
FlexiMine - A Flexible Platform for KDD
Research and Application Construction*

C. Domshlak, D. Gershkovich, E. Gudes,
N. Liusternik, A. Meisels, T. Rosen, S. E. Shimony

Dept. of Math. and Camp. Sci., Ben-Gurion University
P.O. Box 653, 84105 Beer-Sheva, ISRAEL

Contact e-mail: shimony@cs.bgu.ac.il

Abstract

* FlexiMine is a KDD system designed as a testbed for
data-mining research, as well as a generic knowledge
discovery tool for varied database domains. Flexibil-
ity is achieved by an open-ended design for extensi-
bility, enabling integration of existing data-mining al-
gorithms, new locally developed algorithms, and sup-
port functions, such as visualization and preprocess-
ing. Support for new databases is simple - currently
via SQL queries to an INFORMIX database server.
With a view of serving remote, as well as local, users,
internet availability was a design goal. By implement-
ing the system in Java, minor modifications allow us
to run the user-end of the system either as a Java ap-
plications or as a Java Applet.

Introduction
Knowledge Discovery in Databases (KDD) has become
an important technology, and an extremely interdisci-
plinary research area (Fayyad et al. 1996). FlexiMine
is a prototype KDD system currently being developed
at Ben-Gurion University for testing techniques and
algorithms for Data Mining and Knowledge Discov-
ery and their evaluation in the context of real-life
databases and users. The emphasis of this system
and its software architecture is on integration of most
KDD operations, (including database access and selec-
tion, preprocessing, data transformations such as ab-
straction, data-mining algorithms, and interactive vi-
sualization) and on extensibility. Thus, the system
facilitates incorporation of new algorithms or their im-
proved variants, and convenient extension of support
to new databases or abstraction hierarchies. Yet, the
system preserves a friendly and easy to use interface
which enables users and domain experts to access the
system from both local and remote locations, and to
comment on, and evaluate, result quality.

Generally, KDD commercial systems such as Mine-
Set (Brunk, Kelly, & Kohavi 1997) put heavy empha-
sis on visualization tools, query and reporting tools, in

Copyright 01998, American Association for Artificial
Intelligence (wwwaaaiorg). All rights reserved.

184 Domshlak

order to satisfy various user requirements. FlexiMine,
on the other hand, is a research prototype, thus its
emphasis on providing a testbed for evaluating new al-
gorithms for data mining. Since such evaluation must
involve real users and real databases, its architecture
must be very modular and extensible. FlexiMine archi-
tecture and user-interface feature a rich selection of al-
gorithms, with the option of activating them with vari-
ous parameters for the purposes of testing. As many of
the KDD algorithms are computationally intensive, it
allows for their operation on parts of the database, and
for observation of partial results as soon they become
available, as well as lazy evaluation.

Design considerations and user-interface “flow” of
FlexiMine appear in the two following sections. Al-
though we emphasize system aspects, some original
ideas were developed with this system as a testbed -
presented in the algorithms section. We conclude with
implementation and software engineering issues, espe-
cially those needed to provide system extensibility.

System Design and Implementation
The overall structure of FlexiMine is described in Fig-
ure 2. The system is implemented in a form of Java
Application (or Applet, see below), consisting of sev-
eral Java classes. The Java classes may in-turn call C
functions which in-turn may contain SQL primitives
and call the Informix DBMS. FlexiMine layers are:

User interface layer - responsible for interacting
with the user, and for calls to various visualization
utilities. Also handles security and the variance be-
tween running the system from a remote site (Java
Applet) or l?om a local site (Java application).

Intermediate layer - (C with embedded SQL)
Handles a protocol of requests, received from the
user interface module. After performing the oper-
ations (query database, run data-mining algorithm
or visualization), returns results to the user inter-
face module. Design enables both database and al-
gorithm independence. Database requests are trans-
lated into embedded SQL statements, to be executed

From: KDD-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

[-j--j User Desktop /

; --------~---~~~~~~~~~ i User Interface

: _____________________ j l3-r

layer

Input - output

1
Database sewer
layer

p&q / p&ba=

Figure 1: FlexiMine Architecture

by the database server layer. Results are rendered in
a standard format file, making the data-mining al-
gorithms independent of the database. This scheme
also supports partial evaluation and pipelining.

Data-mining algorithms layer - includes decision
tree learning, association rule induction, and other
data-mining algorithm modules. An algorithm mod-
ule consists of the implementation - a batch-mode
executable file, and two Java classes, providing an
interface for algorithm invocation and result inter-
pretation and presentation.

Database server layer - Informix relational
DBMS. Receives queries from intermediate module,
returns results to the intermediate module.

Databases currently available are: a) student
database - personal information about students,
course data, and student grades. b) Hospital
database - patients information: reception, tests, di-
agnoses, and hospitalization.

System Architecture and Flow
After logging into FlexiMine and selecting a database,
the database schema is displayed, enabling the user to
mark a sub-set of attributes of interest. Since most
data-mining algorithms work on a single relation, one
must be formed by a join operation.

The user may create new attributes which represent
a form of a “denormalization” process. We call the cre-
ation of these new attributes ah-hag. Another process
at this stage is abstraction, which enables the user to
create new abstractions to various attributes and do-
mains. Such abstractions are extremely important in
the process of data mining. A typical abstraction may
be of integer grades into marks ((A, B, C, NC}).

Selection
The purpose of a selection is to produce an interesting
view to the user of a given database. This view may

further be aliased, and its values may (optionally) be
abstracted. The result is used as input for the visu-
alization and the data mining algorithms. A selection
is assisted by a graphical interface and derived via an
SQL query automatically generated by the system ac-
cording to user selections.

Selections are named objects, formed by a user selec-
tion definition, as follows. A set of relations is chosen
from the list of the relations of the underling database
(the relations list on the selection screen). The re-
lations contain the attributes of interest to the user,
and have to share common attributes in a way that an
equi-join between them is meaningful (see (Domshlak,
C. et. al. 1998) for details).

Abstraction
Abstraction may be defined over domains, such as “in-
teger”, as well as on values of a specific attribute of
a specific relation. The result of an abstraction is a
map providing an (abstract) name or value to each of
the original values. Manually defining a (named) ab-
straction is assisted by graphical interfaces (Figure 2).
Pushbutton selection enables a choice on whether to
abstract on a domain (integer, float or fixed-length-
string) or on actual attribute values (necessitating a
choice of relation and attribute). Abstraction result
types are domain-based, enabling further abstractions
to be defined on top of existing ones, possibly leading
to abstraction (“taxonomic”) hierarchies. After ab-
straction definition, the mechanism becomes transpar-
ent to the user, as well as to other system layers, en-
abling easy future expansion for automatic abstraction
schemes, such as those based on automated clustering.

Figure 2: The Abstraction Screen
Aliasing
The aliasing mechanism enables the creation of new
attributes, of interest to the data miner. These are
treated as bona fide distinct attributes, in order to
be accessible by the visualization and datamining
algorithms. Prime candidates for aliasing are “de-
normalized” attributes, resulting in the process of con-
verting values in rows into values in a separate col-
umn. Consider a table containing courses grades for

KDD-98 185

students, with (stud#, course#) as a primary key. To
create an alias for “final grade in the compilers course”,
the system should create a table with the following at-
tributes: (stud#, final-camp, *), with * standing in for
other possible attributes.

Aliasing is permissible only if the resulting table
makes sense from the database theory point of view.
That is, it must be the case that all new attributes
are functionally dependent on the primary key of the
resulting table. All attributes not depending on this
new key should be eliminated - this is enforced by the
system and made as user-transparent as possible (see
(Domshlak, C. et. al. 1998)).

Visualization
Currently implemented are textual viewing, his-
tograms (Figure 2), and scatter-plots. Several inter-
actively user-selectable primary axis sorting methods
are available: by value, by frequency, or scale-based
(for numerical domains). The computation of the his-
togram is made lazy, as, due to lazy evaluation, the se-
lected relation may not be available in explicit form at
the time visualization begins. Anytime schemes, such
as successive approximate partial results using sam-
pling, are under development.

Interface with Data-Mining Algorithms
FlexiMine runs data-mining algorithms as separate
processes that receives a data file, and a set of pa-
rameters. For example, an association-rule induction
algorithm receives a relation, support and confidence
thresholds, and optionally a set of relevant target at-
tributes. Results are displayed to the user in text for-
mat, and saved in a temporary file, for possible use by
other data-mining algorithms or visualization schemes.

Data-Mining Algorithms in FlexiMine
FlexiMine currently contains algorithms for learn-
ing ARs from a single relation and from multiple
relations, probabilistic models (Bayesian Knowledge
Bases), decision-trees, and meta-queries.

Distributed Induction of Association Rules
Most association-rule algorithms, e.g. (Agrawal &
Srikant 1994) are a two-step process: finding all sets of
items that have support above the given minimum (fre-
quent itemsets), and generating the desired rules from
these itemsets. In FlexiMine, we decided to implement
the Apriori algorithm (Agrawal & Srikant 1994), as
it is reasonably easy to parallelize (Agrawal & Shafer
1996), reasonably memory-efficient, and because inter-
mediate results of Aprimi facilitate rule filtering for
“interestingness” (Silberschatz & Tuzhilin 1996), and
on-line generation of the BKB model (see below).

The association rule generator is a separate task(s),
accepting data in flat-file format, with output a flat
rules file. Presentation is currently a list of rules, sorted
by confidence, support, or both. Post-filters matching
given attributes in the rule head or tail may be used.
A graphical display of the rules as a (directed) hyper-
graph is also available in the system.

In distributing AR induction, our goal was to take
advantage of commonly available computing resources,
namely a set workstations on a LAN, in order to speed
up generation of ARs. Easy availability and capabil-
ity for using heterogeneous computing resources, was
achieved by implementing the algorithms on top of
PVM. We have rewritten the algorithms to take ad-
vantage of the fact that all computers share a common
NFS. Each association-rule task is handled by a muster

User htafre

1- --..-________----..-..-...--.---..------.- - .-_.-___-..-..-..-.. J
PvH-anh~: q q .

@ YdrDloQ ca rndomcac.lMO

@ ~pouIoIIm8 q

Figure 3: Process Hierarchy
process that creates n (dynamically determined) iden-
tical slaves, that collaborate on the task (Figure 3).

Bayesian Knowledge Bases
The discovered ARs provide large amounts of poten-
tially useful, yet sometimes unintuitive information.
These may still be useful to an automated reasoning
engine, especially if they possess a valid probabilis-
tic global semantics. AI&, however, convey only local
causal dependencies between sets of attribute instanti-
ations. Graphical probabilistic models, such as Bayes
networks (BNs) (Pearl 1988), convey local dependen-
cies, while possessing global semantics.

BNs do not capture conditional independencies be-
tween particular instantiations of variables, a problem
addressed by Similarity Networks (Heckerman 1991),
Independence-Based Relevance (Shimony 1993), and
Weighted Proof Graphs (WAODAGs) (Charniak &
Shimony 1994). Other restrictions are that BNs do
not allow cycles in the graph structure, and cannot
represent partially known distributions. We thus use
a generalization of BNs, called Bayesian Knowledge
Bases (BKBs) (Shimony, Domshlak, & Santos 1997).
The dependencies in the model are defined between in-
stantiations, and cycles are allowed between variables
as well as between instantiations of variables.

186 Domshlak

r-----------1 02 (La
ia sr* I
e4

Figure 4: BKB example - variables A B, C, D, and E

BKBs consist of a directed graph, called a correla-
tion graph, which hastwo distinct types of nodes (Fig.
4). Instantiation-nodes (I-nodes), correspond to the
instantiations of the variables (several I-nodes corre-
spond to a single node in a Bayes network - one I-node
for each domain value of the Bayes network node).
Support-nodes (S-nodes) are used to quantify the con-
ditional dependencies between instantiations of vari-
ables (corresponding to one or more conditional prob-
ability table (CPT) entries in a BN).

Owing to Apriori decomposition, we combined the
BKB on-line construction with the rule discovery part
of the algorithm. We are using BKBs generated by
the system to test abductive-reasoning algorithms for
BKBs (Shimony, Domshlak, & Santos 1997).

Multi-relation association rules
The goal of the direct multi-relation association-rule
generation algorithm is to reduce the large table cre-
ated for mining ARs from multiple relations, by avoid-
ing actual join operations whenever possible. Our
scheme currently assumes that all joins are 1:n natural
joins, which can be represented as a directed graph.
For clarity, we consider just one path in the graph.

The algorithm consists of a pre-processing phase,
and a coalescing phase (based on the Apriori-Tid
(Agrawal & Srikant 1994) algorithm). During pre-
processing, one follows the path and performs a “vir-
tual JOIN”, between the “1” side table and the “n”
side table. This virtual JOIN does not create a re-
sulting joined table, but does generate a count of how
many tuples each tuple in the “1” side is connected
to in the “n” side. These counts are saved and the
process is repeated for each edge in the path. In the
coalescing phase, the above counts are used as sup-
port counts without performing the actual JOINS, sav-
ing both space and time in comparison to the single-
relation algorithm (see (Domshlak, C. et. al. 1998)).

Decision Trees

Decision trees (DT) have been treated extensively in
the machine learning community. DT construction al-
gorithms deal with noise and prune trees according to

information theoretic criteria (Quinlan 1993)’ as well
as association rule construction.

In FlexiMine we have added intermediate tree-level
stopping criteria. One is based on marginal informa-
tion gain - a user-selectable adaptable criterion for in-
formation gain bound. If, at some intermediate level of
the DT construction, the total missing information has
dropped by a fraction much larger than the “expected
rate”, then the tree construction procedure is stopped.
The other new criterion is aimed at producing “short
association rules”, with a small number of attributes in
the antecedent (a user-selectable tree-level limit). The
algorithm will stop the DT construction at this level,
provided the information gain is above some fraction
of the a-priori missing information.

Association Rules are straightforwardly collected
from the decision tree. The two standard criteria
for ARs, support and confidence (Agrawal & Srikant
1994)’ are calculated from the weights of the paths
that become rules. This method has an advantage over
standard data mining algorithms because decision tree
construction already prunes numerous paths that do
not contain sufficient information gain.

The DT construction algorithm is implemented as a
standard tool of the FlexiMine generic interface. This
option of the system is used also for comparing results
with the most up to date DT construction and prun-
ing algorithms in the literature (i.e. C4.5 from (Quin-
lan 1993)). The initial experimental results seem quite
encouraging, as the shallow trees and short ARs we
produce are very good compared to C4.5.

Implementation Issues
Remote vs. Local Users. Although for privacy
and security reasons, FlexiMine’s user community is
carefully selected, some members may need access the
system from remote locations over the Internet, raising
both security and user-interface problems. Currently,
the user interface module is implemented as a Java
application, allowing intermediate and final results to
be stored in the user’s home directory.

Java applications enable the above private informa-
tion storage, a scheme preferable to us over storing
temporary results in the database, due to their experi-
mental (even ad-hoc) and temporary nature, and in or-
der to keep database growth down to a reasonable size.
A disadvantage of Java applications is that only users
with accounts on our system can use it. Remote users
may use a Java Applet version of our interface, which
allows users to run the system from the Internet, but
does not permit storage of any data in a user’s account.
Setting up local accounts for users, or distributing the
Java application code to authorized remote users are

KDD-98 187

the two solutions offered in our system.
Performance Issues. In FlexiMine, when the user

does not actually need all the data specified by a query,
long delays are avoided by lazy computation. A typi-
cal example is when performing browsing of values in a
table in order to plan a selection or an abstraction cri-
terion Using separate threads for retrieval and brows-
ing allows the latter to be performed before the former
is complete. Additionally, we (optionally) provide the
user an estimator of fraction of retrieved results, with
a capability of terminating the retrieval before com-
pletion. Estimates are currently obtained by a total-
count query prior to actual retrieval, with somewhat
less precise, but more efficient, schemes (sampling) un-
der construction. System performance as a whole was
significantly enhanced by storing results of queries in
memory and disk (local user directory) caches.

Database Interface Generality. FlexiMine was
designed (and implemented) to require no changes in
the code when using a new database. The schema of
the database is retrieved directly from the database
server, and inserted into appropriate Java classes. SQL
queries are used to extract the schema information
from the catalog (Domshlak, C. et. al. 1998). Some of
these queries are of particular significance, as they ex-
tract the semantics and dependencies in this database.
The latter are used, in turn, in the aliasing and the se-
lection processes, as discussed above. Catalog queries
are essentially the only DBMS-dependent part of our
system. Conversion to another relational database sys-
tem, such as Oracle, entails little beyond a minor mod-
ification of these queries.

Summary
FlexiMine is a prototype KDD system under develop-
ment at BGU for data-mining research, incorporating
real-life databases, with a goal of supporting varied
user types. The system emphasizes integration of
most KDD operations, and extensibility. Incorpo-
ration of new algorithms or their improved variants
is facilitated, as is convenient extension of support to
new databases or abstraction hierarchies. Though not
currently available, an interface for adding new algo-
rithms to FlexiMine by a user at runtime requires only
minor software changes. A user-friendly interface en-
ables non-programmers both local and remote access
to the system.

Examining several features of FlexiMine, as well as
some currently incorporated data-mining algorithms in
the system, we have highlighted features that are so-
lutions to difficult system design problems, that may
well be of interest to other KDD system integrators
and designers. In addition, several results on data-

mining algorithms (for association rules, probabilistic
models, and decision trees) obtained with FlexiMine
were mentioned. Several remaining system issues are
of future research interest, in particular lazy evaluation
and approximate computation of intermediate results
(of queries and data-mining algorithms), extensibility
vs. efficiency, and security issues.

Acknowledgments
This research is supported by an infrastructure grant
from the Israeli Ministry of Science and Technology.
We thank the anonymous reviewers for some useful
ideas on future additions to FlexiMine.

References
Agrawal, R., and Shafer, J. C. 1996. Parallel min-
ing of association rules: Design, implementation and
experience. IBM Research Report RI 10004.

Agrawal, R., and Srikant , R. 1994. Fast algorithms
for mining association rules. In VLDB-94.

Brunk, C.; Kelly, J.; and Kohavi, R. 1997. MineSet:
An integrated system for data mining. KDD-97 135-
138.
Charniak, E., and Shimony, S. E. 1994. Cost-based
abduction and map explanation. Artijiciuk InteZZi-
gence Journal 66(2):345-374.

Domshlak, C. et. al. 1998. FlexiMine - a flexible plat-
form for KDD research and application construction.
Technical Report FC-98-04, Ben-Gurion University.
Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P.; and
Uthurusamy, R. 1996. Advances in Knowledge Dis-
covery and Data Mining. AAAI Press/MIT Press.
Heckerman, D. 1991. Probabilistic Similarity Net-
works. MIT Press.

Pearl, J. 1988. Probubikistic Reasoning in Intelligent
Systems: Networks of PZausibZe Inference. San Mateo,
CA: Morgan Kaufmann.

Quinlan, J. R. 1993. C4.5 - Programs for Machine
Learning. Morgan Kaufmann Pub., San Mateo, CA.
Shimony, S.; Domshlak, C.; and Santos, E. J. 1997.
Cost-sharing in bayesian knowledge bases. In UAI-97,
421-428.

Shimony, S. E. 1993. The role of relevance in explana-
tion I: Irrelevance as statistical independence. Inter-
national Journak of Approximate Reasoning 8(4) :281-
324.

Silberschatz, A., and Tuzhilin, A. 1996. What
makes patterns interesting in knowledge discovery
systems. IEEE iPransuc. on Knowledge and Data Eng.
8(6):970-974.

188 Domshlak

