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Abstract 

* FlexiMine is a KDD system designed as a testbed for 
data-mining research, as well as a generic knowledge 
discovery tool for varied database domains. Flexibil- 
ity is achieved by an open-ended design for extensi- 
bility, enabling integration of existing data-mining al- 
gorithms, new locally developed algorithms, and sup- 
port functions, such as visualization and preprocess- 
ing. Support for new databases is simple - currently 
via SQL queries to an INFORMIX database server. 
With a view of serving remote, as well as local, users, 
internet availability was a design goal. By implement- 
ing the system in Java, minor modifications allow us 
to run the user-end of the system either as a Java ap- 
plications or as a Java Applet. 

Introduction 
Knowledge Discovery in Databases (KDD) has become 
an important technology, and an extremely interdisci- 
plinary research area (Fayyad et al. 1996). FlexiMine 
is a prototype KDD system currently being developed 
at Ben-Gurion University for testing techniques and 
algorithms for Data Mining and Knowledge Discov- 
ery and their evaluation in the context of real-life 
databases and users. The emphasis of this system 
and its software architecture is on integration of most 
KDD operations, (including database access and selec- 
tion, preprocessing, data transformations such as ab- 
straction, data-mining algorithms, and interactive vi- 
sualization) and on extensibility. Thus, the system 
facilitates incorporation of new algorithms or their im- 
proved variants, and convenient extension of support 
to new databases or abstraction hierarchies. Yet, the 
system preserves a friendly and easy to use interface 
which enables users and domain experts to access the 
system from both local and remote locations, and to 
comment on, and evaluate, result quality. 

Generally, KDD commercial systems such as Mine- 
Set (Brunk, Kelly, & Kohavi 1997) put heavy empha- 
sis on visualization tools, query and reporting tools, in 
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order to satisfy various user requirements. FlexiMine, 
on the other hand, is a research prototype, thus its 
emphasis on providing a testbed for evaluating new al- 
gorithms for data mining. Since such evaluation must 
involve real users and real databases, its architecture 
must be very modular and extensible. FlexiMine archi- 
tecture and user-interface feature a rich selection of al- 
gorithms, with the option of activating them with vari- 
ous parameters for the purposes of testing. As many of 
the KDD algorithms are computationally intensive, it 
allows for their operation on parts of the database, and 
for observation of partial results as soon they become 
available, as well as lazy evaluation. 

Design considerations and user-interface “flow” of 
FlexiMine appear in the two following sections. Al- 
though we emphasize system aspects, some original 
ideas were developed with this system as a testbed - 
presented in the algorithms section. We conclude with 
implementation and software engineering issues, espe- 
cially those needed to provide system extensibility. 

System Design and Implementation 
The overall structure of FlexiMine is described in Fig- 
ure 2. The system is implemented in a form of Java 
Application (or Applet, see below), consisting of sev- 
eral Java classes. The Java classes may in-turn call C 
functions which in-turn may contain SQL primitives 
and call the Informix DBMS. FlexiMine layers are: 

User interface layer - responsible for interacting 
with the user, and for calls to various visualization 
utilities. Also handles security and the variance be- 
tween running the system from a remote site (Java 
Applet) or l?om a local site (Java application). 

Intermediate layer - (C with embedded SQL) 
Handles a protocol of requests, received from the 
user interface module. After performing the oper- 
ations (query database, run data-mining algorithm 
or visualization), returns results to the user inter- 
face module. Design enables both database and al- 
gorithm independence. Database requests are trans- 
lated into embedded SQL statements, to be executed 

From: KDD-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



[-j--j User Desktop / 

; --------~---~~~~~~~~~ i User Interface 

: _____________________ j l3-r 

layer 

Input - output 

1 
Database sewer 
layer 

p&q / p&ba= 

Figure 1: FlexiMine Architecture 

by the database server layer. Results are rendered in 
a standard format file, making the data-mining al- 
gorithms independent of the database. This scheme 
also supports partial evaluation and pipelining. 

Data-mining algorithms layer - includes decision 
tree learning, association rule induction, and other 
data-mining algorithm modules. An algorithm mod- 
ule consists of the implementation - a batch-mode 
executable file, and two Java classes, providing an 
interface for algorithm invocation and result inter- 
pretation and presentation. 

Database server layer - Informix relational 
DBMS. Receives queries from intermediate module, 
returns results to the intermediate module. 

Databases currently available are: a) student 
database - personal information about students, 
course data, and student grades. b) Hospital 
database - patients information: reception, tests, di- 
agnoses, and hospitalization. 

System Architecture and Flow 
After logging into FlexiMine and selecting a database, 
the database schema is displayed, enabling the user to 
mark a sub-set of attributes of interest. Since most 
data-mining algorithms work on a single relation, one 
must be formed by a join operation. 

The user may create new attributes which represent 
a form of a “denormalization” process. We call the cre- 
ation of these new attributes ah-hag. Another process 
at this stage is abstraction, which enables the user to 
create new abstractions to various attributes and do- 
mains. Such abstractions are extremely important in 
the process of data mining. A typical abstraction may 
be of integer grades into marks ((A, B, C, NC}). 

Selection 
The purpose of a selection is to produce an interesting 
view to the user of a given database. This view may 

further be aliased, and its values may (optionally) be 
abstracted. The result is used as input for the visu- 
alization and the data mining algorithms. A selection 
is assisted by a graphical interface and derived via an 
SQL query automatically generated by the system ac- 
cording to user selections. 

Selections are named objects, formed by a user selec- 
tion definition, as follows. A set of relations is chosen 
from the list of the relations of the underling database 
(the relations list on the selection screen). The re- 
lations contain the attributes of interest to the user, 
and have to share common attributes in a way that an 
equi-join between them is meaningful (see (Domshlak, 
C. et. al. 1998) for details). 

Abstraction 
Abstraction may be defined over domains, such as “in- 
teger”, as well as on values of a specific attribute of 
a specific relation. The result of an abstraction is a 
map providing an (abstract) name or value to each of 
the original values. Manually defining a (named) ab- 
straction is assisted by graphical interfaces (Figure 2). 
Pushbutton selection enables a choice on whether to 
abstract on a domain (integer, float or fixed-length- 
string) or on actual attribute values (necessitating a 
choice of relation and attribute). Abstraction result 
types are domain-based, enabling further abstractions 
to be defined on top of existing ones, possibly leading 
to abstraction (“taxonomic”) hierarchies. After ab- 
straction definition, the mechanism becomes transpar- 
ent to the user, as well as to other system layers, en- 
abling easy future expansion for automatic abstraction 
schemes, such as those based on automated clustering. 

Figure 2: The Abstraction Screen 
Aliasing 
The aliasing mechanism enables the creation of new 
attributes, of interest to the data miner. These are 
treated as bona fide distinct attributes, in order to 
be accessible by the visualization and datamining 
algorithms. Prime candidates for aliasing are “de- 
normalized” attributes, resulting in the process of con- 
verting values in rows into values in a separate col- 
umn. Consider a table containing courses grades for 
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students, with (stud#, course#) as a primary key. To 
create an alias for “final grade in the compilers course”, 
the system should create a table with the following at- 
tributes: (stud#, final-camp, *), with * standing in for 
other possible attributes. 

Aliasing is permissible only if the resulting table 
makes sense from the database theory point of view. 
That is, it must be the case that all new attributes 
are functionally dependent on the primary key of the 
resulting table. All attributes not depending on this 
new key should be eliminated - this is enforced by the 
system and made as user-transparent as possible (see 
(Domshlak, C. et. al. 1998)). 

Visualization 
Currently implemented are textual viewing, his- 
tograms (Figure 2), and scatter-plots. Several inter- 
actively user-selectable primary axis sorting methods 
are available: by value, by frequency, or scale-based 
(for numerical domains). The computation of the his- 
togram is made lazy, as, due to lazy evaluation, the se- 
lected relation may not be available in explicit form at 
the time visualization begins. Anytime schemes, such 
as successive approximate partial results using sam- 
pling, are under development. 

Interface with Data-Mining Algorithms 
FlexiMine runs data-mining algorithms as separate 
processes that receives a data file, and a set of pa- 
rameters. For example, an association-rule induction 
algorithm receives a relation, support and confidence 
thresholds, and optionally a set of relevant target at- 
tributes. Results are displayed to the user in text for- 
mat, and saved in a temporary file, for possible use by 
other data-mining algorithms or visualization schemes. 

Data-Mining Algorithms in FlexiMine 
FlexiMine currently contains algorithms for learn- 
ing ARs from a single relation and from multiple 
relations, probabilistic models (Bayesian Knowledge 
Bases), decision-trees, and meta-queries. 

Distributed Induction of Association Rules 
Most association-rule algorithms, e.g. (Agrawal & 
Srikant 1994) are a two-step process: finding all sets of 
items that have support above the given minimum (fre- 
quent itemsets), and generating the desired rules from 
these itemsets. In FlexiMine, we decided to implement 
the Apriori algorithm (Agrawal & Srikant 1994), as 
it is reasonably easy to parallelize (Agrawal & Shafer 
1996), reasonably memory-efficient, and because inter- 
mediate results of Aprimi facilitate rule filtering for 
“interestingness” (Silberschatz & Tuzhilin 1996), and 
on-line generation of the BKB model (see below). 

The association rule generator is a separate task(s), 
accepting data in flat-file format, with output a flat 
rules file. Presentation is currently a list of rules, sorted 
by confidence, support, or both. Post-filters matching 
given attributes in the rule head or tail may be used. 
A graphical display of the rules as a (directed) hyper- 
graph is also available in the system. 

In distributing AR induction, our goal was to take 
advantage of commonly available computing resources, 
namely a set workstations on a LAN, in order to speed 
up generation of ARs. Easy availability and capabil- 
ity for using heterogeneous computing resources, was 
achieved by implementing the algorithms on top of 
PVM. We have rewritten the algorithms to take ad- 
vantage of the fact that all computers share a common 
NFS. Each association-rule task is handled by a muster 
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Figure 3: Process Hierarchy 
process that creates n (dynamically determined) iden- 
tical slaves, that collaborate on the task (Figure 3). 

Bayesian Knowledge Bases 
The discovered ARs provide large amounts of poten- 
tially useful, yet sometimes unintuitive information. 
These may still be useful to an automated reasoning 
engine, especially if they possess a valid probabilis- 
tic global semantics. AI&, however, convey only local 
causal dependencies between sets of attribute instanti- 
ations. Graphical probabilistic models, such as Bayes 
networks (BNs) (Pearl 1988), convey local dependen- 
cies, while possessing global semantics. 

BNs do not capture conditional independencies be- 
tween particular instantiations of variables, a problem 
addressed by Similarity Networks (Heckerman 1991), 
Independence-Based Relevance (Shimony 1993), and 
Weighted Proof Graphs (WAODAGs) (Charniak & 
Shimony 1994). Other restrictions are that BNs do 
not allow cycles in the graph structure, and cannot 
represent partially known distributions. We thus use 
a generalization of BNs, called Bayesian Knowledge 
Bases (BKBs) (Shimony, Domshlak, & Santos 1997). 
The dependencies in the model are defined between in- 
stantiations, and cycles are allowed between variables 
as well as between instantiations of variables. 
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Figure 4: BKB example - variables A B, C, D, and E 

BKBs consist of a directed graph, called a correla- 
tion graph, which hastwo distinct types of nodes (Fig. 
4). Instantiation-nodes (I-nodes), correspond to the 
instantiations of the variables (several I-nodes corre- 
spond to a single node in a Bayes network - one I-node 
for each domain value of the Bayes network node). 
Support-nodes (S-nodes) are used to quantify the con- 
ditional dependencies between instantiations of vari- 
ables (corresponding to one or more conditional prob- 
ability table (CPT) entries in a BN). 

Owing to Apriori decomposition, we combined the 
BKB on-line construction with the rule discovery part 
of the algorithm. We are using BKBs generated by 
the system to test abductive-reasoning algorithms for 
BKBs (Shimony, Domshlak, & Santos 1997). 

Multi-relation association rules 
The goal of the direct multi-relation association-rule 
generation algorithm is to reduce the large table cre- 
ated for mining ARs from multiple relations, by avoid- 
ing actual join operations whenever possible. Our 
scheme currently assumes that all joins are 1:n natural 
joins, which can be represented as a directed graph. 
For clarity, we consider just one path in the graph. 

The algorithm consists of a pre-processing phase, 
and a coalescing phase (based on the Apriori-Tid 
(Agrawal & Srikant 1994) algorithm). During pre- 
processing, one follows the path and performs a “vir- 
tual JOIN”, between the “1” side table and the “n” 
side table. This virtual JOIN does not create a re- 
sulting joined table, but does generate a count of how 
many tuples each tuple in the “1” side is connected 
to in the “n” side. These counts are saved and the 
process is repeated for each edge in the path. In the 
coalescing phase, the above counts are used as sup- 
port counts without performing the actual JOINS, sav- 
ing both space and time in comparison to the single- 
relation algorithm (see (Domshlak, C. et. al. 1998)). 

Decision Trees 

Decision trees (DT) have been treated extensively in 
the machine learning community. DT construction al- 
gorithms deal with noise and prune trees according to 

information theoretic criteria (Quinlan 1993)’ as well 
as association rule construction. 

In FlexiMine we have added intermediate tree-level 
stopping criteria. One is based on marginal informa- 
tion gain - a user-selectable adaptable criterion for in- 
formation gain bound. If, at some intermediate level of 
the DT construction, the total missing information has 
dropped by a fraction much larger than the “expected 
rate”, then the tree construction procedure is stopped. 
The other new criterion is aimed at producing “short 
association rules”, with a small number of attributes in 
the antecedent (a user-selectable tree-level limit). The 
algorithm will stop the DT construction at this level, 
provided the information gain is above some fraction 
of the a-priori missing information. 

Association Rules are straightforwardly collected 
from the decision tree. The two standard criteria 
for ARs, support and confidence (Agrawal & Srikant 
1994)’ are calculated from the weights of the paths 
that become rules. This method has an advantage over 
standard data mining algorithms because decision tree 
construction already prunes numerous paths that do 
not contain sufficient information gain. 

The DT construction algorithm is implemented as a 
standard tool of the FlexiMine generic interface. This 
option of the system is used also for comparing results 
with the most up to date DT construction and prun- 
ing algorithms in the literature (i.e. C4.5 from (Quin- 
lan 1993)). The initial experimental results seem quite 
encouraging, as the shallow trees and short ARs we 
produce are very good compared to C4.5. 

Implementation Issues 
Remote vs. Local Users. Although for privacy 
and security reasons, FlexiMine’s user community is 
carefully selected, some members may need access the 
system from remote locations over the Internet, raising 
both security and user-interface problems. Currently, 
the user interface module is implemented as a Java 
application, allowing intermediate and final results to 
be stored in the user’s home directory. 

Java applications enable the above private informa- 
tion storage, a scheme preferable to us over storing 
temporary results in the database, due to their experi- 
mental (even ad-hoc) and temporary nature, and in or- 
der to keep database growth down to a reasonable size. 
A disadvantage of Java applications is that only users 
with accounts on our system can use it. Remote users 
may use a Java Applet version of our interface, which 
allows users to run the system from the Internet, but 
does not permit storage of any data in a user’s account. 
Setting up local accounts for users, or distributing the 
Java application code to authorized remote users are 
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the two solutions offered in our system. 
Performance Issues. In FlexiMine, when the user 

does not actually need all the data specified by a query, 
long delays are avoided by lazy computation. A typi- 
cal example is when performing browsing of values in a 
table in order to plan a selection or an abstraction cri- 
terion Using separate threads for retrieval and brows- 
ing allows the latter to be performed before the former 
is complete. Additionally, we (optionally) provide the 
user an estimator of fraction of retrieved results, with 
a capability of terminating the retrieval before com- 
pletion. Estimates are currently obtained by a total- 
count query prior to actual retrieval, with somewhat 
less precise, but more efficient, schemes (sampling) un- 
der construction. System performance as a whole was 
significantly enhanced by storing results of queries in 
memory and disk (local user directory) caches. 

Database Interface Generality. FlexiMine was 
designed (and implemented) to require no changes in 
the code when using a new database. The schema of 
the database is retrieved directly from the database 
server, and inserted into appropriate Java classes. SQL 
queries are used to extract the schema information 
from the catalog (Domshlak, C. et. al. 1998). Some of 
these queries are of particular significance, as they ex- 
tract the semantics and dependencies in this database. 
The latter are used, in turn, in the aliasing and the se- 
lection processes, as discussed above. Catalog queries 
are essentially the only DBMS-dependent part of our 
system. Conversion to another relational database sys- 
tem, such as Oracle, entails little beyond a minor mod- 
ification of these queries. 

Summary 
FlexiMine is a prototype KDD system under develop- 
ment at BGU for data-mining research, incorporating 
real-life databases, with a goal of supporting varied 
user types. The system emphasizes integration of 
most KDD operations, and extensibility. Incorpo- 
ration of new algorithms or their improved variants 
is facilitated, as is convenient extension of support to 
new databases or abstraction hierarchies. Though not 
currently available, an interface for adding new algo- 
rithms to FlexiMine by a user at runtime requires only 
minor software changes. A user-friendly interface en- 
ables non-programmers both local and remote access 
to the system. 

Examining several features of FlexiMine, as well as 
some currently incorporated data-mining algorithms in 
the system, we have highlighted features that are so- 
lutions to difficult system design problems, that may 
well be of interest to other KDD system integrators 
and designers. In addition, several results on data- 

mining algorithms (for association rules, probabilistic 
models, and decision trees) obtained with FlexiMine 
were mentioned. Several remaining system issues are 
of future research interest, in particular lazy evaluation 
and approximate computation of intermediate results 
(of queries and data-mining algorithms), extensibility 
vs. efficiency, and security issues. 
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