DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

Cost and Quality Trade-Offs in Crowdsourcing

Anja Gruenheid
Systems Group
ETH Zurich

anja.gruenheid@inf.ethz.ch

ABSTRACT

Algorithms for crowdsourced tasks such as entity resolution, sort-
ing, etc. have been subject to a variety of research work. So far, all
of this work has focused on one specific problem respectively. In
this paper, we want to focus on the bigger picture. More specifically,
we want to show how it is possible to estimate the budget or the
quality of an algorithm in a crowdsourcing environment where noise
is introduced through incorrect answers by crowd workers. Such
estimates are complex as noise in the information set changes the
behavior of established algorithms. Using two sorting algorithms,
QuickSort and BubbleSort as examples, we will illustrate how al-
gorithms handle noise, which measures can be taken to make them
more robust, and how these changes to the algorithms modify the
budget and quality estimates of the respective algorithm. Finally,
we will present an initial idea of how such an estimation framework
may look like.

1. INTRODUCTION

Quality and its influence on the output result of any algorithm
using crowdsourcing has been subject to a range of research work.
Research focused on topics such as increasing the worker’s motiva-
tion, quality control mechanisms, or accepting that workers make
mistakes and constructing fault-tolerant variations of the original
algorithms [4, 15]. This work will focus on none of these quality as-
surance methods specifically but on assessing the inter-relationships
of the crowdsourcing budget, the crowd worker error rate, and
the result quality. Our goal is to define an intuition on how these
parameters are interleaved, meaning a) how for example adding
votes changes the result quality or b) if a certain result quality is
required, how many votes are required to meet these quality con-
straints. These two scenarios are visualized in Figure 1. Obviously,
functions fq and fp are closely related for the sake of conformity,
where fq(Bi, perr) = Q; and fB(Qi, perr) = B holds for a spe-
cific input budget B; and input quality ();. In other words, fq is
the reverse calculation of fg. Note that the crowd worker error rate
is a given parameter in both scenarios that obviously influences the
result quality and budget requirements.

It is not the objective of this work to define how this error rate can

Copyright (€) 2013 for the individual papers by the papers’ authors. Copying
permitted for private and academic purposes. This volume is published and
copyrighted by its editors.

43

Donald Kossmann
Systems Group
ETH Zurich

donaldk@inf.ethz.ch

algorithm B~ Perr algorithm @Q Perr

Q

(a) Quality based on Budget

B
(b) Budget based on Quality

Figure 1: Estimation Functions

Q

perr=0
perr=~1
pe'rTz-Z

B

Figure 2: Cost-Quality Trade-Off

be determined but we assume that it is a known parameter which
can be estimated through worker quality tests or more advanced
quality techniques [5, 9]. In addition to the crowd worker error rate
and the monetary budget (resp. the required quality), the estimation
function takes as input an algorithm which interprets the feedback
of the crowd. Depending on this algorithm and its efficiency in a
noisy environment, the estimated budget or quality may vary. For
the purpose of this paper, we will assume that the algorithm that we
want to estimate is a sorting algorithm but the quality and budget
estimation techniques that we will present here can also be used
for other algorithms in which the crowd is employed, such as entity
resolution.

Independent of the algorithm, we assume that the quality of the
result decreases if the noise in the crowd answers increases which is
depicted in Figure 2. We will observe this behavior when examining
two example sorting algorithms, QuickSort and BubbleSort [11].
For these algorithms, we will discuss quality and budget trade-offs,
showing how fault-tolerance mechanisms and specific adaptations to
the noisy environment can improve result quality effectively. Addi-
tionally, we will show that the result quality and budget requirements
also highly depend on the applied algorithm and we present exam-
ples where algorithms that were thought to be better alternatives
will produce results with lower quality.

More specifically, we will first describe, using QuickSort and

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

BubbleSort as example algorithms, how different algorithms handle
noise with and without additional fault-tolerance mechanisms and
how they compare in terms of the amount of the budget that they
use and the quality of their results. From this specific example, we
will then draft the challenges of any estimation framework in this
kind of environment.

2. RELATED WORK

Crowdsourcing in context of database systems has been subject
to a variety of research recently. One research area focuses on
integrating crowdsourcing functionality efficiently into database
management systems while another research focus are algorithms
suitable for this kind of environment. Systems such as CrowdDB [1],
Qurk [7], and Deco [10] connect traditional data storage systems
with crowdsourcing platforms such as Amazon Mechanical Turk
to gain additional information on queries [12]. To enable users to
have similar functionality in those systems as in any comparable re-
lational database management system, research has further focused
on optimizing crowd accesses (i.e. reducing the budget spent on the
crowd) when implementing algorithms such as ranking and entity
resolution. For these algorithms, research has pursued two different
directions: The first class of algorithms focused on reducing the
budget while assuming that the crowd answers perfectly [13, 14],
observing the quality of the answers by the crowd workers as an
orthogonal problem. The second class of algorithms introduces the
notion of fault-tolerance to be able to handle noisy answers from
the crowd [2, 3, 8, 6].

The novelty of our work is that we abstract from the actual im-
plementation of the algorithms in that we want to describe a more
general framework for the interdependencies between quality and
budget in a crowdsourcing environment independent of the applied
algorithm. Hence, we observe rather than construct the behavior of
a set of algorithms and show through examples which behavior fits
better for noisy environments.

3. IMPACT OF NOISE

Traditionally, sorting algorithms such as QuickSort and Bubble-
Sort have been evaluated with respect to time and space require-
ments. The crowdsourcing context now adds another dimension,
namely result quality, as a noisy environment influences the quality
and correctness of the output of these algorithms negatively. More-
over, temporal constraints become neglible as crowdsourcing itself
does not necessarily need immediate response algorithms by de-
sign while space requirements can be seen as budget constraints
(i.e. the number of comparisons that are required to find a solution).
We will show in the following that the choice of algorithm for a
certain problem heavily influences the result quality especially in
noisy environments. To that purpose, we will first evaluate Quick-
Sort in a crowdsourcing environment after which we will focus on
BubbleSort as example algorithms.

3.1 QuickSort

The prerogative of QuickSort is that it can efficiently sort an input
set, using O(n log(n)) comparisons on average. Thus, it is a prime
candidate for sorting in a crowdsourcing environment as it allows
to reduce the budget spent on the task. On the other hand, noise in
the crowdsourcing answers directly propagates if QuickSort is used.
An example for this observation is shown in Figure 3. Imagine a
crowdsourcing task which requires the workers to order a few words
according to their positivity. In the first example answer set, none
of the edges (i.e. the votes of crowd workers) is wrong which leads
to low budget result with perfect quality. In contrast, in the second

44

1st pivot: good good
>
2nd pivot: bad excelh{ bad
/
neutral \p‘ainful
(a) QuickSort Without Noise
1st pivot: good good
| /
painful neutral

(b) QuickSort With Noise

Figure 3: QuickSort Behavior Variations

example set the edge between ‘painful’ and ‘good’ distorts the result
in that painful is now ranked higher than three other words due to
the transitive propagation of this specific wrong comparison.

How noise affects the output of the QuickSort algorithm is dom-
inated by the distribution of the noisy answers and whether the
implementation of QuickSort used in this context is fault-tolerant.
Many of the current crowdsourcing solutions do not provide fault-
tolerant algorithms but assume the crowd to answer perfectly [13,
14]. In contrast, we believe that given the application of these algo-
rithms where information is collected in crowdsourcing platforms
such as Amazon Mechanical Turk, accepting that the crowd does
create a certain amount of noise is only natural. Mechanisms that
can make QuickSort fault-tolerant may include strategies such as
using the majority of the crowd votes in order to determine an edge
or to request that one answer exceeds the alternative by quorum
votes. Depending on the strategy, the estimates of functions fq and
fB vary. For example imagine that pe,»=.2, meaning here that 20%
of the actual comparisons are wrong on average. If the majority
strategy is applied and all false votes are countered by more true
votes, the quality of the result can still be impeccable. On the other
hand, if no fault-tolerant mechanism is used, the result quality will
suffer because wrong comparisons will be propagated directly into
the result. Obviously, this is the best case scenario for the majority
strategy and in practice even with fault-tolerance comparisons will
be propagated wrongly into the decision structure. But given the
integrated quality assurance mechanism of the majority strategy, a
smaller number of comparisons will be wrong which means higher
result quality in the end. Thus, our first observation is that depending
on the interpretation strategy used (for example the direct propa-
gation of votes or the majority strategy explained in the previous
example), the budget and the quality output changes.

Figure 4 depicts a simulated budget-quality trade-off for the two
discussed strategies, the direct propagation of votes and the majority
interpretation strategy. It shows that fault-tolerance increases the
budget requirements for QuickSort but it also improves the result
quality, i.e. the number of pair-to-pair comparisons that are con-
firmed by the ground truth. To better understand this observation
take again the running example: If the crowd worker error rate is

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

quality

— Perr=0

— Perr=.1, direct

) Perr=2, direct

/ — Perr=.1, majority
Perr=.2, majority

T cost
31500

Figure 4: Fault-Tolerance Strategy Trade-Offs for QuickSort

Perr=.2, at least one edge is faulty out of the six that we need for
our QuickSort solution in Figure 3. The result quality of our ex-
ample is improved if the majority interpretation strategy is applied
because on average, the erroneous votes are better distributed than
in the direct scenario thus resulting in less erroneous comparisons
as exemplified above. The figure also visualizes that applying the
majority strategy leads to a higher budget as a comparison is made
multiple times, thus the overall information gain is slower per unit
of budget.

During the simulations a decrease in cost can be observed when
the error rate increases, i.e. the cost for QuickSort with the direct
strategy and without noise is approximately 11,000 while the cost
decreases for pe,r = .1 t0 9,700. The explanation for this behavior
is that in cases where the pivot element is not a central element in
the final sorting, wrong answers may benefit the overall number of
comparisons as the wrongly judged item is transfered into a smaller
bucket and thus used less often overall for comparisons.

Overall, the main observation for QuickSort here is that if the
error increases, fault-tolerance measurements can help to improve
the quality of the result set even if they also mean an increase in
budget in order to reach the break-even point. On the other hand, it
is essential to observe that even with fault-tolerant techniques, there
is no guarantee that QuickSort will provide a correct result to the
problem of sorting an input dataset. Thus, if the problem statement
is to find a complete ranking of the input set, QuickSort fails as a
sorting algorithm in this example setting.

3.2 BubbleSort

In contrast to QuickSort, BubbleSort is considered to be subopti-
mal in terms of the number of comparisons it needs to find a solution
as it does local comparisons rather than global comparisons and its
average comparison complexity is O(n?). In a noisy environment
predicates shift and the number of pure item comparisons is not the
decisive factor anymore as we will show in the following. Bubble-
Sort specifically has one characteristic that makes this algorithm
suitable for noisy environments: It benefits from the input order of
the records. Thus, if the input is already sorted, the algorithm will
run in O(n). This characteristic can be leveraged by running Bub-
bleSort multiple times over the same input dataset. Due to the input
sensitivity of BubbleSort, subsequent runs will have a decreased
number of comparisons. BubbleSort in a noisy environment will fur-
ther benefit from a very intuitive modification to the algorithm that
is made due to the cost sensitivity of the environment: Every com-
parison that is requested is stored. As a result, comparing the same
item twice will not result in additional cost but if a crowd worker
returns the wrong answer this answer will be propagated through the
dataset. Even though this kind of propagation reduces the quality
of the output, the cost of iteratively improving the sorting solution
is less than running BubbleSort without storage mechanisms as

45

cost
(in M)
1 4.5

quality

— BubbleSort, quality |
BubbleSort, cost

— QuickSort, quality

J QuickSort, cost L

=i
.

runs —

Figure 5: QuickSort vs BubbleSort, perr = .2

verified through simulations.

These modifications are minor and do not change the character
of the algorithm which proceeds by doing local comparisons and
‘bubbling’ items to their correct spot in the ordering.

3.3 QuickSort vs. BubbleSort

When comparing QuickSort and BubbleSort and observing their
behavior in a noisy setting, we can see that traditional algorithmic
assumptions shift. Consider Figure 5 which shows an example
sketch for this shift: Here, we draw the behavior of the direct
QuickSort approach and the BubbleSort variation described above
in terms of cost and quality simulated in a noisy environment with
Perr = .2 and 1000 items to be sorted. As we want to obtain
the optimal result quality eventually, we execute both algorithms
multiple times, the number of runs in this simulation is 500. There
are two main observations that can be drawn from these simulations.

First, they show that BubbleSort can improve its output result
over time due to its input sensitivity while the output quality of
QuickSort remains constant. Additionally, the average number of
crowd comparisons requested in BubbleSort decreases over time (in
our simulations up to 50%). Thus, the output quality of BubbleSort
increases because if the algorithm asks for fewer input from the
crowd, fewer noise is introduced into the sorting. In contrast, the
level of noise that the QuickSort algorithm has to handle remains the
same over multiple runs. The second observation that can be drawn
from these simulations is that even if cost reduction techniques are
used, BubbleSort is in this setup 26 times more expensive than
QuickSort when achieving the same quality (i.e. at the quality break-
even point). Thus, even though the increase in cost is lower, the
necessity of repeating the algorithm multiple times increases the
overall cost for BubbleSort in the end.

The example above shows that some algorithms like Bubble-
Sort have a natural robustness that makes them more suitable in
noisy environments. Thus, we think that established algorithms that
outperform others according to traditional complexity theory need
to be looked upon from a new angle in noisy environments as an
alternative or as a component in hybrid setups.

4. QUALITY & BUDGET ESTIMATES

In order to realize an estimation framework, we propose as first
step to establish a modified complexity theory that is noise-aware.
That is, in traditional complexity theory the number of comparisons
per algorithm determines the usefulness of that specific algorithm.
As we have shown previously, traditional assumptions may not hold
in the crowdsourcing environment due to noise in the information
set. Thus, algorithms need to be evaluated taking into consideration
their behavior in noisy environments. This evaluation can then be
used to determine which algorithm is most suitable to solve a certain
problem. As a result, we propose to define a new model for the

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

complexity of an algorithm that is dependent on a) the number of
records in the input set (analogous to traditional complexity theory)
b) and the amount of noise that this algorithm will encounter.

If the complexity of an algorithm is known, we can then use it
to form estimates of the required budget given certain quality con-
straints or estimates that approximate the result quality given certain
budget constraints for an algorithm as shown initially in Figure 1.
Note that this notion of complexity is not restricted to sorting algo-
rithms but it can be used for evaluating a variety of algorithms such
as entity resolution, finding the maximum etc. To be able to take
input parameters such as a required quality or available budget, tra-
ditional algorithms need to be adjusted. Modifying these algorithms
is necessary because current algorithms take an input dataset after
which they are executed to return a result with a certain quality for
a certain budget independent of the crowd worker error rate. How
budget and quality are distributed is subject to the specific execution
run and resemble points on a curve similar to those depicted in
Figure 5 where the curve varies according to the level of noise in
the information set and the chosen algorithm.

In our opinion, algorithms need to be conscious of input con-
straints to be able to compare two algorithms in a noisy environment.
Going back to our comparison of QuickSort and BubbleSort, we
can determine that according to the characteristics of the algorithms,
QuickSort with fault-tolerance can result in good quality results in
low noise environments while BubbleSort can be more adequate in
environments where the crowd answers wrongly more often. But in
order to be able to define the actual trade-off, we need to compare
how the algorithms react in scenarios with fixed error rate and bud-
get or quality. Thus, we want to be able to define the cost-quality
function curves instead of points on the curve that can be derived
from current algorithm variations that are not constraint-aware as
mentioned previously.

If these curves are known, we can use them for our estimation
framework in that they define the complexity of an algorithm depen-
dent on the crowd worker error rate where we can vary budget and
quality constraints in order to find a suitable estimated output. A
simple two-step estimation process may then look as follows:

1. Initial Estimate - Given the properties of the chosen algo-
rithm, i.e. its complexity in this kind of noisy environment,
decide upon an initial estimate.

2. Adjust Estimate - Using the knowledge of the input qual-
ity respectively budget parameter, adjust the estimate as to
meet/exhaust the parameter. An example measure is to allo-
cate more budget for multiple runs of the same algorithm or
for fault-tolerant mechanisms.

Obviously, this process is only a rough sketch of the functionality
of such an estimation framework. More specific implementation
and design details of these two steps are subject to future work as
is the specification of the complexity theory that enables us to give
accurate estimates in noisy environments.

5. CONCLUSION

In this work, we have presented several observations made for
quality and cost trade-offs in the still novel crowdsourcing environ-
ment. Using QuickSort and BubbleSort as example algorithms, we
have shown that any estimation function that wants to determine the
expected output of that algorithm has to take into consideration that
different algorithms behave differently when confronted with noise.
Their behavior not only changes in terms of budget requirements but
they also vary in their robustness in noisy environments. We have
presented techniques such as fault-tolerant interpretation strategies

46

and increasing the number of executions of the algorithms that influ-
ence the result estimation and choice of algorithm when taken into
consideration. Last, we have shown that traditional beliefs such that
QuickSort is better than BubbleSort due to its lower number of com-
parisons are questioned in a noisy environment because even though
QuickSort is requires a smaller budget, BubbleSort may provide
better quality results due to its ingrained second chance mechanism
and its ability to leverage information over multiple runs.

In the future, we plan to specify our sketched estimation frame-
work and to define exactly how noise can be evaluated in such an
environment. Additionally, we want to determine whether it is pos-
sible to formally analyze the trade-off between cost and quality for
algorithms that are traditionally integrated into relational database
management systems. Knowing the complexity of these algorithms
will help us to determine which of them are viable options for a
database system that incorporates crowdsourcing as a way to obtain
information.

6. REFERENCES
[1] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and

R. Xin. Crowddb: answering queries with crowdsourcing. In
SIGMOD Conference, pages 61-72, 2011.

[2] A. Gruenheid, D. Kossmann, S. Ramesh, and F. Widmer.
Crowdsourcing entity resolution: When is a=b? Technical
report, ETH Zurich, 2012.

[3] S. Guo, A. Parameswaran, and H. Garcia-Molina. So Who

Won? Dynamic Max Discovery with the Crowd. In

Proceedings SIGMOD, 2012. to appear.

A. Kittur, J. V. Nickerson, M. Bernstein, E. Gerber, A. Shaw,

J. Zimmerman, M. Lease, and J. Horton. The future of crowd

work. In Proceedings of the 2013 conference on Computer

supported cooperative work, CSCW ’13, pages 1301-1318,

New York, NY, USA, 2013. ACM.

M. Lease. On quality control and machine learning in

crowdsourcing. In Human Computation, 2011.

A. Marcus, D. Karger, S. Madden, R. Miller, and S. Oh.

Counting with the crowd. In Proceedings of the 39th

international conference on Very Large Data Bases,

PVLDB’13, pages 109-120. VLDB Endowment, 2013.

A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller.

Demonstration of qurk: a query processor for humanoperators.

In SIGMOD Conference, pages 1315-1318, 2011.

A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller.

Human-powered sorts and joins. PVLDB, 5(1):13-24, 2011.

D. Oleson, A. Sorokin, G. P. Laughlin, V. Hester, J. Le, and

L. Biewald. Programmatic gold: Targeted and scalable quality

assurance in crowdsourcing. In Human Computation, 2011.

A. Parameswaran, H. Park, H. Garcia-Molina, N. Polyzotis,

and J. Widom. Deco: Declarative crowdsourcing. Infolab

Technical Report, Stanford University, November 2011.

[11] R. Sedgewick and K. Wayne. Algorithms, 4th Edition.

Addison-Wesley, 2011.

B. Trushkowsky, T. Kraska, M. J. Franklin, and P. Sarkar.

Crowdsourced enumeration queries. In /CDE, 2013.

J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder:

Crowdsourcing entity resolution. PVLDB, 5(11):1483-1494,

2012.

S. E. Whang, P. Lofgren, and H. Garcia-Molina. Question

selection for crowd entity resolution. Technical report,

Stanford University.

X. Wu, W. Fan, and Y. Yu. Sembler: Ensembling crowd

sequential labeling for improved quality. In AAAZ, 2012.

[4]

[8]

(9]

(10]

[12]

[13]

[14]

[15]

