
THE DENOTATIONAL SEMANTICS OF HORN CLAUSES
AS A PRODUCTION SYSTEM

J-L. Lassez and M. Maher

Dept. of Computer Science
University of Melbourne

Parkville, Victoria, 3052
Australia.

ABSTRACT

We show how one of Nilsson's tenets on rule-based
production systems, when applied to Horn clause
programs, leads to a denotational semantics. This
formalism, in turn provides a striking illustra-
tion of a second Nilsson tenet.

I PRELIMINARIES

The three properties of a denotational seman-
tics CMcGettrick, 1980; Tennent 1981) that we con-
sider here are the following:

1. It is a functional semantics, that is the
meaning of a segment of program S is a function
denoted BSII over a set of states.

2. The definitions of these semantic functions
are structured in such a way that the meaning of
any composite phrase is expressed in terms of the
meanings of its immediate constituents. For exam-
ple, in many conventional programming languages

as, ;s2n = as2n0as,n.

3. The function assigned to a recursive defini-
tion is defined as the Least fixedpoint of a sui-
table operator.

We will consider here two of Nilsson's tenets
from his "Principles of Artificial Intelligence"
(Nilsson, 1982). The first tenet is fundamental
for our purpose, allowing us to define a Horn
clause program as consisting only of a set of
rules, the facts becoming the input.

"Wffs representing assertional knowledge
about the problem are separated into two
categories: rules and facts. The rules
consist of those assertions given in
implicational form. Typically they
express qeneral knowledge about a parti-
cular subject area and are used as pro-
duction rules. The facts are the asser-
tions that are not expressed as implica-
tions. Typically they represent specific
knowledge relevant to a particular
case.”

* This research supported by the Australian Compu-
ter Research Board

The second
decomposi tion:

tenet links commutativity and

"Under certain conditions the order in
which a set of applicable rules is
applied to a database is unimportant.
When these conditions are satisfied, a
production system improves its effi-
ciency by avoiding needless expansion of
redundant solution paths." Such condi-
tions may be commutativity or decomposa-
bility. Furthermore, Nilsson shows that
in some cases there are relationships
between commutative production systems
and decomposable ones.

The concept of decomposition that will be
used here is the splitting of the set of rules
(instead of Nilsson's splitting of the initial
database>, in such a way that the two resulting
programs can be run separately.

II DENOTATIONAL SEMANTICS OF HORN CLAUSES

Horn clause programs, which form the theore-
tical basis for PROLOG programs (Kowalski, 19791,
can be defined as a finite set of definite
clauses.

A definite clause is of the form

A + B,,...,B n

where A, B,,,
n > 0.

Bn are atomic formulae and where

Example:

pathCA,B) +
pathCB,C) +
pathCD,E) C
pathCx,y) t path(y,x)
pathCx,z) + path(x,y>, pathCy,z)

The usual semantics (van Emden and Kowalski,
1976) of this program is given as a set: the set
of all paths in the graph which is defined by the
first three clauses. However it is clear that the
nature of these three clauses differs from that of
the remaining two - the latter express general
properties (symmetry and transitivity> whereas the
former specify one particular graph. Hence it is

229

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved.

natural to separate the two types of clauses: the
rules (those clauses in implicational form) and
the others which represent the initial database of
knowledge. In the remainder of this paper we con-
sider a program to be the conjunction of rules in
a set R, which takes as input an initial database.

To a set R of rules we associate a function
[fRll which maps a set of facts into the set of
facts which can be immediately deduced from the
first set by a single application of a rule in R.
Thus

A E ITRD(I> iff
there exists a clause B. f B,,...,B, in R

and a substitution 8 such that A = Bo6 and
{B+..,B,~} G I.

Informally the semantics of the program P is
the function IfPll which maps an initial database I
into the set of all facts which can be deduced
from this database by repeated application of the
rules in R. So we have

am(I) = J CERll+Id)kCI) (*I
k=O

where Id is the identity function and Cf+g)(X) =
f(X) u g(X). For simplicity of expression we will
write this as

aPD(I) = CaRR+Id)WCI>

Equivalently, CPII can be defined as the least fix-
edpoint of the functional T by the following pro-
position (Lassez and Maher, 1983).

Proposition:

IfPB is the least fixedpoint of the operator T
where r(f) = ERll o f + Id

It is clear that properties 1 and 3 of deno-
tational semantics are satisfied by this defini-
tion. The second property, which gives the seman-
tics of the whole program in terms of the seman-
tics of its components (in this case rules), is
given by the following theorem. This theorem,
which is a variant of a theorem of (Tarski, 1955>,
is proved in (Lassez and Maher, 1983). Let
R,,---t Rn be the individual rules of R with the

corresponding programs P,,...,P,.

1: Theorem

aPn = a f?, A ._. h Rn n = (aP,n 0 . . . 0 aPpw

= ((CR,D+IdJW o ._- o UCRnll+Id)U)W

I t can be shown (Lassez and Maher, 1983) that
these definitions and results ar e compa tible with

the semantics of (van Emden and Kowalski, 1976).
If the R.'s represent sets of rules, rather than
individua I rules, then this theorem is still
valid, provided every rule in R is contained in
some Ri.

In (*> and in (van Emden and Kowalski, 1976)
the rules are applied in parallel to the database.
This parallelism is not required by the informal
semantics. Theorem '1 shows that we can generate
the same set of facts by applying the rules in a
completely different way. In fact Theorem 1 can be
generalized to show that the order of application
of the rules is irrelevant, provided a condition
of fairness is met, which corresponds more closely
to the informal semantics (Lassez and Maher,
1983).

III COMMUTATIVITY AND DECOMPOSITION

The following theorem establishes that if the
order of application of the two (not necessarily
disjoint) sets of rules R,, and R, does not matter

v
they can even be applie d in pat-al lel - then
ogram P can be d ivided into two subprograms

the

p1

and P 2 such that am = EPln + ap,n. In this case
L

SLD reso lution (Apt and van
used in parallel for P,, and

Emden
P 3fl L

, 198ZJ can be
the two search

spaces involved being in general far smaller than
the whole search space for P, the construction of
which necessitates combinations of rules from both
programs.

Theorem 2- - --

If CER,lI+Id) o (ER211+ Id) = CER$l+Id) o (ER,,lI+Id)

= IIRD + Id

then aPD = ltP14 + BP,4 i

If we consider closures of rules (i.e. lIP,lI

and IfP211 instead of ER,ll and then we have a

condition which is both
for P to be decomposable

necessary and sufficient

Theorem 3:

am = ap,n + ap2n iff

ap,n 0 ap,n = aP2n o arp = ayn t ap2n L

These theorems are related to classical
results of Ore on closure operators. The proofs

230

can be found in (Lassez and Maher, 1983). REFERENCES

Examples:

Consider R = (N(x) + N(S(x)),
N(S(x)) + N(x) }

where the Herbrand Base HB is (NC S"(O)) :
n=O,l ,... } We call S the successor function. One
verifies easily that CltR,D+Id) o CCR23+Id) =

C6R2D+Id> o CBR,D+Id) = CRDtId. Therefore one can

break the connection between the two rules and
perform SLD resolution on each of them separately.
That is for a given A E HB we look simultaneously
in parallel for successors only and for predeces-
sors only. Without this split, SLD resolution
would search alternatively for predecessors and
successors creating a search space "exponentially*'
larger than the two preceding ones.

The hypo
that R 1 and

theses of the theorems do not require
R2 be disjoint sets of rules as we

show in the next example. A database on military
personnel is processed by the following program P.
The data is of the type: CCX,Y) (that is X is in
the same company as Y), AttCX,B052) (X sleeps in
barrack 0521, Att(X,C.SMITH) (X’s commanding offi-
cer is Captain Smith), . . . Each attribute is
characteristic of a company and associated to all
its members.

C(x,y> + C(y,x)
C(x,z) f C(x,yl, C(y,z)
C(x,y) 6 AttCx,c), Att(y,c)
AttCx,c) + C(x,y), AttCy,c)

This can be divided into two separate pro-
grams which, this time, have overlapping sets of
rules. P 1 is

C(x,y) + C(y,xl
C(x,z) + C(x,y), C(y,z)
AttCx,c) + CCx,y), Att(y,c)

and P 2 is

C(x,y) + C(y,x)
C(x,y) + AttCx,c), AttCy,c)
Att(x,c) + C(x,y), AttCy,c)

It can be verified that EPII = BPID + EP2D.

Cl1 Apt, K. R. and M. H. van Emden, "Contribu-
tions to the theory of logic programming*'
J ACM 29:3 (1982) 841-862. -

C21 van Emden, M. H. and R. A. Kowalski, "The
semantics of predicate logic as a programming
language" J-ACM 23:4 (1976) 733-742.

C31 Kowalski, R. A. Loqic for Problem Solving
North-Holland, 1979.

C41 Lassez, J-L. and M. Maher, *‘Closures and
fairness in the semantics of programming
logic” Theor. Comput. Sci. (to appear). Also
Technical Report 83/3, Dept. of Computer
Science, University of Melbourne, 1983.

C51 McGettrick, A. D. The Definition of Proqram-
min q Lanquaqes. Cambridge University Press,
1980.

C61 Nilsson, N. J. Principles of Artificial
Intelligence. Springer Verlag, 1982.

C71 Tarski, A. “A lattice-theoretical fixpoint
theorem and its applications” Pacific J.
Math 5 (19551, 285-309. d

C81 Tennent, R. D. Principles of Proqramming
Lanquaqes. Prentice-Hall, 1981.

We now have two simpler programs which can be exe-
cuted in parallel. That portion of the search
space caused by the the unnecessary interactions
between the second and third rules of P (via the
remainder of the program) has been discarded.

231

