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Abstract. Conceptual spaces were originally introduced by Gärdenfors
as a bridge between symbolic and connectionist models of information
representation. In our opinion, a cognitive agent, besides being able to
work within his (current) conceptual space, must also be able to ‘produce
a new space’ by means of ‘global’ operations. These are operations which,
acting on a conceptual space taken as a whole, generate other conceptual
spaces.

1 Introduction

The introduction of a cognitive architecture for an artificial agent implies the
definition of a conceptual representation model. Conceptual spaces, used exten-
sively in the last few years [1] [2] [3], were originally introduced by Gärdenfors
as a bridge between symbolic and connectionist models of information represen-
tation. This was part of an attempt to describe what he calls the ‘geometry of
thought’.

If, for the sake of argument, we accept Gärdenfors paradigm of conceptual
spaces, and intend to avoid the implausible idea that a cognitive agent comes
with a potentially infinite library of conceptual spaces, we must conclude that a
cognitive agent, besides being able to work within his (current) conceptual space,
must also be able to ‘produce a new space’ by means of ‘global’ operations. These
are operations which, acting on a conceptual space taken as a whole, generate
other conceptual spaces.

We suppose that an agent acts like an experimenter: depending on the par-
ticular problem he has to solve, he chooses, either consciously or unconsciously,
what to observe and what to measure. Both the environment and the internal
state of the agent, which includes his intentions and goals, affect the manner in
which the agent perceives, by directing the focus of its measurements on specific
objects.



In this work we focus on operations that can be performed in and on concep-
tual spaces in order to allow a cognitive agent (CA) to produce his conceptual
representation of the world according to his goals and his perceptions.

In the following sections, after a background on Conceptual Spaces theory,
we introduce such operations and we discuss an example of the way they come
to be applied in practice.

2 Conceptual spaces

In [4] and [5] we find a description of a cognitive architecture for modelling
representations. This is a cognitive architecture in which an intermediate level,
called ‘geometric conceptual space’, is introduced between a linguistic-symbolic
level and an associationist sub-symbolic level of information representation.

According to the linguistic/symbolic level:

Cognition is seen as essentially being computation, involving symbol ma-
nipulation. [4]

whereas, for the associationist sub-symbolic level:

Associations among different kinds of information elements carry the
main burden of representation. Connectionism is a special case of asso-
ciationism that models associations using artificial neuron networks [4],
where the behaviour of the network as a whole is determined by the
initial state of activation and the connections between the units [4].

Although the symbolic approach allows very rich and expressive representa-
tions, it appears to have some intrinsic limitations such as the so-called ‘symbol
grounding problem,’ 4 and the well known A.I. ‘frame problem’.5 On the other
hand, the associationist approach suffers from its low-level nature, which makes
it unsuited for complex tasks, and representations.

Gärdenfors’ proposal of a third way of representing information exploits ge-
ometrical structures rather than symbols or connections between neurons. This
geometrical representation is based on a number of what Gärdenfors calls ‘qual-
ity dimensions’ whose main function is to represent different qualities of objects
such as brightness, temperature, height, width, depth.

Moreover, for Gärdenfors, judgments of similarity play a crucial role in cog-
nitive processes. And, according to him, it is possible to associate the concept of
distance to many kinds of quality dimensions. This idea naturally leads to the
conjecture that the smaller is the distance between the representations of two
given objects the more similar to each other the objects represented are.

4 How to specify the meaning of symbols without an infinite regress deriving from the
impossibility for formal systems to capture their semantics. See [6].

5 Having to give a complete description of even a simple robot’s world using axioms
and rules to describe the result of different actions and their consequences leads to
the ‘combinatorial explosion’ of the number of necessary axioms.



According to Gärdenfors, objects can be represented as points in a conceptual
space, and concepts as regions within a conceptual space. These regions may have
various shapes, although to some concepts—those which refer to natural kinds or
natural properties6—correspond regions which are characterized by convexity.7

For Gärdenfors, this latter type of region is strictly related to the notion of
prototype, i.e., to those entities that may be regarded as the archetypal repre-
sentatives of a given category of objects (the centroids of the convex regions).

3 A non-phenomenological model of Conceptual Spaces

One of the most serious problems connected with Gärdenfors’ conceptual spaces
is that these have, for him, a phenomenological connotation. In other words,
if, for example, we take, the conceptual space of colours this, according to
Gärdenfors, must be able to represent the geometry of colour concepts in re-
lation to how colours are given to us.

Now, since we believe that this type of approach is bound to come to grief
as a consequence of the well-known problem connected with the subjectivity of
the so-called ‘qualia’, e.g., the specific and incommunicable quality of my visual
perception of the rising Sun or of that ripe orange etc. etc., we have chosen a
non phenomenological approach to conceptual spaces in which we substitute the
expression ‘measurement’ for the expression ‘perception’, and consider a cogni-
tive agent which interacts with the environment by means of the measurements
taken by its sensors rather than a human being.

Of course, we are well aware of the controversial nature of our non phe-
nomenological approach to conceptual spaces. But, since our main task in this
paper is characterizing a rational agent with the view of providing a model for
artificial agents, it follows that our non-phenomenological approach to concep-
tual spaces is justified independently of our opinions on qualia and their possible
representations within conceptual spaces

Although the cognitive agent we have in mind is not a human being, the
idea of simulating perception by means of measurement is not so far removed
from biology. To see this, consider that human beings, and other animals, to
survive need to have a fairly good ability to estimate distance. The frog unable
to determine whether a fly is ‘within reach’ or not is, probably, not going to live
a long and happy life.

Our CA is provided with sensors which are capable, within a certain interval
of intensities, of registering different intensities of stimulation. For example, let
us assume that CA has a visual perception of a green object h. If CA makes of the
measure of the colour of h its present stereotype of green then it can, by means

6 Actually, we do not agree with Gärdenfors when he asserts that:

Properties. . . form a special case of concepts. [4], chapter 4, §4.1, p. 101.

7 A set S is convex if and only if whenever a, b ∈ S and c is between a and b then
c ∈ S.



of a comparison of different measurements, introduce an ordering of gradations
of green with respect to the stereotype; and, of course, it can also distinguish the
colour of the stereotype from the colour of other red, blue, yellow, etc. objects.
In other words, in this way CA is able to introduce a ‘green dimension’ into
its colour space, a dimension within which the measure of the colour of the
stereotype can be taken to perform the rôle of 0.

The formal model of a conceptual space that at this point immediately springs
to mind is that of a metric space, i.e., it is that of a set X endowed with a metric.
However, since the metric space X which is the candidate for being a model
of a conceptual space has dimensions, dimensions the elements of which are
associated with coordinates which are the outcomes of (possible) measurements
made by CA, perhaps a better model of a conceptual space might be an n-
dimensional vector space V over a field K like, for example, Rn (with the usual
inner product and norm) on R.

Although this suggestion is very interesting, we cannot help noticing that an
important disanalogy between an n-dimensional vector space V over a field K,
and the ‘biological conceptual space’ that V is supposed to model is that human,
animal, and artificial sensors are strongly non-linear. In spite of its cogency, at
this stage we are not going to dwell on this difficulty, because: (1) we intend
to examine the ‘ideal’ case first; and because (2) we hypothesize that it is al-
ways possible to map a perceptual space into a conceptual space where linearity
is preserved either by performing, for example, a small-signal approach, or by
means of a projection onto a linear space, as it is performed in kernel systems
[7].

4 Operating in and on Conceptual spaces

If our model of a conceptual space is, as we have repeatedly said, an n-dimensional
vector space V over a field K, we need to distinguish between operating in V
and operating on V . If we put V = Rn (over R), then important examples of
operations in Rn are the so-called ‘rigid motions’, i.e. all the functions from Rn

into itself which are either real unitary linear functions8 or translations.9 Notice
that if f is a rigid motion then f preserves distances, i. e. for any v, w ∈ Rn,
d(v, w) = d(f(v), f(w)). Examples of rigid motions which are real unitary linear
functions are the θ-anticlockwise rotations of the x-axis in the x, y-plane.

To introduce operations on V , where V is an n-dimensional vector space over
a field K, we need to make the following considerations. Let CA be provided
with a set of measuring instruments which allow him to perform a finite set of
measurements M = {m1, . . . ,mn}, and let {Vi}i∈I be the family of conceptual
spaces— finite-dimensional vector spaces over a field K—present in CA’s library.

8 A linear function f : Rn → Rn is real unitary if and only if it preserves the inner
product, i.e. for any v, w ∈ Rn, we have f(v) · f(w) = v · w.

9 The function t : Rn → Rn is a translation if and only if there exists a v ∈ Rn such
that, for any w ∈ Rn, we have t(w) = w + v.



If we assume that c is a point of one of these conceptual spaces, the coordi-
nates c1, c2, . . . cn of c represent particular instances of each quality dimension
and, therefore, derive from the set of n measures performed by the agent on the
subset of measurable elements. We, therefore, define two operations × and π on
{Vi}i∈I such that: (1) × is the direct product of vector spaces, that is:

1. Vi × Vj = {< vi, vj > | vi ∈ Vi and vj ∈ Vj};
2. for any < vi,1, vj,1 >,< vi,2, vj,2 >∈ Vi × Vj , we have: < vi,1, vj,1 > + <
vi,2, vj,2 > = < vi,1 + vi,2, vj,1 + vj,2 >

3. for any k ∈ K and < vi, vj >∈ Vi × Vj , we have that: k < vi, vj > = <
kvi, kvj >;

clearly, Vi × Vj , for any i, j ∈ I, is a vector space, and

dim (Vi × Vj) = dimVi + dimVj ;
10

and (2) πi is the projection function onto the i-th coordinate space, i.e. πi(Vi ×
Vj) = Vi and πj(Vi × Vj) = Vj , for i, j ∈ I. Obviously, we have that πi(Vi × Vj)
and πj(Vi × Vj) are vector spaces, and that

dim πi(Vi × Vj) = dim Vi.

Now, with regard to the importance of the operator ×, consider that if we
have the vector space R3, over the field R, whose dimensions do not include
time, we cannot then form the concept of velocity; and if the dimensions of the
vector space R3, over the field R, do not include colour, we cannot form the
concept of red block. It is by producing, by means of ×, the right type of finite
dimensional vector space that we make possible to formulate within it concepts
such as velocity, red block, etc. The × operation on finite vector spaces has, to
say it with Kant, an ampliative function. The relevance of π is, instead, all in
its analytic rôle of explicating concepts by drawing attention to the elements
belonging to a given coordinate space.

At each moment CA, instead of relying on the existence of a potentially
infinite library of conceptual spaces, if necessary, individuates new dimensions
following the procedure briefly illustrated on p. 3-4, and builds the current con-
ceptual space suitable for the tasks that it has to accomplish by performing
operations on the conceptual spaces which are already available.

5 A case study

We assume that CA is located on and can move around the floor of a room where
objects of different type, size and color may be found. His sensors allow CA to
obtain information concerning some of the characteristics of the surrounding
environment and of some of the objects in it. When CA moves around the room,
the perspective from which he views the objects present in the environment
changes.

10 dim(Vi) is the dimension of the vector space Vi.



Of course, on the assumption that CA can tell from its receptors whether
a given point of the floor of the room on which he is focussing is ‘occupied’ or
not, it follows that CA is capable of performing tasks — like ‘coasting around’
the objects placed on the floor of the room — which do not require the use of
conceptual spaces. But, on the other hand, there are tasks which require the use
of systems of representation, such as conceptual spaces, which allow CA to build
faithful representations (models) of the environment, etc.

Every time CA focuses its attention on something, CA identifies, via his
receptors, the quality dimensions necessary for the representation of the object of
interest and creates a specific current conceptual space individuating the regions
(concepts) belonging to it.

To see this, assume that on the floor of the room where CA is there are two
discs D1 and D2, and that CA’s task consists in comparing in size D1 with D2.
The initial current conceptual space V0 of CA can be the vector space R2 (on
R) with the conceptual structure C0. CA is at the origin of the two axes of V0
and the conceptual structure C0 associated to V0 is C0 = {FRONT (F), BACK
(B), LEFT (L), RIGHT (R)}. Here F, B, L, R are the primitive regions of V0.
(From now on, instead of talking about the conceptual space V0 with structure
C0, we shall simply consider the conceptual space (V0, C0).)

Note that the terms we use to refer to the primitive regions of V0 are just
a façon de parler, i.e., our way of describing the conceptual structure of the
conceptual space of CA. In fact, we assume that the conceptual activity of CA
is sub-linguistic.

CA can perform algebraic operations internal to the conceptual space which
are mainly set operations given that the regions of V0 are sets of points of V0.
The elementary operations defined on such regions are: ∪,∩, CB

A (where A ⊆ B
and A and B are regions). Such operations applied to our primitive regions F, B,
L, R allow us, for example, to individuate regions of particular importance such
as the y-axis which can be characterized as the set of points y ∈ CV0

L∪R, the x-axis

as the set of points x ∈ CV0

F∪B , the minimal region {0}, where 0 is the origin of

the x and y axes as CV0

L∪R ∩ C
V0

F∪B = {0}, F ∩ R = {(x, y) | 0 < x and 0 < y}
(the first quadrant of R2), L ∩ R = ∅, etc. As we have already seen at the very
beginning of §3, another important class of operations internal to (V0, C0) are
what we there called ‘rigid motions’.

At this point we need to notice that (V0, C0) is a genuine conceptual space
irrespective of the logic (first-order, second-order) used in studying it, because
there is a difference between what CA does in constructing (V0, C0) and what
the mathematician does in studying the properties of (V0, C0).

At the end of the exploration of the room on the part of CA, the current
conceptual space will be (V1, C1), where V1 is exactly like V0 apart from the fact
that a finite portion of it now models the room representing, for instance, within
the conceptual structure of V1 the sets of points corresponding to D1 and D2 by
including within C1 the corresponding regions.



The task set to CA can now be accomplished within (V1, C1). In fact, CA
can, without knowing what a circle, a disc, etc. are, translate D1 onto D2 and
vice versa. (Remember that a translation is a rigid motion within (V1, C1).)

However, there is a task that CA cannot accomplish within a 2-d conceptual
space, and this is: placing D1 on top of D2. To represent the situation CA needs
a 3-d conceptual space, i.e., a vector space X = R3 (over R) together with the
appropriate conceptual structure C. Of course, here X is obtained by means of
the direct product of R2 by R.

An interesting application of projection is the following which relates to a 3-d
task that can be accomplished by means of a projection onto a 2-d conceptual
space: seeing whether a given sphere lying on the floor fits into a cubic box placed
next to it. Once again, our agent does not know what a sphere or a cube are,
but can find a way of representing and solving the problem in a 2-d conceptual
space by considering whether or not a maximum circle of the sphere can fit into
a face of the cubic box.

6 Conclusions

In this paper we have introduced global operations which allow cognitive agents
to build and rearrange their conceptual representations as a consequence of their
perceptions and according to their goals.The proposed operations provide the
agent with the capabilities to focus on and represent, in a proper current con-
ceptual space, specific aspects of the perceived environment.

In order to evaluate the correctness of our proposal, we intend to produce a
simulation environment within which to test on an artificial agent the efficiency
of the model put forward
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