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Abstract. With the term ’anti-monotonic function’, we designate spe-
cific boolean functions on subsets of a finite set of positive integers which
we call the universe. Through the well-known bijective relationship be-
tween the set of monotonic functions and the set of anti-monotonic func-
tions, the study of the anti-monotonic functions is equivalent to the study
of monotonic functions. The true-set of an anti-monotonic function is an
antichain. If the universe is denoted by N , the set of anti-monotonic
functions is denoted by AMF (N). This set can be partially ordered in
a natural way. This paper studies enumeration in the resulting lattice
of anti-monotonic functions. We define intervals of anti-monotonic func-
tions according to this order and present four properties of such intervals,
Finally we give a formula for the size of a general interval and a recursion
formula for the n-th number of Dedekind.

Keywords: Dedekind numbers, anti-monotonic functions, antichains, complete
distributive lattices

1 Intervals of Anti-Monotonic Functions

A Boolean valued function on the subsets of a set N , in short a Boolean function,
is said to be anti-monotonic iff it is true for at most one of any two sets A and B
for which A ( B ⊆ N holds. A Boolean function is said to be monotonic iff the
fact that it is true for a set B implies that it is true for any subset of B. There
is a natural bijection between the set of monotonic functions and the set of anti-
monotonic functions through the maximal true sets (e.g. [3]). Note furthermore
that there is a bijection between anti-monotonic functions and antichains: the
true sets of an anti-monotonic function form an antichain, i.e. a set of subsets
of N such that no member set is included in another member set. In this paper
we will use the antichain to denote an anti-monotonic function. We will denote
the set of anti-monotonic functions on the set N ⊂ N by AMF (N). We will
use Greek letters to denote elements of AMF (N) and Roman capitals to denote
subsets of N , e.g. for A 6⊆ B,B 6⊆ A, α = {A,B} ∈ AMF (N). Unless otherwise
stated, N = {1, . . . n} will be the set of the first n positive integers, and in this
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case we will occasionally use the notation AMF (n) ≡ AMF (N). The size of
AMF (N) or AFM(n) is the n-th number of Dedekind [8]. This size is known
for values of n up to n = 8 [4]. Asymptotic expansions have been developed
building on the size of the middle layer [6, 5].

Example 1. For N = {1, 2}, the Boolean function 2N → B, {∅ → false, {∅} →
false, {1} → true, {2} → true, {1, 2} → false} is anti-monotonic. The antichain
of true sets is given by {{1}, {2}}. This antichain will be used to denote the anti-
monotonic function.

For finite N , anti-monotonic functions form a finite distributive lattice with the
join, meet and partial order given by

α ∨ β = max(α ∪ β) (1)

α ∧ β = max{A ∩B|A ∈ α,B ∈ β} (2)

α ≤ β ⇔ ∀A ∈ α : ∃B ∈ β : A ⊆ B (3)

(⇔ α ∨ β = β ⇔ α ∧ β = α),

where for a general set S of subsets of N , max(S) is the set containing only
the largest sets in S according to ⊆. A comprehensive textbook on Boolean
functions is [2]. A recent study on counting non-equivalent monotone Boolean
functions is found in [1]. Our antichains correspond to the notion of minimal
sets playing an important role in the latter paper. A first analysis of intervals
and decomposition is in [9]. We will make extensive use of the intervals in this
lattice. For two antichains α, β ∈ AMF (N), the closed interval with bounds α
and β is given by

[α, β] = {χ ∈ AMF (N)|α ≤ χ ≤ β}. (4)

Analogous definitions hold for (half)open intervals. Note that these intervals are
empty in case α 6≤ β, in particular in case of non comparable α and β.

2 Disconnected Intervals

Given two intervals [ρ1, ρ2] and [ρ′1, ρ
′
2] in AMF (N), we have

{χ ∨ χ′|χ ∈ [ρ1, ρ2], χ′ ∈ [ρ′1, ρ
′
2]} = [ρ1 ∨ ρ′1, ρ2 ∨ ρ′2]. (5)

We will use the notation

[ρ1, ρ2] ∨ [ρ′1, ρ
′
2] ≡ [ρ1 ∨ ρ′1, ρ2 ∨ ρ′2]. (6)

A fundamental property in the decomposition of intervals is related to the con-
cept of (dis)-connectedness. Two intervals are said to be disconnected if the
decomposition in equation 6 is unique. Two intervals are connected if they are
not disconnected. If two intervals are disconnected, we will call the join of these
intervals direct:
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Definition 1. The interval [ρ1 ∨ ρ′1, ρ2 ∨ ρ′2] is the direct join of two intervals
[ρ1, ρ2] and [ρ′1, ρ

′
2] in AMF (N) if the intervals are disconnected. The direct join

is denoted by [ρ1, ρ2] 6 [ρ′1, ρ
′
2].

Example 2. For N = {1, 2, 3}, we have [{{1}}, {{1, 3}}] ∨ [{{2}}, {{2, 3}}] =
[{{1}, {2}}, {{1, 3}, {2, 3}}]. The element {{1}, {2}, {3}} = {{1}}∨{{2}, {3}} =
{{1}, {3}}∨{{2}} shows that the two intervals on the lefthand side are connected.
In the case of [{{1}, {3}}, {{1, 3}}]∨[{{2}, {3}}, {{2, 3}}] = [{{1}, {2}, {3}}, {{1, 3}, {2, 3}}],
we see that the underlying intervals are disconnected and [{{1}, {2}, {3}}, {{1, 3}, {2, 3}}] =
[{{1}, {3}}, {{1, 3}}] 6 [{{2}, {3}}, {{2, 3}}].

3 Decomposition Theorem

The decomposition of intervals is based on the following Theorem 1, which is
actually valid in a general distributive lattice.

Lemma 1. For two anti-monotonic functions α, β ∈ AMF (N) we have

[α ∧ β, α ∨ β] = [α ∧ β, α] 6 [α ∧ β, β]. (7)

Proof. It is clear that for χα ∈ [α∧β, α] and χβ ∈ [α∧β, β], we have χα ∨χβ ∈
[α ∧ β, α ∨ β]. Moreover, since χβ ∧ α ≤ β ∧ α, we have χα = (χα ∨ χβ) ∧ α
and similarly χβ = (χα ∨ χβ) ∧ β. For χ ∈ [α ∧ β, α ∨ β] we have χ ∧ α ∈
[α ∧ β, α], χ ∧ β ∈ [α ∧ β, β] and

(χ ∧ α ∨ χ ∧ β) = χ ∧ (α ∨ β) = χ. (8)

More generally we have

Theorem 1. For three anti-monotonic functions α, β, ρ ∈ AMF (N) such that
ρ ∈ [α ∧ β, α ∨ β] we have

[ρ, α ∨ β] = [ρ, α ∨ ρ] 6 [ρ, β ∨ ρ]. (9)

Proof. Note that (α∨ρ)∧(β∨ρ) = (α∧β)∨ρ = ρ so that the interval [ρ, α∨β] =
[ρ, (α ∨ ρ) ∨ (β ∨ ρ)] satisfies the conditions of Lemma 1. Any χ ∈ [ρ, α ∨ β] has
the unique decomposition χ = (χ ∧ (α ∨ ρ)) ∨ (χ ∧ (β ∨ ρ)).

Theorem 1 can be strengthened as

Theorem 2. For three anti-monotonic functions α, β, ρ ∈ AMF (N) such that
ρ ∈ [α ∧ β, α ∨ β] we have

[ρ, α ∨ β] = [ρ ∧ α, α] 6 [ρ ∧ β, β]. (10)

Proof. Any χ ∈ [ρ, α∨β] satisfies χ = (χ∧α)∨(χ∧β), with χ∧α ∈ [ρ∧α, α], χ∧
β ∈ [ρ∧β, β]. Any χ = χα ∨χβ with χα ∈ [ρ∧α, α], χ

β
∈ [ρ∧β, β] is in [ρ, α∨β].

Furthermore χ∧α = (χ
α
∧α)∨(χ

β
∧α) where χ

α
∧α = χ

α
(since χ

α
∈ [ρ∧α, α])

and χ
β
∧ α ≤ β ∧ α (since χ

β
∈ [ρ ∧ β, β]) so that χ

β
∧ α ≤ ρ ∧ α ≤ χ

α
, and we

conclude χ
α

= χ∧α. Equivalently, we obtain χ
β

= χ∧β proving the uniqueness
of decomposition.
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Corollary 1. For any two anti-monotonic functions α, ρ, the intervals [ρ, ρ∨α]
and [ρ ∧ α, α] are isomorphic lattices.

Proof. Since ρ∧α ≤ ρ, we can apply Theorem 2 to find [ρ, ρ∨α] = [ρ, ρ]6[ρ∧α, α].
This implies that [ρ∧α, α]→ [ρ, ρ∨α] : χ→ ρ∨χ defines an isomorphism with
inverse [ρ, ρ ∨ α]→ [ρ ∧ α, α] : χ→ α ∧ χ.

Corollary 2. For two anti-monotonic functions ρ1, ρ2 = ∨i∈Iαi with ∀i, j ∈ I :
αi ∧ αj ≤ ρ1, we have

[ρ1, ρ2] = 6i∈I [ρ1, ρ1 ∨ αi] (11)

= 6i∈I [ρ1 ∧ αi, αi]. (12)

Proof. The proof follows from a simple iteration over the indices i ∈ I, applying
Theorems 1 and 2 for each component αi, i ∈ I.

In the following, we will use the notation oρ,γ for any two anti-monotonic
functions ρ ≥ γ to denote the largest χ for which χ∧ ρ = γ. A general partition
of an interval is given by Theorem 3.

Theorem 3. For anti-monotonic functions ρ1 ≤ ρ ≤ ρ2

[ρ1, ρ2] = ∪γ∈[ρ1,ρ][γ, oρ,γ ∧ ρ2]. (13)

The intervals [γ, oρ,γ ∧ ρ2] for γ ≤ ρ are disjoint and nonempty.

Proof. For each γ ∈ [ρ1, ρ] consider the set Sγ = {χ ∈ [ρ1, ρ2]|χ ∧ ρ = γ}.
These sets are disjoint. Since for each χ ∈ [ρ1, ρ2], we have χ ∧ ρ ∈ [ρ1, ρ],
the union of these sets is the whole interval. γ is a lower bound on Sγ . Since
(χ1 ∧ ρ = γ and χ2 ∧ ρ = γ) ⇒ (χ1 ∨ χ2) ∧ ρ = γ, the set has exactly one
maximal element. We denote this element in the case of ρ2 = {N} by oρ,γ .
Since, in addition, χ1 ∧ ρ = γ, χ2 ∧ ρ = γ ⇒ (χ1 ∧ χ2) ∧ ρ = γ, the set of all
solutions to the equation in the lattice is closed under ∧ and ∨ and hence equals
the full interval [γ, oρ,γ ]. For general ρ2, Sγ is the intersection with [ρ1, ρ2] which
is given by [γ, oρ,γ ∧ ρ2].

The function oρ,γ defined for any ρ ≥ γ ∈ AMF (N) is the top of the interval
[γ, oρ,γ ] = {χ|χ ∧ ρ = γ}. It is given by

oρ,γ = ˜̃γ\ρ̃ (14)

where˜denotes the dual in the lattice AMF (N).

Note 1. Note that the theorems so far, including the proofs, did not refer explic-
itly to anti-monotonic functions. In fact, they only relied on the properties of the
operators ∧ and ∨ and are seen to be valid in any complete distributive lattice.
The following sections specifically refer to the definition of an anti-monotonic
function as a function on subsets of a superset. Although we believe, the fol-
lowing properties, especially Theorem 4, can be generalized as well, we for now
restrict the discussion to the space AMF (N).
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In what follows, disconnectedness of intervals turns out to be related to a corre-
sponding property of the top of the interval.

Definition 2. Given two anti-monotonic functions ρ, α ∈ AMF (N) with ρ ≤
α. Two sets A,B ∈ α are said to be connected with respect to ρ if and only if
{A∩B} 6≤ ρ. Connectedness of such sets is denoted by Cρ(A,B). Cρ(., .) defines
a graph with the sets of α as vertices. The vertices of each connected component
of this graph correspond to a subset of α and thus to an anti-monotonic function.
We will refer to these anti-monotonic functions as the connected components of
α with respect to ρ and denote the set of such components by Cρ,α.

We now have

Corollary 3. For anti-monotonic functions ρ1, ρ2 ∈ AMF (N) with ρ1 ≤ ρ2

[ρ1, ρ2] = 6χ∈Cρ1,ρ2 [ρ1 ∧ χ, χ]. (15)

Proof. The proof follows immediately from Corollary 2.

Corollary 3 leads to Algorithm 1 for the total decomposition of an interval.
Examples 3, 4 and 5 illustrate how the algorithm works.

Example 3. Consider the interval [{∅}, {{1, 2}, {3}}]. Since we have {{1, 2} ∩
{3}} = {∅} ≤ {∅} so that C{∅},{{1,2},{3}} = {{{1, 2}}, {{3}}}, and
[{∅}, {{1, 2}, {3}}] = [{∅}, {{1, 2}}] 6 [{∅}, {{3}}].

Example 4. Consider the interval [{{4}}, {{1, 2, 4}, {3, 4}}]. Since we have {{1, 2, 4}∩
{3, 4}} = {{4}} ≤ {{4}} so that C{{4}},{{1,2,4},{3,4}} = {{{1, 2, 4}}, {{3, 4}}},
and
[{{4}}, {{1, 2, 4}, {3, 4}}] = [{{4}}, {{1, 2, 4}}] 6 [{{4}}, {{3, 4}}].

Example 5. Consider the interval [{{4}, {6}}, {{1, 2, 4}, {3, 4}, {3, 5, 6}}]. Since
we have
{{1, 2, 4}∩{3, 4}} = {{4}} ≤ {{4}, {6}}, {{1, 2, 4}∩{3, 5, 6}} = {∅} ≤ {{4}, {6}},
{{3, 4} ∩ {3, 5, 6}} = {{3}} 6≤ {{4}, {6}},
so that C{{4},{6}},{{1,2,4},{3,4},{3,5,6}} = {{{1, 2, 4}}, {{3, 4}, {3, 5, 6}}}, and
[{{4}, {6}}, {{1, 2, 4}, {3, 4}, {3, 5, 6}}] = [{{4}}, {{1, 2, 4}}]6[{{4}, {6}}, {{3, 4}, {3, 5, 6}}].

Algorithm 1 Decompose the interval [ρ1, ρ2]

Require: ρ1 ≤ ρ2
Ensure: Result is a set of intervals, {I1, I2, . . . , Ik}, such that [ρ1, ρ2] = 6i=1...kIi

function decomposeInterval(ρ1, ρ2)
Compute the set Cρ1,ρ2 of connected components according to Definition 2.
return {[ρ1 ∧ γ, γ]|γ ∈ Cρ1,ρ2}

end function

In what follows, we will use the following notations
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Definition 3. Let ρ1, ρ2 ∈ AMF (N), ρ1 ≤ ρ2. We use the notion of level λl
in the interval [ρ1, ρ2] to denote maximal anti-monotonic functions consisting
of elements of a specific size l, and we introduce the (.)+ and (.)− operators to
transform functions from one level to a neighboring level, as follows:

λl = {A ⊆ N |ρ1 ∨ {A} ∈]ρ1, ρ2], |A| = l}(∀l ≥ 0), (16)

α+ = {X ∈ λl+1|∀x ∈ X : X\{x} ∈ λl ⇒ X\{x} ∈ α}, (∀α ⊆ λl,∀l ≥ 0),(17)

α− = {X ∈ λl−1|∃A ∈ α : X ⊆ A}, (∀α ⊆ λl,∀l > 0). (18)

Note that in Definition 3, in (17) α+ ⊆ λl+1 and in (18) α− ⊆ λl−1,

4 Decomposition of a General Interval into
Computationally Easy Intervals

We will now use decomposition to compute the size of any interval. Theorem 4
builds on the following Lemma.

Lemma 2. Let ρ1, ρ2 ∈ AMF (N), ρ1 ≤ ρ2 and χ ∈ [ρ1, ρ2]. Then χ has the
following unique decomposition:

χ = ρ1 ∨ χ0 ∨ χ1 ∨ χ2 ∨ . . . , (19)

where ∀l ≥ 0 : χl ⊆ λl,
χ−l+1 ≤ χl,
χl+1 ≤ χ+

l .

Proof. We start from the decomposition in sets of specific levels:

χ = (χ ∩ ρ1) ∨ (χ ∩ λ0) ∨ (χ ∩ λ1) ∨ (χ ∩ λ2) ∨ . . . (χ ∩ λs−1) ∨ (χ ∩ λs) (20)

where s is the size of the largest set in χ. We now set χl = ∅ for l > s. Further,
let χs = χ ∩ λs and note that the decomposition does not change if we add χ−s
to the sets of level s− 1.

χ = (χ ∩ ρ1) ∨ (χ ∩ λ0) ∨ (χ ∩ λ1) ∨ (χ ∩ λ2) ∨ . . . (χ ∩ λs−1 ∨ χ−s ) ∨ χs. (21)

This suggests the recursive definition

∀l ∈ {0, . . . , s− 1} : χl = (χ ∩ λl) ∨ χ−l+1 (22)

leading to
χ = (χ ∩ ρ1) ∨ χ0 ∨ χ1 ∨ χ2 ∨ . . . χs−1 ∨ χs (23)

and since χ ≥ ρ1:

χ = ρ1 ∨ χ0 ∨ χ1 ∨ χ2 ∨ . . . χs−1 ∨ χs. (24)

The inequalities in (19) now follow immediately from (22) and Definition 3.
Given the decomposition (19), it follows immediately that χs = χ∩λs. χs−1 ≥ χ−s
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implies χ−s ⊆ χs−1. Furthermore, necessarily χ ∩ λs−1 ⊆ χs−1 so that we find
χs−1 ≥ χ−s ∨ (χ ∩ λs−1). Since any set in χs−1 not dominated by a set in χs is
necessarily in χ, we have χs−1 ≤ χ−s ∨ (χ∩λs−1) and equality follows. Recursive
application of this reasoning proves uniqueness.

Theorem 4. For ρ1, ρ2 ∈ AMF (N) with ρ1 ≤ ρ2, we have

|[ρ1, ρ2]| =
∑

α1⊆λ1

∑

α3⊆α++
1

∑

α5⊆α++
3

. . . 2|λ0|−|α−1 |+|α+
1 |−|α−3 |+|α+

3 |−|α−5 |... (25)

=
∑

α0⊆λ0

∑

α2⊆α++
0

∑

α4⊆α++
2

. . . 2|α
+
0 |−|α−2 |+|α+

2 |−|α−4 |.... (26)

Proof. Note that the number of non trivial summations in (25) and ( 26 ) is
always finite: there is a maximal level for any finite interval, above this level
α++ will be empty and the contribution in the power of 2 will be zero. Given the
decomposition in Lemma 2, and a list of specific levels l1 < l2 < . . . < lk where
σli ⊆ λli are given such that

∀li, li+1 : σ−dili+1
≤ σli

and ∀li−1, li : σli ≤ σ
+di−1

li−1

where di = li+1− li and α+/−d = (. . . ((α+/−)+/−) . . . )+/− (d operators (.)+/−),
one can ask for the set of χ decomposing according to (19) such that ∀i : χli = σli .

This set has a lower bound χb = ρ1∨σ−l0l0
∨σ−(l0−1)l0

. . .∨σl0 ∨σ−d0l1
∨σ−(d0−1)l1

. . .

and an upper bound χt = ρ1∨λ0∨λ1 . . .∨λl0−1∨σl0∨σ+
l0
∨σ+2

l0
. . .∨σ+(l1−l0−1)

l0
∨

σl1 ∨σ+
l1
. . .. In fact, all elements in the interval [χb, χt] satisfy this requirement.

In the case of all odd, respectively all even, levels given, summing the sizes of
all such intervals over all possible specifications σ2l+1, respectively σ2l, results in
the expansions of the Theorem.

Theorem 4 allows to compute intervals in AMF (N) for |N | = 7, and com-
putes all intervals for |N | = 6 in milliseconds.

Example 6. As a simple application of Theorem 4, consider intervals of the form
IN = [{∅},

(
N
2

)
] where, for convenience, we use the notation

(
N
k

)
to denote the

set of subsets of size k of a set N = {1, 2, ..., n}. IN is seen to have only two
nonempty levels. Indeed, λ0 = {}, λ1 is the set of all singletons of elements of
N and λ2 =

(
N
2

)
. Since λ0 = {}, for each α1 ⊆ λ1 we have α−1 = {}, while

α+
1 =

(
span(α1)

2

)
1. We find

|IN | =
∑

α1⊆λ1

2|λ0|−|α−1 |+|α+
1 | =

∑

S⊆N
2(|S|2 )

=

n∑

i=0

(
n

i

)
2(i2), (27)

1 Here the span of an anti-monotonic function is the set of elements occurring in true
sets of the function, i.e. span(α) =

⋃
X∈αX
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which is the well known formula for the number of labeled graphs with at most n
nodes (Sloane series A006896 [7]). This identity becomes obvious when we apply
the alternative expression:

|IN | =
∑

α2⊆λ2

2|λ1|−|α−2 | (28)

=
∑

graphs g on n vertices

2n−|vertices in g|

=
n∑

i=0

|graphs covering {1, 2, ..., i}|
(
n

i

)
2n−i. (29)

5 A Recursion Formula for the Size of the Complete
Space

The previous sections were concerned with the structure of arbitrary intervals.
In this section, we present a formula for the size of AMF (n+k), k ≥ 0 summing
over the space AMF (n). The formula is used to generate an efficient algorithm
to compute the size of AMF (n+ 2) from AMF (n). We start from the following
observation, using the operator × defined as 2

∀χ ∈ AMF (N), S ⊂ N, S ∩N = ∅ : χ× {S} = {X ∪ S|X ∈ χ}. (30)

Example 7. For χ = {{1}, {2, 3}, {3, 4}} and S = {5, 6, 7} we have according to
this definition χ× {S} = {{1, 5, 6, 7}, {2, 3, 5, 6, 7}, {3, 4, 5, 6, 7}}.

We can now prove

Lemma 3. Given n, k > 0, N = {1, . . . , n} and Kn = {n + 1, . . . , n + k}, for
each χ ∈ AMF (N ∪ K) there exists exactly one sequence {χ{S}|S ⊆ Kn} of
functions in AMF (N) such that

χ =
∨

S⊆Kn
χS × {S}, (31)

∀S ⊆ Kn : χS ∈ AMF (N), (32)

∀S, S′ ⊆ Kn : S ⊆ S′ ⇒ χS ≥ χS′ . (33)

Proof. For each S ⊆ Kn define χS = {X\Kn|X ∈ χ, S ⊆ X}

Corollary 4. For finite N,K ⊆ N, N ∩ K = ∅ as in Lemma 3, the size of
AMF (N∪K) is equal to the number of homomorphisms (2K ,⊆)→ (AMF (N),≥
).

2 This is a restricted definition of the × operator discussed extensively in [9]. This
paper introduces an effective enumeration technique which can be used in to sum
over the space AMF (N).
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Now consider the restricted homomorphisms (2K\{∅,K},⊆) → (AMF (N),≥
), i.e fix χS for any S 6∈ {∅, N}. Any such restricted homomorphism can be
completed by components χ0 ≥

∨
k∈K χ{k} and χN ≤

∧
k∈K χN\{k}. We define

coefficients PN,K,ρ0,ρN as follows

Definition 4. For finite N,K ⊆ N, N∩K = ∅, and for ρ0, ρN ∈ AMF (N), ρ0 ≥
ρN , PN,K,ρ0,ρN is the number of homomorphisms f : (2K\{∅,K},⊆)→ ([ρN , ρ0],≥
) such that

∨
k∈K f({k}) = ρ0 and

∧
k∈K f(N\{k}) = ρN

and we find

Theorem 5. For finite N,K ⊆ N, N ∩K = ∅,

|AMF (N ∪K)| =
∑

ρ0≥ρN∈AMF (N)

|[∅, ρN ]|PN,K,ρ0,ρN |[ρ0, {N}]|. (34)

Proof. Any restricted homomorphism f can be extended by elements of the in-
tervals [∅, ρN ] and [ρ0, {N}], and any extension results in a different function in
AMF (N ∪K).

The P-coefficients are in general hard to compute. In the special case of |K| = 2
however, the following property leads to a simple algorithm.

Property 1. For finite N,K ⊆ N, N ∩K = ∅, |K| = 2, we have

PN,K,ρ0,ρN = 2|CρN\ρ0,ρ0\ρN |. (35)

Proof. Let K = {k1, k2}. The coefficient is the number of solutions to the simul-
taneous equations

χ{k1} ∨ χ{k2} = ρ0, (36)

χ{k1} ∧ χ{k2} = ρN . (37)

Let A,B ⊆ ρ0\ρN such that CρN (A,B), i.e. {A∩B} 6≤ (ρN\ρ0). Then A and B
must be in at least one of χ{k1} or χ{k2} due to (36) and in at most one due to
(37). On the other hand, any set A in ρ0\ρN must be in either χ{k1} or χ{k2}
and can not be in both.

We thus obtain the formula

|AMF (n+ 2)| =
∑

ρ0≥ρn∈AMF (n)

|[∅, ρn]||[ρ0, {N}]|2Cρn\ρ0,ρ0\ρn . (38)

A Java implementation of Algorithm 2 , summing over non equivalent func-
tions only for ρN in AMF (6), allowed to compute AMF (8) in 40 hours on a
Macbook Pro. Note that the order of summation can be chosen such as to mini-
mize the number of evaluations of the interval sizes |[ρ0, {N}]|. Indeed, although
the sizes of these intervals could be computed through the mapping Size of
the representative of the class of the dual of ρ0, these transformations still are
computationally intensive.
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Algorithm 2 Recursion formula using P-coefficients to compute |AMF (n+ 2)|
by enumeration of AMF (n)

Require: n ∈ N, n ≥ 0.
Ensure: Result is Dedekind Number n+ 2, this is the size of the space AMF (n+ 2).

function DedekindNumber(n+2)
Compute the set R of nonequivalent representatives in AMF (n)
of equivalence classes under permutation of N .
Compute the cardinalities of each of the equivalence classes as Count : R− > N.
For each ρ ∈ R, compute the size of [∅, ρ] as Size : R− > N.
sum← 0
for ρ0 ∈ AMF (n) do

partialSum← 0
for ρN ∈ R, ρN ≤ ρ0 do

partialSum← partialSum+Count(ρN )∗Size(ρN )∗2|CρN\ρ0,ρ0\ρN |

end for
sum← sum+ partialSum ∗ |[ρ0, {N}]|

end for
return sum.

end function

6 Conclusions and Future Research

In this paper, we analyzed intervals in the space of anti-monotonic functions.
Some structural properties were derived which allowed decomposition. We used
the properties of intervals to derive a formula allowing efficiently computing the
size of any interval in spaces with values of n up to 7. Finally, we derived an
expansion of the size of the (n+k)th space based on an enumeration of the space
n. The terms in this expansion are products of sizes of intervals multiplied by
coefficients which we termed ’P-coefficients of order k’. P-coefficients of order 2
turn out to be efficiently computable, and the resulting formula, combined with
a reduction to nonequivalent anti-monotonic functions, allowed computing the
8th number of Dedekind on a very standard laptop in less than two days.

The results in sections 1 − 3 were obtained using the operators ∧ and ∨
only and are thus valid for any distributive lattice. The proofs of the results in
sections 4, 5 explicitly relied on properties of sets. It is not hard to see that there
are more general equivalents of these formulae. We plan to extend the analysis
of intervals and derive the more general equivalents in a forthcoming paper.

The success in computing |AMF (8)| on a basic laptop naturally leads to the
question how far a more sophisticated hardware could take us towards computing
|AMF (9)|. We are presently undertaking such an attempt, but new idea’s will be
needed to succeed. Computing |AMF (9)| using P-coefficients of order 2 accord-
ing to Algorithm 2 involves enumerating AMF (7) × nonequivalent AMF (7)
which is exactly 2414682040998 × 490013148 = 1183225948328495041704 terms.
Each term would require computing a second order P-coefficient and multiply-
ing two interval sizes of intervals in AMF (7). There would be 490013148 such
interval sizes to compute.
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More promising is the study of the P-coefficients of higher order. Algorithm 2
for n = 6 equipped with a fast evaluator for order 3 P-coefficients could produce
|AMF (9)|. Study of these higher order P-coefficients hence is on our research
agenda.
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