∑

i∈S xi. This takes (p/c)(2c − c − 1) additions; note
that each new subset sum requires only one addition.
• Compute each of the output sums as a sum of (at worst) p/c subset

sums. This takes q(p/c− 1) additions.

A standard analysis chooses c ∈ lg q− lg lg q− lg log 2+o(1) and produces
a bound of pq(1+(1/ log 2+lg log 2+o(1))/ lg q)/(lg q− lg lg q) additions.
The total number of additions is therefore asymptotically (1+o(1))q2/ lg q
in the typical case p = q.

Input partitioning for vectors of Boolean truth values was introduced
by Lupanov in [11]. Obviously input partitioning also works for vectors
of integers, vectors of integers modulo 2, etc. Fifteen years later the
same construction appeared in [3, “Lemma (M. Kronrod)”] as a tool
for Boolean matrix multiplication. Input partitioning is often called the
“Four-Russians algorithm” by people who

• see that [3] was written by Arlazarov, Dinic, Kronrod, and Faradžev,
all of which sound like Russian names to the ignorant observer;
• have not actually read [3], and are thus unaware that the method is

credited to Kronrod alone; and
• are unaware of previous work such as [11].

See, e.g., [18], [12], [5], and [7].

Algorithm comparison. This paper’s algorithm produces xor chains
that, for p = q, have length (1 + o(1))q2/ lg q. Input partitioning also
produces chains of length (1 + o(1))q2/ lg q, but a closer look at the o(1)
suggests that this paper’s chains are shorter by a factor of nearly 1+1/ lg q.
See below for a detailed analysis of the illustrative case (p, q) = (64, 128).



Input partitioning also appears to be somewhat less register-friendly
than this paper’s algorithm. The number of subset sums computed is
typically on the scale of pq/(lg q)2, nearly quadratic in the total number
of inputs and outputs. One can xor each subset sum into all relevant
output registers immediately after computing the sum, but the active
sums still require several temporary registers.

Analysis for p = 64 and q = 128. The following analysis assumes that
input partitioning is combined with dead-expression removal: a subset
sum that is not actually used will not be computed. The number of subsets
computed is at least the number of subsets used in the outputs; it can
be larger if a subset unused in the outputs is used to compute another
subset.

Consider partitioning 64 inputs into 16 4-bit parts, and computing 128
outputs from xors of subsets of the parts. One expects each of the 128
outputs to involve 16(1−1/24) nonzero subsets on average, and therefore
to consume at least 16(1 − 1/24) − 1 xors on average. Each part has
24− 4− 1 subsets of size 2 or larger; each subset is needed in the outputs
with probability 1− (1− 1/24)128, and therefore consumes on average at
least 1 − (1 − 1/24)128 xors. The total algebraic complexity is at least
128(16(1− 1/24)− 1) + 16(24 − 4− 1)(1− (1− 1/24)128) ≈ 1967.95 xors
on average.

A better strategy is to partition 64 inputs into 10 6-bit parts and
1 4-bit part. The algebraic complexity is, by a similar analysis, at least
128(10(1− 1/26) + 1(1− 1/24)− 1) + 10(26 − 6− 1)(1− (1− 1/26)128) +
1(24 − 4− 1)(1− (1− 1/24)128) ≈ 1757.06 xors on average.

One can consider other strategies, including “fractional” possibilities
such as partitioning 64 inputs into 4 6-bit parts and 8 5-bit parts, but
none of these strategies seem to come close to the 1575 xors used by the
algorithm introduced in this paper. The gap is even larger on two-operand
architectures.

5 Comparison to greedy additive CSE

Input partitioning chooses a partition, and computes sums of subsets of
parts, without paying attention to the structure of the target sums. Dead-
expression removal eliminates unused subset sums but does not address
the underlying problem: namely, most of these subset sums are less useful
than other subset sums would have been.

Intuition suggests that one can do better by starting with the two-
input sum that is in fact most commonly used. By repeating this idea one



obtains an additive (i.e., commutative and associative) variant of greedy
common-subexpression elimination (CSE). The complete algorithm is as
follows:

• If each output involves at most one input, stop.
• Select the pair of inputs whose sum appears most frequently in the

outputs. If there is more than one such pair, choose the first.
• Generate code to compute the sum of this pair of inputs.
• Use this sum as an additional input; shorten the outputs accordingly.
• Repeat.

For example, consider again the problem of computing x0⊕x1⊕x2⊕
x3, x0⊕x2⊕x3, x0⊕x1⊕x2, x0⊕x3. This algorithm observes that x0⊕x2

is used three times, and that no other input xor is used more than three
times. It then computes x4 = x0 ⊕ x2 and recursively solves the problem
of computing x4 ⊕ x1 ⊕ x3, x4 ⊕ x3, x4 ⊕ x1, x0 ⊕ x3. Next the algorithm
computes x5 = x1 ⊕ x4 and recursively solves the problem of computing
x5⊕x3, x4⊕x3, x5, x0⊕x3. The algorithm continues in this way and ends
up using a total of 5 xors.

Paar in [14] illustrated this algorithm using another example: the 7×7
matrix 

1 0 0 1 1 1 1
1 1 0 1 0 0 0
1 1 1 0 1 0 0
1 1 1 1 0 1 0
1 1 1 1 1 0 1
0 1 1 1 1 1 0
0 0 1 1 1 1 1


for a constant-multiplication problem in a field of size 128. Paar presented
a 16-xor computation of this matrix obtained by greedy additive CSE.

Recall that, when the maximum frequency is achieved by several sums
simultaneously, greedy additive CSE makes an arbitrary choice of sum.
Paar considered a variant of greedy additive CSE that combinatorially
explores every choice, and as a result presented a 14-xor computation of
the same 7×7 matrix shown above. For comparison, this paper’s algorithm
also uses 14 xors for this matrix.

Even without this combinatorial exploration, greedy additive CSE
can be extremely time-consuming. Paar’s fastest algorithm takes q6+o(1)

vector operations for a typical q× q matrix: the number of inputs quickly
grows from q to q2+o(1), and the algorithm ends up considering q4+o(1)

input pairs for each of the q2+o(1) lines of code printed. On the other hand,



Fig. 5.1. Code produced by greedy additive CSE for a 41×41 basis-conversion matrix.
Each white node has one edge leading down to it and copies the edge’s source. Each
black node has two edges leading down to it and computes the xor of the two sources.
Each green node is an input.



Fig. 5.2. Code produced by this paper’s algorithm for a 41×41 basis-conversion matrix.
Each white node has one edge leading down to it and copies the edge’s source. Each
black node has two edges leading down to it and computes the xor of the two sources.
Each green node is an input.



one can reduce the exponent of q in greedy additive CSE by maintaining
a database of active input-pair frequencies and updating the database
whenever an output is shortened.

Algorithm comparison. Experiments indicate that greedy additive
CSE has one advantage over this paper’s algorithm: the output code has,
on average, lower algebraic complexity. However, greedy additive CSE
also has some disadvantages: the code uses much more storage, and has
much higher two-operand complexity.

Figures 5.1 and 5.2 visually illustrate these effects for a 41×41 matrix,
specifically the matrix converting F2[x]/(x41 + x3 + 1) from polynomial
basis 1, x, x2, . . . , x40 to normal basis x+1, (x+1)2, . . . , (x+1)2

40
. Greedy

additive CSE generates the 309 xors and 132 copies shown in Figure 5.1,
fitting into 117 registers indicated by vertical lines. This paper’s algorithm
generates the 363 xors and 41 copies shown in Figure 5.2, fitting into 41
registers indicated by vertical lines.

6 Other algorithms

Recall that input partitioning has algebraic complexity asymptotically
(1 + o(1))q2/ lg q. Combining input partitioning with “output clumping”
reduces the algebraic complexity to (1 + o(1))q2/ lg(q2), saving a factor
of 2 + o(1).

Output clumping was introduced by Nechiporuk and pushed much
further by Pippenger; see [15], [16], and [17]. Pippenger’s addition chains
are, for a wide variety of problems, within a factor of 1 + o(1) of the best
possible solutions, as measured by algebraic complexity. See generally [16,
Section 2] and [17, Section 2].

The asymptotics show that Pippenger’s chains are shorter than this
paper’s chains for sufficiently large p, q. However, preliminary experiments
indicate that this paper’s xor chains are shorter than Pippenger’s addition
chains for p, q ≤ 256. Perhaps there is some way to combine the ideas of
these algorithms.

Trifonov in [19] states that input partitioning produces addition chains
of length 2q2/ lg q (“2k2/ log2 k summations”), and that a much slower—
but apparently still usable—algorithm finds “considerably smaller” xor
chains. Input-partitioning chains actually have length (1 + o(1))q2/ lg q,
so the comparison in [19] is clearly erroneous; it is nevertheless possible
that the algorithm of [19] has some merit.
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