
Modeling Planning Tasks

Leliane Barros
Laboratory of Integrated Systems

University of S~o Paulo
Av. Luciano Guaiberto 158 tray. 3

05508-900 S~o Paulo, Brazil
e-mail: leliane@lsi.usp.br

Andr6 Valente
Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292, USA
e-maih valente@isi.edu

Richard Benjamins
University of Amsterdam

Dept. of Social Science Informatics
Roetersstraat 15

1018 WB Amsterdam, Netherlands
e-maih richard@swi.psy.uva.nl

Abstract

The analysis of planning systems in terms of the dif-
ferent algorithms they use needs to be complemented
by a study of how these systems represent and use
available knowledge -- in other words, of their prob-
/era solving methods. The goals of such knowledge.level
analysis are complementary to that of algorithms: in-
stead of finding which algorithm is the most efficient,
we can find the role of each piece of knowledge in
the system. This is an essential aspect in finding out
how to engineer a planning system and obtain a de-
sired performance in an application and its engineer-
ing. One analysis of this type has been made in (Va-
lente 1995). However, that analysis was incomplete,
because it concentrated on the organization of the do-
main knowledge used by the system. Another equally
important aspect is the way this knowledge is used
in the planning process. These two are complemen-
tary aspects in the description of a problem-solving
method. In this paper, we will depart from and com-
plement Valente’s analysis by providing a more de-
tal]ed discussion on planning tasks, providing a gen-
eral, high-level task. decomposition for planning.

Keywords: classical planning, comparison of plan-
ning problem-solving methods, knowledge-level anal-
ysis

Introduction

There is a large amount of research in the planning
community on the design and analysis of planning al-
gorithms, with particular emphasis on their efficiency.
This has been the main axis used to study and compare
planning systems. Lately, several important results
have been achieved in this direction (Minton, Bresina,
& Drummond 1994; Kambhampati, Knoblock, & Yang
1995). Despite the importance of these efforts, there
are, however, other aspects of planning systems which
must be taken care of, especially if we want to bridge
the gap between planning theory and applications.
Sometimes the key features that make a planning ap-
plication successful have less (if anything) to do with

the power of its algorithm and more with less stud-
ied features such as the adequacy of planning methods
to domain features or still to the expressiveness of the
language used to represent knowledge about the do-
main and the plans. For instance, (Drummond 1994)
claimed that, while most of the literature on the anal-
ysis of planning algorithms has concentrated on pre-
condition achievement planning, the most important
capabilities of some well-known successful applications
(based on e.g. sIPg (Wilkins 1988)) were the capabil-
ities to (i) represent hierarchical operators (i.e.
ing some sort of HTN planning), (ii) allow the user
document a plan’s causal structure (e.g. by specify-
ing sub-plans or skeletal plans), and (iii) represent
use plan resources. Drummond pointed out that these
characteristics, commonly connected to the definition
of sub-plans or skeletal plans, in practice, hardwired
most of the work which was supposed to be done by
the precondition achievement techniques.

This seems to indicate that there is a gap in the
analysis of planning systems. Algorithms and their ef-
ficiency must surely be a central concern, but if we are
to engineer successful applications there must be also
a more abstract analysis that highlights the capabili-
ties of the system and the way it represents and uses
knowledge, away from the details of how it is to be
implemented. Such analysis is not only useful for ap-
plicatious, but it may provide an interesting perspec-
tive in analyzing and comparing different systems. We
claim that a valuable way to do such high-level anai-
ysis is to study how these systems represent and use
available knowledge to solve the problem -- in other
words, what problem-sobJing methods they use. The
goals of such knowledge-level analysis are complemen-
tary to that of algorithms: instead of finding which
algorithm is the most efficient, we can find what is the
role of each piece of knowledge in the system, which
is an essential aspect in finding out how to engineer a
planning system and obtain a desired performance in
an application and its engineering.

Barros 11

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

There are several efforts in what we regard as a
knowledge-level analysis of planning. For example, a
large part of the research in formal models of plan-
ning can be seen in this perspective. Further, efforts
in the specification of ontologies of planning (e.g. the
KRSL standardization effort 1) have the same flavor.
This paper expands on and complements the analy-
sis of conceptual models of planning methods made by
(Valente 1995). His work is based on the representa-
tion of problem-solving methods in conceptual terms,
in the tradition of KADS (Schreiber 1992). Valente
focused his analysis on what types of domain knowl-
edge are used in planning systems, and how this knowl-
edge is structured. However, another equally impor-
tant aspect which was only briefly discussed in (Va-
lente 1995) is the way this knowledge is used in the
planning process. These two are complementary as-
pects in the description of a problem-solving method
k respectively the domain and task knowledge. In

this paper, we extend this work by providing a more
detailed discussion on models of planning tasks. We
provide a general, high-level task decomposition for
planning, and show how different planning systems (i)
instantiate this decomposition by executing its steps
using different methods, and (it) impose different con-
trol structures to control the inferencing process. It is
important to note that we maintain the same focus of
(Valente 1995) in that we are not modeling all possible
types of planning systems (e.g. re-planning, planning
agents, reactive planning systems), but only systems
that elaborate a plan to achieve a number of goals (or
a final state) -- this is what we mean by "planning"
in the remainder of this article.

Ingredients of a Task Analysis

Approaches to knowledge-level analysis and model-
ing include Role-limiting Methods (Marcus 1988) and
CommonKADS (Schreiber 1992). Their common char-
acteristic is to define a set of high-level components
which are used to express problem-solving knowl-
edge. CommonKADS (also known in earlier versions
as KADS) is a methodology for developing knowledge-
based systems, created during a multi-year research
effort that has included several ESPRIT projects.
Briefly, the components used to represent problem-
solving knowledge in KADS are:2

Tasks are represented using a functional perspec-
tive, i.e. specified by input/output relations which is
called in KADS a flnction. A function also includes a

1See the Web page http://www.aiai.ed.ac.uk/’bat/krsi-
plans.html

2For clarity, the original KADS terminology has been
simplified in some places.

12 AIPS-96

goal i.e. a specification of what needs to be achieved.
For example, the goal of planning task is to come up
with an ordered sequence of operations that transforms
a given initial state into a goal state. We represent
the input and output by roles that knowledge plays in
the problem-solving process. For instance, an input
or output role like hypothesis means that some domain
structure or element plays the role of hypothesis. Static
roles are the ones whose contents do not change during
problem solving (they correspond roughly to a knowl-
edge base in a knowledge-based system); dynamic roles
are the ones that do change.

Problem-solving methods (PSMs) describe how
the goal of a task can he achieved. A method has in-
put and output roles, and either decomposes a task into
subtasks (composite method), or is primitive. Tasks
and PSMS can he organized in a task-method decom-
position structure, where a task may be realized by al-
ternative methods, each of which consists of subtasks
or is primitive. Fig. 2 presents such a diagram for plan-
ning. A primitive method can usually be implemented
by a general or weak method (e.g. constraint propaga-
tion). A composite method specifies the allowed data
flow (in terms of their roles) between the subtasks, and
the control knowledge over them. Control knowledge
is represented by a control structure, which deter-
mines the execution order and iteration of the subtasks.
In the specification of a control structure there is no
concern for precision (e.g. defining what is the actual
content of symbolic variables). Instead, we only wish
to describe the overall control regime. Without be-
ing committed to a particular control structure, the
subtasks of a PSM form a function-structure, that
captures the data flow between the subtasks. We will
show an example of a function-structure and a control
structure later in the paper.

Domain Ontologies provide a vocabulary that can
be used to describe a certain domain. An ontology
specifies the concepts, relations, etc. independently
from the specific system that is reasoned about. Ex-
amples of domain ontologies in planning domains are
the formalisms to represent the world, time and ac-
tions, such as the situation calculus or the event cal-
culus. We will not deal further with domain onto]ogles
in this paper. Domain models are structures built
using elements of the domain ontology to be used in
problem-solving methods. Typical examples are mod-
els that specify causal dependencies between symptoms
and diseases in medical domains (causal model),
models that specify structural hierarchies for physical
devices (structural models). We will discuss typical
domain models for planning tasks in the following sec-
tion.

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Knowledge Roles in Planning
The basic problem solved in planning tasks is to gen-
erate a sequence of actions (a plan) whose execution
achieves a given goal state. A planning problem is
characterized by two inputs: an initial state and a goal
state description of the world. One of the critical ele-
ments in the analysis of a planning method is to specify
what types of knowledge it employs -- in other words,
which roles knowledge can play. In this section we will
present (i) a set of four general dynamic roles in plan-
ning tasks; (ii) part-of or ganization ofstatic rol es,
originally defined in (Valente 1995). These two sets
give a high-level view on what types of knowledge are
used in planning, both in the sense of the knowledge
which is input or output to the task and which is used
as part of the knowledge base.

Dynamic Roles
Current state The role current state is initially

filled by a description of the world in the beginning of
the plan, and later it is modified to contain intermedi-
ary states in the plan.

Goal The role goal describes the world state that
has to be achieved by the plan. The content of goal
is a set of conditions. Initially this role points to the
original goal to be achieved. During the planning pro-
cess the content of the role is dynamically modified by
establishing new suhgoals and deleting achieved goals.

Plan The dynamic knowledge role plan is a com-
posite role whose content is constantly modified during
the planning process until a solution is found. It con-
sists of:

(1) Plan-steps which correspond to unique action
instances, along with their pre-conditious and the con-
ditions that they can achieve..

(2) Ordering constraints over the plan-steps, such
as that one action precedes another. The type of order
imposed on the plan-steps in the plan (e.g. partial or
total) depends on the static role plan structure (which
will be described later) employed by the planner.

(3) Variable bindings which keep track of how
variables of plan-steps are instantiated with domain
knowledge such as objects, resources and agents.

(4) Causal links that represent causal connec-
tions between the plan-steps and the conditions they
achieve. We define a causal link by (i) a condition
the plan that has to be true (e.g. a g0al condition), (ii)
a plan-step that needs this condition to be true and
(iii) another plan-step that makes this condition true.

condition ,In schema: plan-step1 , plan-step2. A causal link
defines an interval of truth value for a condition. Not

all planning methods use causal links in their represen-
tation of plans, as we will discuss later.

Conflict The role conflict contains the result of
checking the plan with respect to the validity of a
condition. Each time when a condition is unexpect-
edly false, a conflict is detected. When a plan has
to achieve multiple goals (i.e to make true multiple
conditions), conflicts easily arise because of interact-
ing actions. The conflict role points to a plan-step that
violates some interval of truth value of a condition.
A conflict can also mean an inconsistency in the plan
constraints. This knowledge role is only used by some
planners, in particular the ones that explicitly modify
generated plans.

Static Roles: the Plan Model

The part-of organization of static roles proposed in
(Valente 1995) is shown in Fig. 1. The rationale be-
hind this part-of tree of static roles is twofold. First, it
means that all planning methods use a certain config-
uration of these roles. The minimal case is to have a
single domain model to play the role of plan model, but
more specific configurations may occur as well. Second,
the reason why these roles represent a part-of tree is be-
cause they are interdependent, and thus should main-
tain coherence. They represent parts of the description
of the same whole: the terms or structures defined in
one part are used or referred to in another.

The plan model defines what a plan is and what
it is made of. It consists of two parts: the world de-
scription, which describes the world about which we
are planning, and the plan description, which describes
the structure and features of the plan being generat-
ing. Below is brief description of these roles and their
sub-roles.

World Description The world description role
comprises two sub-roles, state description and state
changes. The state description comprehends the knowl-
edge necessary to represent or describe the state of the
world. Examples of domain models to play this role
in planning systems are a set of first order predicates
(STRIPs-like) or a set of fluents from the Situation Cal-
culus. The state changes role comprehends all the in-
formation connected to the specification of changes in
the state of the world. This is also the specification of
the elements a plan is composed of (but not how they
are composed, see plan composition below). Examples
of domain models to play this role in planning systems
are the add-delete lists (ADL) used in STRIPS, or SOVP
procedures as in NOAH.

Batros 13

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

PLAN MODEL

STATE

WORLD

~ DBSCRI PTIONDESCRXPTION
STATS CHANGBS

PLAN ASSESSMENT

PLAN /
KNOWLEDGE

DBSCEIPTION
~ / PLAN C~POSZTION

PLAN STRUCTURE ~ STATE cHANGE DATA

Figure 1: Part-of tree of static roles in planning.

Plan description The plan description role com-
prises two sub-roles: plan structure and the (optional)
plan assessment knowledge:

(1) Plan structure This role specifies how the parts
of a plan (actions, sub-plans) are assembled together.
It also specifies (indirectly) how the plan is to be ex-
ecuted. There are several varieties in the structure of
plans that can be identified in the literature. They can
be described by two main knowledge roles: the plan
composition role contains the description of the plan
with respect to how the state changes are arranged in
order to make up a plan. This includes, for instance,
whether the plan will be a partial or a total ordering
of a set of state changes, or whether it includes iter-
ation or conditional operators. The composition may
also be hierarchical: plans are composed of s,b-plans,
and so on up to atomic plans, which are normally state
changes. The state change data role contains the plan
information besides the structure of state changes. For
example, important state change data are interval con-
straints for binding the variables involved in the state
changes. It is also possible to assign different resources
to each state change or sub-plan. Two particularly
important resources are agents and time.

(2) Plan Assessment Knowledge determines
what kind of factors make a certain plan (or sub-plan)
better then another, and how they are to be taken into
account (e.g. weighted). Based on this knowledge
plan can be either criticized or modified. An exam-
ple of plan assessment knowledge is the truth-criterion,
which is used to find out if a condition is true at some
point in the plan. TWEAK (Chapman 1987) uses
modal truth criterion (MTC) which defines when a par-
ticular condition in a plan is necessarily or possibly
true by formally stating all possible interaction prob-
lems. Another example of a domain model for "hard"
plan assessment knowledge is the causal-link protection
used in SNLP (McAllester & Rosenblitt 1991) (see dis-
cussion below).

A Framework for Modeling Planning

Tasks

Based on an analysis of many classical planning sys-
tems, we have identified several relevant tasks and
problem-solving methods. They can be organized into
a task-method decomposition structure (see Fig. 2),
where a method consists of (solid lines) subtasks and
(sub)task can be realized by alternative (dashed lines)
methods. Ellipses represent tasks and rectangles meth-
ods.

We claim that the class of planners we are deal-
ing with share a general, high-level problem-solving
method which we call propose-critique-modify (PCM).
That is, all planners contain in one way or another
these three basic tasks: (i) propose e~ansion, (it) cr/-
tiqae plan and (iii) modify plan. Of course, planners
differ in how they achieve each of these steps; that is,
in what methods they use to perform these three tasks.
These differences also reflect their choices in terms of
how planning knowledge is represented. Fig. 2 shows
a set of PSMs we have found in the literature to real-
ize these tasks3. The tasks presented in Fig. 2 can be
described as follows:

Propose expansion has the goal of generating a
new step in the planning process in order to achieve
a selected goal. The input knowledge roles for this
task are: world description4, plan structure and plan as-
sessment knowledge. To realize this task, we found a
method called propose I, which can be decomposed into
three sub-tasks: select goal, select operator and test for
unachie~ed goals.

aIt is interesting to note that the idea of proposing a
single high-level method for a class of problems is not new.
(Chandrasekaran 1990) proposes a similar method, also
called propose-critique-modify, to solve design problems.

4Saying that this knowledge role is an input implies that
the knowledge roles that have a apart-of" relation with this
role, are also inputs for the task.

14 AIPS-96

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

i
I

....... ;~... .o, ~ : oO,

t’ l
Figure 2: A task-method decomposition structure for planning.

Select goal This task selects a goal from the set
of goals to be achieved. For select goal four meth-
ods can be used: linear select, hierarchical select, ran-
dom select and smart select. STRIPS chronologically
selects the last goal established by its search strat-
egy (Fikes & Nilsson 1971), which we call linear se-
lect. NONLIN (Tate 197.7) selects goals depending
some hierarchical levels assigned on the preconditions.
SNLP (MeAllester & Rosenblitt 1991) randomly selects
goals from the set of pending goals. It is also possi-
ble to select s goal in a more intelligent manner which
minimizes possible future modifcations (smart select)
(Drummond & Currie 1989). In this case, the method
uses the static role plan assessment knowledge to se-
lect a goal. An example of smart select was proposed
by (Kambhampati, Knoblock, & Yang 1995), where
goal-selection strategy is described called MTc-based
goal selection, which selects a goal only when it is not
necessarily true according to the modal truth criterion.

Select Operator Select operator takes the selected
goal and the plan-step for which the goal is a precon-
dition, and selects an operator. This can be a new
operator which is included in the plan. But it can also
be an operator which is already in the plan, in which
case an ordering constraint is added in such a way that
the operator is before the plan-step that needs the goal.
When a new operator is included in the plan, its pre-
conditions are added to the set of goals. The select
operator task can be realized by two methods. The
goal-driven select, selects an operator whose effect in-
dudes the selected goal, constraining the order to be
necessarily before the selected goal. This method is

used by SNLP and REFINEMENT SEARCH planning algo-
rithms. The smart select method is applied by STRIPS
and PRODIGY which are implemented by means-end
analysis, and exploits the difference between the goal
state and the current state to select an operator.

Test for unachieved goals This task checks the
current plan for unachieved goals, and records them
in the dynamic role goal. It also tests if the precondi-
tions (sub-goals) of an operator are already achieved
the current state (when the plan composition is total-
order). We identified two methods to realize this task:
the MTC-based goal-test and the current-state goal-test.
Causal-link based planners do not realize this task,
since they ensure that goals once achieved, are pre-
served.

Critique Plan The task critique plan checks for
conflicts and the quality of the plan generated so far,
using plan assessment knowledge. The role plan as-
sessment knowledge can point to "hard" constraints
(plan interaction and the satisfiability of the plan con-
straints) and "soft" constraints (the factors that define
when a given plan is better than another. We identi-
fied one method to realize this task which we called
critique I. This method can be decomposed into two
subtasks: consistency critique and interaction critique.

Consistency critique This task checks the consis-
tency of the constraints imposed on the plan gener-
ated so far. The constraints concern the action order-
ing and the co-designation of variables. More complex
planning systems can also check the consistency of the
assigned resources and agents. We identified the con-

Barros 15

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

H Static role Domain knowledge Task Realizing method
STRIPS world description ADL-based select goal linear select

plan composition total-order select operator smart select
test for unaf.hieved goals current-st&te goal-test

PRODIGY world description ADL-based select goal random select
plan composition totai-order modify plan ordering-selection

select operator smart select
test for unadtieved goals current-state goal-test

NONLIN world description HTN-based select goal hierarchical select
plan composition partial-order select operator goai-driven select
plan assessment cansai-link protection critique plan cansal-link based

modify plan cansal-link based
TWEAK world description ADL-based select goal random select

plan composition partial-order select operator goai-driven select
plan assessment truth-criterion critique plan MTC-based critique

modify plan MTC-based modification
test for unachieved goals MTC-based goai-test

SNIP world description ADL-based select goal random select
plan composition partial-order select operator goal-driven
plan assessment causai-link protection critique plan cansal-link based

modify plan cansal-link based

Table 1: Mapping of some main planners into the proposed framework. Listed are the static roles used, the domain
models which fill these roles ("ADL" stands for "add-delete list"), the tasks and their realizing problem-solving
methods.

attaint propagation method to realize this task.
Interaction critique When checking for conflicts,

this task verifies whether the selected operator for
achieving the goal would interact with other goals in
the plan, and, whether the other operators already
in the plan would interact with the intended goal to
achieve. Although these two verifications seem the
same, the second checking is sometimes included in
the task select operator. Note that this task involves
explicit reasoning about interactions. For realizing the
interaction critique task, we identified two methods:
(i) the caasal-link-based critiqee, which checks if the
plan-step interacts with the conditions of the causal
links; and (ii) the MTC-based critique, which uses the
modal truth criterion to check the existence of a step
that possibly interacts with the selected goal.

Modify plan The modify plan task is responsi-
ble for modifying the plan with respect to the results
of the critique plan task (a conflict). By using plan
assessment knowledge a modification can be done by
adding ordering, binding or secondary preconditions
to the plan until the possible conflict (violation)
solved. We identified three methods to realize this
task: the caasal-hnlc-based, the MTo-based and the
ordering-selection plan modification. The cansal-link-
based method adds causal links to the plan which pre-
vent the conditions contained in conflict from being
undone. The MTc-based method adds constraints to

the plan in such a way that the conditions in conflict
are necessarily true. Both methods are used in partial-
order planners. The ordering selection is used for total-
order plans to select a point in the plan where to insert
an operator such that the conflict can be avoid.

Applying the Framework
In the previous sections, we proposed a framework for
modeling (at a high level) all methods used in planners.
This implies that it should be possible to describe a
planner on three dimensions: (i) the static knowledge
roles it uses (Fig. 1), (ii) a set of domain models
fill these roles, and (iii) a function-structure generated
through the selection of some tasks and methods from
Fig. 2. In this section, we will justify the above claim
by showing this mapping for a number of well-known
planners.

Mapping Planners into the Framework

Table 1 shows how our framework characterizes a num-
ber of important planners by mapping their choices
in each of the three dimensions (static knowledge
roles, domain knowledge, tasks and methods). The
table contains the mappings for five different plan-
ners: STRIPS (Fikes & Nilsson 1971), PRODIGY (Car-
honell & the PRODIGY Research Group 1992), NON-
LIN (’fate 1977) SNLP (McAllester & Rosenblitt 1991),
and TWEAK (Chapman 1987).

The second column of Table 1 gives the static roles
used in the planners. All planners use world description

16 AIPS-96

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

and plan description, but only the planners that explic-
itly reason about interactions use the plan assessment
knowledge role. The third column shows that STRIPS

and PRODIGY are total-order planners, whereas the
other three are partial-order planners. Except for NON-
LIN which is a HTN based planner, all planners use ADL
operators (third column). As can be seen in the fourth
column, partial-order planners use dedicated tasks for
critiquing and modifying the plan (total-order planners
solve this by backtracking). Due to space limitation,
we refer to the fifth coTumn of the table for the different
PSMs used to realize the tasks.

Based on the table, we can identify different types of
planners depending on how they relate to the follow-
ing characteristics: linear or non-linear; total-order or
partial-order; truth-criterion or causal-link-protection.
In the following, we will concentrate on the most inter-
eating types which are also discussed in the planning
literature.

Total-order/linear (STRIPS). Such planners use
total-order domain model for the role plan composition;
a linear select method for the goal selection task; the
current-state goal-test method for the task "test for
unachieved goals"; the smart selection method for the
task "operator selection"; and they do not use plan
assessment knowledge.

Total-order/nonlinear (PRODIGY). Such planners
use a total-order domain model for plan composition;
the random select method for the select goal task; the
ordering-selection method for modify plan task and the
current-state goal-test for the test for unachieved goals
task. They usually do not use the role plan assessment
knowledge.

Partial-order/truth criterion (TWEAK, NON-

LIN). Such planners use a partial-order domain model
for plan composition; the MTc-based domain model for
plan assessment knowledge; the "test for unachieved
goals" task with the MTC-6ased method. They do not
make use of causal-links for bookkeeping.

Partlal-order/causal-
link-protection (SNLP). Such planners use the causal-
link dynamic role to keep track of how the goals have
been established; the causal-link-based domain model
for filling the static role plan assessment; they use the
tasks "critique plan" and the "modify plan", but not
"test for unachieved goals".

An Example: Mapping TWEAK For illustration,
we detail here how TWEAK can be mapped onto the
proposed framework. TWEAK is a partial-order planner
that solves conflicts by explicitly reasoning about them
and modifying the plan. Fig. 3 shows its function-
structure, where individual functions or tasks are rep-

Figure 3: A function-structure for TWEAK according to
the proposed mapping. Rounded rectangles represent
tasks (or functions) and normal rectangles roles. Bold
lines connect static roles and thin lines dynamic roles.

resented as rounded rectangles, with their input and
output roles represented as normal rectangles. Arrows
indicate the direction of knowledge flow (thin arrows
connect dynamic roles, and bold arrows static roles).
In this function-structure, the current plan (in the ini-
tial situation it contains just the goals to be achieved)
is tested to see whether there are unachieved goals.
This task updates the role goals. If there are un-
achieved goals, one of them is selected and with respect
to that one an operator is selected, either from state
changes (which is part of the role world description),
or from the proper plan. This results in an expanded
plan, which is then tested for conflicts. If they are
found some modification action is required. "Test for
unachieved goals", "critique plan" and "modify plan"
need the role plan assessment knowledge, and "modify
plan" additionally needs the roles world description and
plan structure.

Below we give as an example the control structure of
TWEAK that has to be applied on its function-structure
(Fig. 3). Static roles are denoted by their abbreviated
names: PAK for plan assessment knowledge, WD for
world description, PS for plan-structure. The repeat-
until loop in the critique-plan and modify-plan is due
to the fact that for each modification, other conflicts
could show up, and they have to be taken care of.

control-structure TWEAK

Barros 17

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

1 test-for-unachieved-goals(plan, PAK --* goals);
2 if goals -- a then exit;
3 else select-goal(goals !-* goal); backtrack point
4 select-operator(plan, goal, WD, PS --* expanded-plan);
5 repeat
6 critique-plan(expanded-plan, PAK --, conflict);
7 modify-plan(conflict, expanded-plan, PAK,

PS, WD --* plan); backtrack point
8 until conflict = |
9 goto 1;

Conclusions
In this paper, we presented a knowledge-level frame-
work for characterizing classical planners, including
partial and total order planners. The framework ana-
lyzes planners in terms of the domain knowledge and
problem-solving methods they use, and helps in un-
derstanding the differences and commonalties between
the various planners.

Although our analysis has a different starting point
than that of (Kambhampati, Knoblock, & Yang 1995),
some of the objectives, and even their reaiizations,
may he very similar. We provide a general knowledge-
level (KL) model that unifies classical planners, while
Kambhampati et al. provide a generalized algorithm
(called refinement search), in which so-called "plan-
space" planners can he expressed by instantiating this
algorithm in different ways. Their claim is that a uni-
fied view facilitates separation of important ideas un-
derlying individual algorithms from "brand-names",
and thus provides a basis for understanding the de-
sign tradeoffs and for fruitfully integrating the various
approaches. A detailed comparison between the two
frameworks is outside the scope of this paper. How-
ever, it is important to stress that the main differ-
ence is the goals of the work: while (Kambhampati,
Knoblock, & Yang 1995) provide a very detailed (and
sometimes very difficult to understand) framework in
order to be able to compare the performances of the
planners, our emphasis is in providing a more abstract
framework that can be used as an explanation of the
differences between these planners, mostly for knowl-
edge engineering purposes.

Because our analysis uses the CommonKADS
methodology, we inherit its benefits. We identified
the relevant domain knowledge and reasoning steps
in various planners. For building a particular plan-
ner, one can select the appropriate problem-solving
methods and fill their knowledge roles with the do-
main knowledge at hand. The knowledge acquisition
process is thus supported. Another benefit is that the
task-method decomposition structure (Fig. 2) can
considered as a high-level specification for an architec-
ture that enables opportunistic planning. That is, a
meta-reasoner could dynamically select which method

18 AIPS-96

to use for realizing a particular planning task. In this
way, different planning methods can be interleaved to
construct more intelligent planners.

References
Carbonell, J., and the PRODIGY Research Group.
1992. PRODIGY4.0: The manual and tutorial. Tech-
nical Report CMU-CS-92-150, School of Computer
Science, CMU.

Chandrasekaran, B. 1990. Design problem solving: A
task analysis. AI Magazine 11:59-71.

Chapman, D. 1987. Planning for conjunctive goals.
AI 32:333-377.

Drummond, M., and Currie, K. 1989. Goal ordering
in partially ordered plans. IJCA1960 - 965.

Drummond, M. 1994. Precondition achievement plan-
ning: framework sans application? In Wilkins, D.,
ed., Proceedings of the AAAI Workshop on Compar-
ative Analysis of A I Planning Systems, 1-9.

Fikes, R. E., and Nilsson, N.J. 1971. STRIPS: A
new approach to the application of theorem proving
to problem solving. Artificial Intelligence 2.

Kambhampati, S.; Knoblock, C.; and Yang, Q. 1995.
Planning as refinement search: a unified framework
for evaluating design tradeoffs in partial-order plan-
ning. Artificial Intelligence 76. special issue on plan-
ning and scheduling.

Marcus, S., ed. 1988. Automatic knowledge acquisi-
tion for ezpert systems. Boston: Kluwer.

McAllester, D., and Rosenblitt, D. 1991. Systematic
nonlinear planning. In Proc. of AAAI-91, 634-639.

Minton, S.; Bresina, J.; and Drummond, M. 1994.
Total-order and partial-order planning: a compara-
tive analysis. Journal of Artificial Intelligence Re-
search 2:227-262.

Schreiber, A. T. 1992. The KADS approach to knowl-
edge engineering, editorial special issue. Knowledge
Acquisition 4(1):1-4.

Tare, A. 1977. Generating project networks. In Pro-
ceedings IJCAI-77, Paris.

Valente, A. 1995. Knowledge level analysis of plan-
ning systems. SIGART Bulletin 6(1):33-41.

Wilkins, D. E. 1988. Practical Planning: Eztending
the Classical AI Planning Paradigm. Morgan Kauf-
mann Publishers, Inc.

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

