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Abstract. Smart system of systems adapt to their context, current situation, and 

configuration. To engineer such systems’ behavior, we need to design and eval-

uate system-level control strategies and the intelligent management of key  

scenarios. We propose a model-based approach called probabilistic system 

summaries to explore related design choices, e.g., where to put the ‘smarts’ of a 

smart building. Our approach uses Bayesian inference to calculate effects of 

strategies and implementations, offering causal analysis of the costs and bene-

fits of decision strategies in key scenarios. As the modeling is light-weight and 

suitable for various abstraction levels, probabilistic system summaries are  

appropriate for early but sound architecture decisions based on computational 

science. Next to its use within this analysis, the product of this engineering step, 

i.e., a Bayes net summarizing systems plus their environment, may form the 

core of decision making within the system of system..  

1   Engineering of Smart Buildings 

Smart systems of systems are set to recognize and adapt to their situation, to their 

operational context, and to their configuration, and to enact smart strategies to reach 

their goals in the best possible way. One example of such systems are smart buildings, 

where building automation is established to detect environmental circumstances, 

faults, utilization, or emergency situations, and then to act accordingly. They can, e.g., 

adapt building operations to energy saving demands while tuning services to the num-

ber of people present in a room and furthermore compensating for services that are not 

available due to failures. Such buildings are systems of systems: lighting, HVAC 

(heat, ventilation, air conditioning), security, etc. are individually developed and 

commissioned systems that operate independently, fulfil different and partially con-

flicting goals of various stakeholders, but benefit from cooperation. Especially an 

exchange of information is beneficial, e.g., on the presence of people while balancing 

comfort with energy savings. Complexity and size of building automation systems and 

high costs of commissioning make it desirable to realize building automation in a self-

organizing, cooperative, and robust way. 



 

 

These advanced functionalities require among other things I) the means to monitor 

the building and its environment, including the ability to detect faults and special 

events, II) system-level control strategies and scenario-management that allow the 

handling of and adaptation to foreseen circumstances, and III) solutions to handle 

unforeseen dynamics, e.g., fault adaptive behavior or an adaptation to requirement 

changes. In this article, we define our system-of-systems engineering method for the 

design, analysis, and architecture of behavior w.r.t. II), i.e., the model-based approach 

probabilistic system summaries that we use to investigate design alternatives and their 

trade-offs within the engineering of the ‘smarts’ of a smart system of systems. 

1.1 Behavior Architecting within System of Systems Engineering 

Following the argument that system of systems engineering (SoSE) focuses on choos-

ing the right systems and their interactions to satisfy the requirements and goals of 

various stakeholders, we consider the architecting of behavior as a core task of SoSE. 

The focus on architecting, and not the mere design of functionality, acknowledges that 

the ‘where and when’ of a decision taken by a system matters - especially for systems 

of systems (SoS). Imagine, e.g., two alternate system control strategies in smart build-

ings: smart rooms that take local, if cooperative, decisions versus a smart building 

with centralized control. This architectural choice impacts among other things the 

need for data exchange and thus communication means (affecting costs and privacy), 

robustness (reliability of many cheap components or single point of failure), but also 

which data is available to adapt behavior and thus functionality itself.  

An investigation of architectural alternatives that targets smart behavior requires 

methods and tools that enable a lightweight modeling of the solution candidates linked 

to computational science. It should allow the calculation of key performance indica-

tors with regard to both the SoS’ functional and non-functional aspects, e.g., the ener-

gy savings achieved by a decision strategy for efficiency or costs of operations. In this, 

we require a lightweight method, as a detailed process for each alternative incurs un-

due costs; computational science, i.e., modeling with quantitative analysis, is needed 

to discriminate decision strategies and architectures with regard to their expected 

business value, e.g., total costs-of-ownership.  

1.2 Use Case: Where to Put the Smarts of a Building? 

We support the introduction of the probabilistic system summaries method with a 

simplified case study, the investigation of the two architecture alternatives mentioned 

above, which addresses a central architectural question on decision making – where to 

locate it: locally, close to sensors and actuators, thus in many places with a limited 

range of impact but with direct communications, or in a central instance? Worded 

differently within the example, this is a choice between a smart building in which 

rooms without intelligence enact the building’s strategy, or smart rooms that take local 

data to produce local decisions, while occasionally taking global information into 

account, which is provided by the building. 



 

 

Most sensor data is local, about an individual area, e.g., a room, but global data  

always plays a role as well, e.g., outside temperature or available power. Actuators are 

often local, e.g., lights or air conditioning within a room, but shutting down the heat-

ing system is a global action. Strategies and goals might be individual and local, e.g., 

about the intended level of comfort in a room, or global, e.g., a reduction of energy 

consumption. The latter aspects, comfort and consumption, will serve as performance 

indicators of our use case. They represent conflicting goals of different stakeholders, 

i.e., building managers seek energy efficiency and thus minimal consumption (best 

achieved by turning everything off), while inhabitants seek comfort, possibly with 

very in-efficient ideas how to achieve that.  

While this over-simplifies the architectural task and ignores performance indicators 

like costs or robustness of a realization, we believe that the reduction to two opposing 

indicators and two distinct architectural concepts for decision making and control 

works well for the demonstration of our design and analysis method. System architects 

working with our method will be able to define and add further performance indicators 

to suit their engineering tasks. In any way, we need to point out that the question 

which architectural solution to choose has no answer that holds for all possible build-

ings and possibly not even one that holds within one building for all situations. It must 

be investigated for each SoS –  as any such decision impacts costs for operations and 

the infrastructure, and furthermore depends on the goals, situation, configuration, and 

many factors more, including non-functional aspects. 

In our work, we also look into different AI techniques for smart self-organizing 

building automation, described in documents and papers listed at [1], with details on 

the aspects elaborated in this article in [2]. Such choices are not covered here. Instead, 

we assume that a technique is available and investigate its effects. Still, it is notable 

that certain architectures favor certain AI techniques to implement the needed smarts, 

e.g., local decisions with loose coupling work well with agent-based technologies. 

2 Foundations: Bayesian Modeling 

The decision between architectural alternatives warrants an investigation of each of 

them with regard to their costs, benefits, and effects. To avoid costly experimentation, 

we base such investigations on model-based computational science, with simulation, 

calculation, and probabilistic assessment as possible techniques. We opt for Bayesian 

networks [3] as probabilistic models. These graph-based representations of the joint 

probability distribution over all modeled variables offer causal probabilistic modeling 

[4], optimal to investigate cause-effect relationships, e.g., what impact a strategy has 

on energy consumption, given that probabilistic factors, like weather or the building 

usage, affect the outcome. As their calculus allows for the inference of probability 

distributions over variables given evidence or assumed circumstances, it becomes 

feasible to investigate the range and likelihood of possible outcomes. Furthermore, 

Bayes nets allow sensitivity analyses to determine the possible impact of factors [5], 

e.g., to investigate the dependency of a system’s performance on the environment.  



 

 

While the literature listed above provides extensive knowledge on Bayesian net-

works, the remaining article only assumes familiarity with the core concepts: Bayes 

nets are graphs with (random) variables as nodes. Directed edges between nodes show 

their relationships, i.e., probabilistic or causal dependencies, encoded as conditional 

probability distribution of a variable given all its parents. Causal relations are often 

functional: Given the cause, the effect is determined in a functional manner, with the 

conditional probabilities that encode the likelihood of a variable’s states given other 

variables’ states either at 0 or 1 – impossible or always true under the specified condi-

tions. Probabilistic dependencies encode influence that is more random and flexible, 

e.g., a different likelihood for room occupancy given that the building is nearly full in 

comparison to situations where the building is mostly empty. Bayesian networks may 

either be modeled manually via knowledge engineering, or learned from data. Togeth-

er with their real-time capabilities, this makes them suitable for many domains. 

Several modeling techniques exist that enable the efficient use of Bayes nets for 

system modeling, e.g., by supporting re-use with object-orientation [6], and semi-

automated construction of networks from knowledge bases [7] or system descriptions 

[8]. All this ensures a reduction of efforts as well as consistency: As we set out to 

compare strategies for system-level control for a given building that has a given envi-

ronment, we use identical network building blocks, called network fragments, for the 

fixed points of our analysis, adding individually developed fragments for the variable 

parts. As all these fragments are constructed according to the same principles, they can 

be merged easily into a full Bayesian network. 

3 Probabilistic System Summaries 

In this section, we detail our probabilistic modeling that renders investigations of 

architectural alternatives for smart behavior. Essentially, the approach consists of a 

methodology to construct, in a comparable fashion, a Bayes net for each control strat-

egy under investigation together with its context, i.e., a summary of the system and 

environment. Special nodes in the networks allow the computation of utility values of 

the control strategy, e.g., for energy consumption or comfort, given the assumptions 

encoded in the networks, since the Bayes nets represent the joint probability distribu-

tion over all modeled variables. The modeled strategies thus allow for experiments, 

e.g., to compare the utility values of various strategies given different assumptions. 

3.1 System Summaries for Efficient Investigations  

Our goal is to encode a global view on the system, in our domain a smart building, so 

that the impact (cause and effect) of strategies may be investigated. This global view 

requires insights in the distribution over possible values of key variables in the sense 

of a summary: There is, e.g., one variable for room occupancy and not one for each 

room. A distribution over this variable together with dependent variables is sufficient; 

for example, one needs to know that 70% of the rooms are occupied within a given 

scenario and that this level of occupancy results in a certain energy need. 



 

 

Such a causal and probabilistic modeling that encodes a global view at the building 

allows for small models. This limits modeling efforts, especially compared to simula-

tions that include individual rooms. However, even small networks hold a great  

number of parameters: With discrete states as possible values of the modeled varia-

bles, a node in the graph holds one parameter per state for each possible combination 

of the states of all parent variables. This leads to thousands of parameters in bigger 

networks. However, parameters may be computed automatically for functional  

dependencies, greatly reducing efforts. For non-functional dependencies, parameters 

are determined via a knowledge engineering process: estimates of the parameters stem 

from statistics, e.g., on room occupancy, or from an evaluation by experts. The object-

oriented approach to model allows doing so in a constructive manner: a fragment 

encapsulates a piece of the domain, so that its modeling provides no challenge, as its 

relationships are easily understood. The subsequent construction of the Bayesian  

network from fragments follows a strict methodology, which may be used manually or 

even semi-automated, e.g., from a knowledge base (see references above and Chapter 

7 of [9] for details of fundamental modeling techniques). 

3.2 Use Case: Network Fragments for Smart Buildings 

For an easily understood illustration of our work, we start with the following set of 

probabilistic variables (in italics) and the dependencies between them: 

a) Usage of the building, a measure of utilization that impacts the likelihood of 

room occupancy. 

b) Condition of room, a measure how outside factors set a room status, e.g., the 

temperature due to direct sunlight. It impacts, together with room occupancy, the 

need of the room with regard to services that consume energy, e.g., to cool the 

room down. 

c) Services provided for a room, a measure of service-level provided for a room, 

which depends on room occupancy and the need of the room. (Furthermore the 

policy, not shown, which is not probabilistic, but user determined, as it describes 

a decision, e.g., to save energy. See below.)  

d) The consumption of the room follows from the services provided to the room.  

e) The energy consumption of the room determines the energy consumption of the 

building. The latter is a utility variable, i.e., a variable that shows a decision’s 

utility value, in this case the aforementioned policy. 

f) Discomfort within the building, another utility variable, which results from the 

discrepancy between the needs and services provided in occupied rooms.  

Fig. 1 depicts the network fragments for these variables. It becomes visible that the 

fragments can be fused into a network that describes a building: conditions and occu-

pancy determine need, services respond to need and consume energy, and a delta 

between need and services results in discomfort in occupied rooms. The probabilities 

are easy to determine: with statistic for variables without parents, with distributions 

for probabilistic relations, with causality for functional relations.  



 

 

 

Fig. 1. Network fragments of simplified smart building use case 

More elaborate models might mirror reality with less abstraction, e.g., by distinguish-

ing between offices and meeting rooms instead of summarizing all rooms. This is, 

however, for the system architect to consider: a probabilistic system summary may be 

generated from known details as well as from more general insights. The network’s 

causal nature ensures that different abstractions work together.  

3.3 System-level Control Strategies 

The decision process, i.e., the smarts of the building, is not explicit in the network 

fragments we introduced above. While it could be encoded within fragment c, which 

models the services provided to a room, this would hide the reasoning which is the 

goal of our investigation. Instead, we compose fragments that mirror the decision 

strategy and thus complement the other fragments that mirror the environment and 

processes. These fragments encode the causal effects of the strategy given the data 

available to the decision taker, incl. the current energy saving policy, summarizing 

both the decisions based on the available data and its effects on the system. 

To analyze different strategies comparatively, we require a model for each strategy. 

The network fragments forming these models have two distinct aspects: the reasoning 

process, encoded in the network structure, and probabilities that define the strategy’s 

parameters. The structure is engineered from the understanding which information is 

processed how within the system for decision takings. This might include complex 

steps, e.g., to account for missing data where the building automation has to use esti-

mates. The strategy’s parameters, on the other hand, are typically computed or deter-

mined with experiments, e.g., to find a policy set-point for services given a certain 

context so that a required energy saving is ensured. The modeling of the control  

strategies follows the same probabilistic summary techniques as the modeling of the 

environment and system interactions. It is, e.g., sufficient to know a distribution over 

alternatives for services set-points, disregarding where exactly a set-point is in effect. 



 

 

3.4 Use case: Network Fragments for Control 

In continuation of the simplified example, we show two distinct ways of building 

automation. Fig. 2 depicts the Bayesian network for smart rooms that take local deci-

sions while considering global requests: Given local data on room occupancy and the 

condition of the room, the need of the room is determined. Given that and a policy on 

energy savings, the room sets the services provided. Usage of the building sets the 

distribution of the room occupancy. Utility nodes on discomfort and consumption 

follow functionally. This network holds close to 400 parameters. Fig. 3 shows a smart 

building that enacts a global strategy, and thus altogether a very different information 

flow and computational model. Here, information on the needs of the rooms and thus 

the needs of the building is collected, the outcome is compared to the constraints set 

by the energy saving policy, which leads to insights into required savings, that are 

then used to set an appropriate strategy that fulfils the savings while minimizing  

discomfort. This latter step exploits the information available through the collection of 

the room data: If, e.g., the calculation shows that the use of an aggressive saving  

strategy in empty rooms is sufficient to meet the requirements, discomfort in other 

rooms may be avoided altogether – a fact that an individual smart room could not 

have taken into account. The network holds over 1000 parameters. Fig. 4. shows a set 

of parameters that define set-points on how an energy saving policy for smart rooms 

changes the services provided to a room given its needs. It is key to understand that 

the complete models handle summaries in the form of distributions: if such conditions 

are given, this mixture of decisions will be taken, resulting altogether in these effects. 

 

Fig. 2. Simplified Bayesian network for smart room building control 

3.5 Network Formation 

The final step in the modeling process is the formation of the network structure, i.e., 

the construction of the graph from the network fragments and other necessary nodes. 

This process, which may be partially automated [8], mirrors the information flows of 

the strategy and its realization, i.e., functional aspects as laid out above and other 



 

 

architectural aspects. Fig. 2 and Fig. 3 show the out-come of this process. In these 

networks, we thus see a local decision process in smart rooms that deduct the services 

provided from locally available information while taking the global energy policy into 

account, while the smart building decides its strategy after global budget calculations. 

 

Fig. 3. Simplified Bayesian network for smart central decisions building control 

 

Fig. 4. Strategy for smart rooms: services provided given occupancy, need of room (level  

requested) for three energy saving policies (NIL, LIGHT, and HEAVY constraints) 

If we encounter non-functional concerns, especially w.r.t. the realization architecture, 

we approach the modeling of their impact on the reasoning in the same way. Imagine, 

e.g., a masking of occupancy information for a building section due to privacy con-

cerns, which results in incomplete information in the respective node. If the building’s 

control is realized without mechanisms to compensate for this, we would soften the 

distributions of the room occupancy to allow for a wider range of values within our 

calculations. If the building’s control has a setup to estimate these figures, we would 

include this flow of information, resulting e.g., in a room occupancy that follows from 

a combination of observations and an estimate model, which might be based on date 

and time, or car park observations. Fig. 5 summarizes workflow and considerations of 

the network generation process: The Reasoning Network encodes the information 

flows and functional aspects. If the realization architecture warrants an adaptation, the 

additional steps result in the final Bayesian network. 



 

 

 

Fig. 5. Process of network generation 

4 Experiments to Investigate Strategies 

To compare the impact of the modeled decision strategies, e.g., the one for smart 

building with rooms without decision power and the one with smart rooms but no 

decision power for the building, we conduct a set of experiments. In each of those, 

applicable environmental settings, like building usage, are set (entered as evidence) in 

the respective Bayesian network (one per strategy). The effects of all possible energy 

saving policies or other circumstances on target variables like discomfort and con-

sumption are computed individually via the probabilistic inference of the network, i.e., 

the circumstance is set and the Bayes network infers the distribution of all target vari-

ables given the evidence entered for the environmental settings. 

This setup allows for experiments on the sum of all environmental circumstances, 

but also investigations that are specific, e.g., for high occupancy under extreme weath-

er conditions and demanding policies. While a presentation of our actual results is 

pointless within this presentation of the approach due to the simplification of the net-

works, we present some details that we consider useful to gauge the approach. With 

regard to the efforts, we note first that an in-depth comparison of two strategies is 

possible within a few hours, while a high level estimation is merely a matter of 

minutes once the modeling is done. Second, we advise to run additional experiments 

with the purpose to test the models, establishing a standard engineering practice to 



 

 

safeguard results and thus subsequent business decisions. Mostly, such test will look 

into fragments and their links, but also wider aspects are sensible. In our example, we 

checked that the target variables consumption and discomfort show identical values 

for all comparable experiments if no energy saving policy is in effect, but we also 

required that a smart building can leverage its information advantage, i.e., mere smart 

rooms should not outperform it on these indicators. 

In addition to these investigations, it is possible to reason backwards, from effects 

to possible causes, e.g., to check the probability of circumstances that lead to levels of 

discomfort that are unacceptable. This is relevant for the dimensioning of systems and 

the setting of strategies, as it mirrors service-level agreements. Another type of exper-

iments is the investigation of so-called counter-factuals that describe an alternative 

reality, e.g., a different building in which the condition of the room leads to different 

needs of those rooms, e.g., due to stronger insulation. This is useful to initiate change 

and improvements in a sensible manner. In [2], we detail the workflow for all types of 

experiments and provide insights into the stability of the results inferred from proba-

bilistic summaries w.r.t. the precision of the network parameters. 

5 Operational Use 

Once a suitable decision strategy is found with the analysis methods described here, it 

is possible to implement it with live reasoning that uses a Bayesian network which 

takes observational data into account. The Bayesian network used for analysis forms a 

direct input for this; it is sufficient to adapt the level of details to the one observable 

for the building automation, keeping the structure of the reasoning intact. This works 

due to the construction of the network as system summary – analysis and operational 

control use identical reasoning.   

6 Discussion 

We introduced a method to model decision architectures of smart systems-of-systems 

that take their context, configuration, and current situation into account to change their 

behavior according to a dynamic or pre-set strategy. Our modeling summarizes the 

system, its behavior, and the impact of control decisions. This summarization is  

encoded in Bayesian networks; it uses probabilistic distributions over all key variables 

and their relationships. Using such a probabilistic summary allows to investigate  

architectural alternatives regarding system-level control strategies and the intelligent 

management of scenarios. This can be done with little efforts in experiments in which 

effects – and thus costs and benefits – of alternatives are computed and compared. 

Given the light-weight and modular manner of modeling, this sequence of modeling, 

experimental analysis, and investigation of cause-and-effect relations grants the bene-

fits of an exploration of the design-space of the system’s control architecture and 

behavior that is based on computational science. This allows system architects to take 

sound decisions, e.g., on where to put the ‘smarts’ of a smart building. 



 

 

6.1 Relation to Engineering and AI 

Our work addresses the architecting of smart behavior and control structures of smart 

systems-of-systems. It is therefore at the interface of system-of-systems engineering to 

artificial intelligence; two communities that only recently started to interact. It is our 

observation that existing work of these domains often take the contribution from the 

other domain out of their considerations: AI puts forward algorithms for smart behav-

ior given a system layout – system engineering investigates designs assuming fixed 

behavior patterns (which are often close to traditional engineering). We believe that 

these more isolated points-of-view disregard the impact of a system’s architecture to 

the possibility, quality, and efficiency of computations for behavior and control, and, 

vice versa, the demands of such computations on architecture. Realizing that the 

‘when’ and ‘where’ of computations affects the ‘what’, we identified the need for 

advances w.r.t. the architecting of behavior and system-level-control, for which we 

propose our probabilistic system summaries as one modeling and analysis technique. 

While we see our main contribution in this focus on a smart system-of-systems’  

architecture, we advise a strong link to operational aspects of decision strategies for 

future work. Medina-Oliva et al., e.g., propose to support the assessment of main-

tenance strategies of industrial systems using probabilistic relational models (PRM) in 

[10]. Their use of key performance indicators as optimization goals within a probabil-

istic framework is similar to our use of utility variables, pointing to a feasible inte-

gration of this work with sustainable operations management [11]. 

6.2 Implementation and Feasibility 

The efforts to conduct an architecture investigation with probabilistic system summar-

ies is very low, especially in comparison to alternatives like a detailed simulation 

where all individual objects are modeled. This assessment is based on experience, as 

we cannot pursue alternative approaches for various techniques in detail. We can, 

however, pinpoint various additional advantages: First, the models are Bayesian  

networks, for which both commercial and open-source software tools exist that offer 

well-established algorithms and suitable human-computer-interfaces. There is no need 

for additional engineering tools. Second, the modeling is dual purpose in the sense 

that models for analysis may be used for the operation of the smart system as well – 

thus reducing engineering efforts. Given the capabilities of smart systems, building 

automation systems in our domain, and the efficiency as well as real-time suitability of 

Bayesian networks, it is feasible to realize this with little to no extra costs. 

However, we must re-consider the modelling efforts together with the efforts to fuse 

network fragments when we extend our approach to include more aspects into the archi-

tectural summary, e.g., for operations management as proposed above. Work by Koller 

et al. on probabilistic relational models [12] together with the foundations on probabilis-

tic frame-based systems in [13] covers the modelling of large complex domains with the 

coherent probabilistic representation of Bayesian networks. As this work has many  

application domains, we expect further advances regarding tool support, further guaran-

teeing the feasibility of industrial use of modelling system summaries. 



 

 

Acknowledgements 

This work was partly funded via the EU FP7 ICT project SCUBA – Self-organising, 

Co-operative and robust Building Automation (www.ict-scuba.eu). 

References  

1. Scuba FP7 Project, Scientific papers. 

www.aws.cit.ie/scuba/index.php/documents/scientific-papers/ 

2. Borth, M.: Reasoning for smart control strategies. In Scuba FP7 Project, Deliverable 4.2: 

Scenario management, control and self-organization strategies, initial adaptation strategies, 

in press (2014) 

3. Jensen, F.V.: Bayesian networks and decision graphs. Springer (2001) 

4. Pearl, J.: Causality. Models, reasoning, and inference. Cambridge University Press (2000) 

5. Jensen, F.V., Aldenryd, S.H., Jensen, K.B.: Sensitivity analysis in Bayesian networks. In: 

Symbolic and Quantitative Approaches to Reasoning and Uncertainty Vol. 946, Carbonell, 

J.G., Siekmann, J., Goos, G., Hartmanis, J., Leeuwen, J., Froidevaux, C., Kohlas, J. (eds.) 

Springer Lecture Notes in Computer Science, pp. 243–250 (1995) 

6. Koller, D., Pfeffer, A.: Object-oriented Bayesian networks. In: Geiger, D., Shenoy, P.P. 

(eds.) Proceedings of the 13th conference on uncertainty in artificial intelligence (UAI'97). 

Morgan Kaufmann Publishers Inc., pp. 302–313 (1997) 

7. Laskey, K.B., Mahoney, S.M.: Network fragments: representing knowledge for construct-

ing probabilistic models. In: Geiger, D., Shenoy, P.P. (eds.) Proceedings of the 13th con-

ference on uncertainty in artificial intelligence (UAI'97). Morgan Kaufmann Publishers 

Inc., pp. 334–341 (1997) 

8. Borth, M., von Hasseln, H.: Systematic generation of Bayesian networks from systems 

specifications. In Musen, M.A., Neumann, B., Studer, R. (eds.) Intelligent information 

processing. Kluver, pp. 155–166 (2002) 

9. Kjærulff, U.B., Madsen, A.L.: Bayesian networks and influence diagrams: a guide to con-

struction and analysis. Springer (2013) 

10. Medina-Oliva, G., Weber, P., Iung, B.: PRM-based patterns for knowledge formalisation 

of industrial systems to support maintenance strategies assessment. Reliability Engineering 

& System Safety, 116, 38–56. doi:10.1016/j.ress.2013.02.026  (2013) 

11. Kleindorfer, P.R., Singhal, K., Van Wassenhove, L.N.: Sustainable operations manage-

ment. Production and Operations Management, vol. 14 (4) pp. 482-492 (2005) 

12. Getoor, L., Friedman, N., Koller, D., Pfeffer, A., Taskar, B.: Probabilistic relational mod-

els. In: Getoor, L., Taskar, B. (eds.) An introduction to statistical relational learning, MIT 

Press (2007) 

13. Koller, D., Pfeffer, A.: Probabilistic frame-based systems. In: Mostow, J., Rich, C., Bu-

chanan, B. (eds.) Proceedings of the fifteenth national/tenth conference on Artificial intel-

ligence/Innovative applications of artificial intelligence (AAAI '98/IAAI '98). American 

Association for Artificial Intelligence, pp. 580-587 (1998) 

 


