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Abstract 

As data warehouses grow to the point where one 
hundred gigabytes is considered small, the computa- 
tional efficiency of data-mining algorithms on large 
databases becomes increasingly important. Using a 
sample from the database can speed up the data- 
mining process, but this is only acceptable if it does 
not reduce the quality of the mined knowledge. To 
this end, we introduce the “Probably Close Enough” 
criterion to describe the desired properties of a sample. 
Sampling usually refers to the use of static statistical 
tests to decide whether a sample is sufficiently similar 
to the large database, in the absence of any knowledge 
of the tools the data miner intends to use. We discuss 
dyrz~mic sampling methods, which take into account 
the mining tool being used and can thus give better 
samples. We describe dynamic schemes that observe 
a mining tool’s performance on training samples of in- 
creasing size and use these results to determine when 
a sample is sufficiently large. We evaluate these sam- 
pling methods on data from the UC1 repository and 
conclude that dynamic sampling is preferable. 

Introduction 
The current popularity of data mining! data ware- 
housing, and decision support, as well as the tremen- 
dous decline in the cost of disk storage, has led to 
the proliferation of terabyte data warehouses. Min- 
ing a database of even a few gigabytes is an arduous 
task, and requires either advanced parallel hardware 
and parallelized data-mining algorithms, or the use 
of sampling to reduce the size of the database to be 
mined. 

Data analysis and mining always take place within 
the context of solving some problem for a customer (do- 
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must be made jointly by the customer and the data 
miner. The analyst’s job is to present the sampling 
decision in a comprehensible form to the customer. 

The PCE (Probably Close Enough) criterion we in- 
troduce is a criterion for evaluating sampling methods. 
If we believe that the performance of our data-mining 

algorithm on a sample is probably close to what it 
would be if we ran it on the entire database, then we 
should be satisfied with the sample. The question is 
how to quantify close enough and probably. For sim- 
plicity, we consider only accuracy in supervised classifi- 
cation methods, although the PCE framework is more 
general. This focus lets us leverage existing learning 
theory and make the discussion more concrete by defin- 
ing close in terms of accuracy. 

Dynamic sampling refers to the use of knowledge 
about the behavior of the mining algorithm in order 
to choose a sample size - its test of whether a sam- 
ple ia auitab!j; representatbte of a data~,lsase depends on 
how the sample will be used. In contrast, a static sam- 
pling method is ignorant of how a sample will be used, 
and instead applies some fixed criterion to the sam- 
ple to determine if it is suitably representative of the 
original large database. Often, statistical hypothesis 
tests are used. We compare the static and dynamic 
approaches along quantitative (sample sizes and ac- 
curacy) and qualitative (customer-interface issues) di- 
mensions, and conclude with reasons for preferring dy- 
namic sampling. 

St at ic Sampling Criteria 
The aim of static sampling is to determine whether 
a sample is sufficiently similar to its parent database. 
The criteria are static in the sense that they are used 
independently of the following analysis to be performed 
on the sample. Practitioners of KDD sometimes speak 
of “statistically valid samples” and this section repre- 
sents one attempt to make this precise. Our approach 
tests the hypotheses that each field in the sample comes 
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For categorical fields, a x2 hypothesis test is used 
to test the hypothesis that the sample and the large 
database come from the same distribution. For nu- 
meric fields, a large-sample test (relying on the central 
limit theorem) is used to test the hypothesis that the 
sample and the large database have the same mean. 
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Table 1: a: Counts of a database containing 50 copies 
of records <TT>, <TF>, <FT>, <FF>. b: Sample contain- 
ing 10 copies of records <TT>, <FF>. These both look 
the same to univariate static sampling. 

Note that hypothesis tests are usually designed to 
minimize the probability of falsely claiming that two 
distributions are different (Casella & Berger 1990). For 
example, in a 95% level hypothesis test: assuming the 
two samples do come from the same distribution, there 
is a 5% chance that the test will incorrectly reject (type 
I error) the null hypothesis that the distributions are 
the same. However, for sampling we want to minimize 
the probability of falsely claiming they are the same 
(type II error). We used level 5% tests, which liberally 
reject the null hypothesis, and are thus conservative 
in claiming that the two distributions are the same. 
(Directly controlling Type II error is more desirable 
but complicated and requires extra assumptions.) 

Given a sampie, static sampiing runs the appropriate 
hypothesis test on each of its fields. If it accepts all 
of the null hypotheses then it claims that the sample 
does indeed come from the same distribution as the 
original database, and it reports the current sample 
size as sufficient. 

There are several shortcomings to the static sam- 
pling model. One minor problem is that, when running 
several hypothesis tests, the probability that at least 
one hypothesis is wrongly accepted increases with the 
number of tests. The Bonferroni correction can adjust 
for this problem. More important, the question “is 
this sample good enough?” can only be sensibly an- 
swered by first asking “what are we going to do with 
the sample?” Static sampling ignores the data-mining 
tool that will be used. The tests we describe are only 
univariate, which is problematic (see Table 1). One 
could as well run bivariate tests but then there is of 
course no guarantee that the three-way statistics will 
be correct. It is also unclear how the setting of the con- 
fidence levels will effect sample size and performance, 
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Dynamic Sampling 
Sampling a database is a scary prospect. It involves 
a decision about a tradeoff that many customers are 
rightfully hesitant to make. That decision is how much 
they are willing to give up in accuracy to obtain a de- 

crease in running time of a data mining algorithm. Dy- 
namic sampling and the PCE criterion address this de- 
cision directly, rather than indirectly looking at statis- 
tical properties of samples independent of how they will 
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(disk space, cpu time, consultants’ fees) must be amor- 
tized over the period of use of the model and balanced 
against the savings that result from its accuracy. This 
work is a step in that direction. 

The PCE Criterion 
The Probably Close Enough criterion is a way of evalu- 
ating a sampling strategy. The key is that the sampling 
decision should occur in the context of the data mining 
algorithm we plan to use. The PCE idea is to think 
about taking a sample that is probably good enough, 
meaning that there is only a small chance that the 
mining algorithm could do better by using the entire 
database instead. We would like the smallest sample 
size n such that 

Pr(acc(N) -act(n) > E) 5 S , 

where act(n) refers to the accuracy of our mining algo- 
rithm after seeing a sample of size n, act(N) refers to 
the accuracy after seeing all records in the database, E 
is a parameter to be specified by a customer describing 
what “close enough” means, and 6 is a parameter de- 
scribing what “probably” means. PCE is similar to the 
the Probably Approximately Correct bound in compu- 
tational learning theory. 

Given the above framework, there are several dif- 
ferent ways to attempt to design a dynamic sampling 
strategy to satisfy the criterion. Below we describe 
methods that rely on general properties of learning al- 
gorithms to estimate act(N) - act(n). But first, in 
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learning algorithm. 
We chose the naive Bayesian classifier, which has a 

number of advantages over more sophisticated tech- 
niques for data mining, such as methods for decision- 
tree and rule induction. The algorithm runs in time 
linear with the number of attributes and training cases, 
which compares well with the O(n log n) time for basic 
decision-tree algorithms and at least O(n2) for meth- 
ods that use post-pruning. Also, experimental studies 
suggest that naive Bayes tends to learn more rapidly, in 
terms of the number of training cases needed to achieve 
high accuracy, than most induction algorithms (Lang- 
ley & Sage 1994). Theoretical analyses (Langley, Iba 
& Thompson 1992) point to similar conclusions about 
the naive Bayesian classifier’s rate of learning. A third 
feature is that naive Bayes can be implemented in an 
incremental manner that is not subject to order effects. 
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Sampling through Cross Validation 
Despite the inherent etliciency of naive Bayes, we 
would like to reduce its computational complexity even 
further by incorporating dynamic sampling. There are 
several problems to solve in deciding whether a sam- 
ple meets the PCE criterion, but each of them is well- 
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increasing larger size n, adding a constant number of 
records to our sample repeatedly until we believe the 
PCE condition is satisfied. 

First, we must estimate acc(n,). In our algorithm, 
we used leave-one-out cross-validation on the sample 
as our estimate of acc(ni). Then we must estimate 
act(N). For a first attempt, we assume that whenever 
acc(ni+i) 2 acc(n0, the derivative of accuracy with 
respect to training set size has become non-positive 
and will remain so for increasing sample sizes. Thus 
acc(Nj 5 acc(nij and we should accept the sample of 
size 12. 

In initial experiments on UC1 databases we found 
that this method for putting a bound on act(N) is sen- 
sitive to variance in our estimates for acc(ni), and of- 
ten stops too soon. On average, accuracy was reduced 
about 2% from the accuracy on the full database, while 
the sample size was always less than 20% of the size of 
the original database. 

Extraoolation of Learning Curves ---1--‘r ---__---- 

Perhaps this sensitivity could be overcome by the use 
of more information to determine act(N) rather than 
just the last two estimated accuracies. One method 
is to use all available data on the performance of the 
mining algorithm on varying-sized training sets, and 
use these to fit a parametric learning curve, an esti- 
mate of the algorithm’s accuracy as a function of the 
size of the training sample. Extrapolation of Learning 
Curves (ELC) can predict the accuracy of the mining 
algorithm on the full database. 

But first, we must estimate act(n). In our algo- 
rithm, when considering a sample of size n we take 
Ir’ more records from the large database and classify 
them and measure the resulting accuracy. This is our 
estimate of act(n). Then we must estimate act(N). 
We use the history of sample sizes (for earlier, smaller 
samples) and measured accuracies to estimate and ex- 
trapolate the learning curve.Theoretical work in learn- 
ing, both computational and psychological, has shown 
that the power law provides a good fit to learning curve 
d&Z%: 

G(n) = a - bn+ . 

The parameters a, b, a! are fit to the observed accuracies 
using a simple function optimization method. We used 

Dynamic Hill Climbing (Yuret 1994), which seems to 
work well. 

We know N, the total size of the database. Given 
a=(N) as our estimate for the accuracy of our data 
mining algorithm after seeing all N cases in the 
database, we can check the difference between this ex- 
pected value and the current accuracy on our sample 
of size n, and if the difference is not greater than E, we 
accept the sample as being representative. 

If the difference is greater than E, we reject the sam- 
ple and add the additional II records (sampled previ- 
ously, to get an estimate of the accuracy of our model) 
to our sample, updating the model built by our mining 
algorithm. For this to be efficient, the mining algo- 
rithm must be incremental, able to update itself given 
new data in time proportional to the amount of new 
data, not the total amount of data it has seen. 

Experiments: ELC vs Static Sampling 
Preliminary studies with ELC sampling for naive Bayes 
gave good results relative to the non-sampling version 
of this algorithm, which encouraged us to carry out 
a fuller comparison with the static approach to sam- 
pling. To this end, we selected 11 databases from the 
UC1 repository that vary in the number of features 
and in the proportion of continuous to nominal fea- 
tures. Since our goal was to learn accurately from a 
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databases are all quite small, we artificially inflated 
each database by making 100 copies of all records, in- 
serting these into a new database, and shuffling (ran- 
domizing their order). Very large real databases also 
have high redundancy (Moller 1993), so we do believe 
the results of these experiments will be informative, al- 
though real large databases would obviously have been 
preferable. 

For each new inflated database, we shuffled the 
records randomly and ran five-fold cross-validation - 
we partitioned it into five disjoint and equal-size parts, 
and repeatedly trained on four out of the five, while 
testing on the held-out part. For each training step, 
we first sampled the database using either no sampling 
(taking all records), static sampling, or dynamic sam- 
pling (ELC). We then recorded the number of samples 
used and the accuracy on the held-out piece. We re- 
peated this entire procedure five times, getting a total 
of 25 runs of sampling and 25 estimates of accuracy. 

We initialized both sampling algorithms with a sam- 
nle of size 100. For the static scheme; we used a 5% r-- -- ---- ---- 
confidence level test that each field had the same dis- 
tribution as the large database. For dynamic sam- 
pling, we fit the learning curve and checked whether 
Z(N) - act(n) < 2%. In either case, if the sample 

Special Data Mining Techniques 369 



Table 2: Sample size (n) and accuracy for 25 runs. 

Naive Static Dynamic 
Data set Act. Act. n Act. 
Breast Cancer 95.9 95.9 300 95.9 3:o 
Credit Card 77.7 77.0 500 77.2 1180 
German 72.7 63.8 540 71.8 2180 
Glass2 61.9 60.0 100 61.9 720 
Heart Disease 85.1 83.2 180 85.1 900 
Hepatitis 83.8 83.2 100 83.8 540 
Horse Colic 76.6 76.1 240 76.6 640 
Iris 96.0 96.0 100 96.0 560 
Lymphography 69.1 67.1 100 68.5 600 
Pima Diabetes 75.3 75.7 420 75.5 1080 
Tic-tat-toe 69.7 69.2 620 71.1 620 

was ruled insufficient we increased the size by 100 and 
repeated. 

Table 2 shows the results on the 11 inflated 
databases from the UC1 repository. Note that extrapo- 
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with E = .02: in no case was the accuracy on the en- 
tire database more than .9% higher than the extrapo- 
lated sample accuracy. Static sampling, while approv- 
ing much smaller samples, did worse at matching the 
accuracy on the entire database: in two cases, its ac- 
curacy was 1.9% worse than the accuracy on the entire 
database, and on one domain (German) its accuracy 
was nearly 10% lower. 

Related and Future Work 
Perhaps the best examples of dynamic sampling are the 
peepholing algorithm described by Catlett (1992) and 
the “races” of Moore & Lee (1994). In both approaches 
the authors identify decisions that the learning algo- 
rithm must make and propose statistical methods for 
estimating the utility of each choice rather than fully 
evaluating each. 

The form of our parametric learning curve comes 
from Kohavi (1995), who discusses learning curve ex- 
trapolation during model selection. Kadie (1995) pro- 
peys 2 JF&=+T of mothrrrlc fnr fittina ]earpIipAw ~IITIIP~ . ..“Y....YY IV. ..Y”...b 6 vu. v-u. 

In the future we intend to apply PCE to different 
data mining tools, such as Utgoff’s (1994) incremental 
tree inducer. The tradeoffs effecting variance in the 
estimated learning curves should also be addressed. 

Conclusion 
Data mining is a collaboration between a customer (do- 
main expert) and a data analyst. Decisions about how 
large of a sample to use (or whether to subsample at 
all) must be made rationally. The dynamic sampling 

rectly to the performance of the resulting model, rather 
than to a statistical criterion which is related in some 
unknown way to the desired performance. Because of 
the interpretability of the PCE criterion and because of 
the robust performance of dynamic sampling in our ex- 
periments, we recommend the general framework and 
encourage further study towards its computational re- 
alization using fewer or more well-founded approximai 
tions. 
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