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ABSTRACT 

We show how one of Nilsson's tenets on rule-based 
production systems, when applied to Horn clause 
programs, leads to a denotational semantics. This 
formalism, in turn provides a striking illustra- 
tion of a second Nilsson tenet. 

I PRELIMINARIES 

The three properties of a denotational seman- 
tics CMcGettrick, 1980; Tennent 1981) that we con- 
sider here are the following: 

1. It is a functional semantics, that is the 
meaning of a segment of program S is a function 
denoted BSII over a set of states. 

2. The definitions of these semantic functions 
are structured in such a way that the meaning of 
any composite phrase is expressed in terms of the 
meanings of its immediate constituents. For exam- 
ple, in many conventional programming languages 

as, ;s2n = as2n0as,n. 

3. The function assigned to a recursive defini- 
tion is defined as the Least fixedpoint of a sui- 
table operator. 

We will consider here two of Nilsson's tenets 
from his "Principles of Artificial Intelligence" 
(Nilsson, 1982). The first tenet is fundamental 
for our purpose, allowing us to define a Horn 
clause program as consisting only of a set of 
rules, the facts becoming the input. 

"Wffs representing assertional knowledge 
about the problem are separated into two 
categories: rules and facts. The rules 
consist of those assertions given in 
implicational form. Typically they 
express qeneral knowledge about a parti- 
cular subject area and are used as pro- 
duction rules. The facts are the asser- 
tions that are not expressed as implica- 
tions. Typically they represent specific 
knowledge relevant to a particular 
case.” 

* This research supported by the Australian Compu- 
ter Research Board 

The second 
decomposi tion: 

tenet links commutativity and 

"Under certain conditions the order in 
which a set of applicable rules is 
applied to a database is unimportant. 
When these conditions are satisfied, a 
production system improves its effi- 
ciency by avoiding needless expansion of 
redundant solution paths." Such condi- 
tions may be commutativity or decomposa- 
bility. Furthermore, Nilsson shows that 
in some cases there are relationships 
between commutative production systems 
and decomposable ones. 

The concept of decomposition that will be 
used here is the splitting of the set of rules 
(instead of Nilsson's splitting of the initial 
database>, in such a way that the two resulting 
programs can be run separately. 

II DENOTATIONAL SEMANTICS OF HORN CLAUSES 

Horn clause programs, which form the theore- 
tical basis for PROLOG programs (Kowalski, 19791, 
can be defined as a finite set of definite 
clauses. 

A definite clause is of the form 

A + B,,...,B n 

where A, B,,, . . . . 
n > 0. 

Bn are atomic formulae and where 

Example: 

pathCA,B) + 
pathCB,C) + 
pathCD,E) C 
pathCx,y) t path(y,x) 
pathCx,z) + path(x,y>, pathCy,z) 

The usual semantics (van Emden and Kowalski, 
1976) of this program is given as a set: the set 
of all paths in the graph which is defined by the 
first three clauses. However it is clear that the 
nature of these three clauses differs from that of 
the remaining two - the latter express general 
properties (symmetry and transitivity> whereas the 
former specify one particular graph. Hence it is 
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natural to separate the two types of clauses: the 
rules (those clauses in implicational form) and 
the others which represent the initial database of 
knowledge. In the remainder of this paper we con- 
sider a program to be the conjunction of rules in 
a set R, which takes as input an initial database. 

To a set R of rules we associate a function 
[fRll which maps a set of facts into the set of 
facts which can be immediately deduced from the 
first set by a single application of a rule in R. 
Thus 

A E ITRD(I> iff 
there exists a clause B. f B,,...,B, in R 

and a substitution 8 such that A = Bo6 and 
{B+..,B,~} G I. 

Informally the semantics of the program P is 
the function IfPll which maps an initial database I 
into the set of all facts which can be deduced 
from this database by repeated application of the 
rules in R. So we have 

am(I) = J CERll+Id)kCI) (*I 
k=O 

where Id is the identity function and Cf+g)(X) = 
f(X) u g(X). For simplicity of expression we will 
write this as 

aPD(I) = CaRR+Id)WCI> 

Equivalently, CPII can be defined as the least fix- 
edpoint of the functional T by the following pro- 
position (Lassez and Maher, 1983). 

Proposition: 

IfPB is the least fixedpoint of the operator T 
where r(f) = ERll o f + Id 

It is clear that properties 1 and 3 of deno- 
tational semantics are satisfied by this defini- 
tion. The second property, which gives the seman- 
tics of the whole program in terms of the seman- 
tics of its components (in this case rules), is 
given by the following theorem. This theorem, 
which is a variant of a theorem of (Tarski, 1955>, 
is proved in (Lassez and Maher, 1983). Let 
R,,---t Rn be the individual rules of R with the 

corresponding programs P,,...,P,. 

1: Theorem 

aPn = a f?, A ._. h Rn n = (aP,n 0 . . . 0 aPpw 

= ((CR,D+IdJW o ._- o UCRnll+Id)U)W 

I t can be shown (Lassez and Maher, 1983) that 
these definitions and results ar e compa tible with 

the semantics of (van Emden and Kowalski, 1976). 
If the R.'s represent sets of rules, rather than 
individua I rules, then this theorem is still 
valid, provided every rule in R is contained in 
some Ri. 

In (*> and in (van Emden and Kowalski, 1976) 
the rules are applied in parallel to the database. 
This parallelism is not required by the informal 
semantics. Theorem '1 shows that we can generate 
the same set of facts by applying the rules in a 
completely different way. In fact Theorem 1 can be 
generalized to show that the order of application 
of the rules is irrelevant, provided a condition 
of fairness is met, which corresponds more closely 
to the informal semantics (Lassez and Maher, 
1983). 

III COMMUTATIVITY AND DECOMPOSITION 

The following theorem establishes that if the 
order of application of the two (not necessarily 
disjoint) sets of rules R,, and R, does not matter 

v 
they can even be applie d in pat-al lel - then 
ogram P can be d ivided into two subprograms 

the 

p1 

and P 2 such that am = EPln + ap,n. In this case 
L 

SLD reso lution (Apt and van 
used in parallel for P,, and 

Emden 
P 3fl L 

, 198ZJ can be 
the two search 

spaces involved being in general far smaller than 
the whole search space for P, the construction of 
which necessitates combinations of rules from both 
programs. 

Theorem 2- - -- 

If CER,lI+Id) o (ER211+ Id) = CER$l+Id) o (ER,,lI+Id) 

= IIRD + Id 

then aPD = ltP14 + BP,4 i 

If we consider closures of rules (i.e. lIP,lI 

and IfP211 instead of ER,ll and then we have a 

condition which is both 
for P to be decomposable 

necessary and sufficient 

Theorem 3: 

am = ap,n + ap2n iff 

ap,n 0 ap,n = aP2n o arp = ayn t ap2n L 

These theorems are related to classical 
results of Ore on closure operators. The proofs 
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can be found in (Lassez and Maher, 1983). REFERENCES 

Examples: 

Consider R = ( N(x) + N(S(x)), 
N(S(x)) + N(x) } 

where the Herbrand Base HB is ( NC S"(O) ) : 
n=O,l ,... } We call S the successor function. One 
verifies easily that CltR,D+Id) o CCR23+Id) = 

C6R2D+Id> o CBR,D+Id) = CRDtId. Therefore one can 

break the connection between the two rules and 
perform SLD resolution on each of them separately. 
That is for a given A E HB we look simultaneously 
in parallel for successors only and for predeces- 
sors only. Without this split, SLD resolution 
would search alternatively for predecessors and 
successors creating a search space "exponentially*' 
larger than the two preceding ones. 

The hypo 
that R 1 and 

theses of the theorems do not require 
R2 be disjoint sets of rules as we 

show in the next example. A database on military 
personnel is processed by the following program P. 
The data is of the type: CCX,Y) (that is X is in 
the same company as Y), AttCX,B052) (X sleeps in 
barrack 0521, Att(X,C.SMITH) (X’s commanding offi- 
cer is Captain Smith), . . . Each attribute is 
characteristic of a company and associated to all 
its members. 

C(x,y> + C(y,x) 
C(x,z) f C(x,yl, C(y,z) 
C(x,y) 6 AttCx,c), Att(y,c) 
AttCx,c) + C(x,y), AttCy,c) 

This can be divided into two separate pro- 
grams which, this time, have overlapping sets of 
rules. P 1 is 

C(x,y) + C(y,xl 
C(x,z) + C(x,y), C(y,z) 
AttCx,c) + CCx,y), Att(y,c) 

and P 2 is 

C(x,y) + C(y,x) 
C(x,y) + AttCx,c), AttCy,c) 
Att(x,c) + C(x,y), AttCy,c) 

It can be verified that EPII = BPID + EP2D. 
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