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Abstract—Agent-based technologies embed solutions for criti-
cal issues in agent-oriented software engineering. In this paper we
describe the coordination-based approach to MAS situatedness
as promoted by the TuCSoN middleware, by sketching the steps
of an agent-oriented methodology from the TuCSoN meta-model
down to the TuCSoN programming environment.

I. COORDINATION AND SITUATEDNESS IN MAS

The need for situatedness in multi-agent systems (MAS)
is often translated into the requirement of being sensitive to
environment change [1], possibly influencing the environment
in turn. Such a requirement lays at the core of the notion
of situated action – complementing that of social action [2]
–, as those actions arising from strict interaction with the
environment [3]. This leads to recognise dependencies among
agents and the environment as one of the fundamental sources
of complexity within a MAS—the other being dependencies
between agents’ activities [4]. Therefore, coordination – as
the discipline of managing dependencies [4] – could be used
to deal with both social and situated interaction, by exploiting
coordination artefacts [5] for handling both social and situated
dependencies [6].

Accordingly, in this paper we introduce the situated co-
ordination approach promoted by the TuCSoN model and
technology for agent coordination [7] to handle situatedness
in MAS as a coordination issue. In particular, we describe the
support that TuCSoN provides to MAS programmers in each
macro-stage of a typical software engineering process applied
to a MAS: the abstractions available for the requirement
analysis (Section II), the reference run-time architecture for the
design phase (Section III), the API supporting the concept of
situated coordination (Section IV). Finally, to help the reader
understanding our methodological approach, we sketch how
to deploy a TuCSoN-coordinated situated infrastructure for
smart home appliances coordination (Section V).

II. REQUIREMENT ANALYSIS: THE TuCSoN
META-MODEL

The availability of well-known and established develop-
ment frameworks and middleware often lead to (implicit)
methodologies which are essentially driven by the abstractions
promoted and supported by the technology [8]. This typically
happens when the maturity of technologies precedes that
of methodologies—and actually happened for agent-oriented
technologies in the last decade [9].

What influences the process of MAS engineering based
on an agent-oriented framework is first of all the conceptual
framework provided by the technology, and in particular the
meta-model behind it, which fundamentally shapes the space
of the solutions: the availability of different abstractions to
elaborate over the application problem usually leads to differ-
ent designs and implementations—and ultimately, to different
solutions, too. This is why in the remainder of this section we
describe the meta-model of the TuCSoN model and technol-
ogy for agent coordination [7]; that is, the set of abstractions
provided by TuCSoN in order to model application problems
since the very beginning of the engineering stage. Three are the
TuCSoN core concepts for MAS engineering, which motivate
the architecture described in Section III: activities, environment
change, dependencies.

Activities are the goal-directed/oriented proceedings result-
ing into actions of any sort, which “make things happen” in
a MAS. Through actions, activities in a MAS are social [2]
and situated [3]. Activities are usually modelled through the
agent abstraction: the reason for this choice is that, often, MAS
designers are not merely interested in modelling an action “as
is”, but they also want / need to model the motivations behind
that action—namely, their goal. Thus, from the standpoint
endorsed here, agents do not exist because they resemble some
“real-world” entity; they exist as the means through which
activities can be modelled in a MAS—as a way to model
actions along with their driving goals.

Environment change represents the (possibly unpredictable)
variations in the properties or structure of the world sur-
rounding a MAS that affect it in any way—thus, which the
MAS needs to account for. Such variations do not express
any specific goal, either because this does not exist, or be-
cause it is not to be / cannot be modelled in the MAS.
Also, variations may not correspond to actual changes in the
real-world properties or structure, but simply variations in
the perception of the world the MAS has—in other words,
what the MAS observes may vary independently of whether
the environment actually changes too. Environment (change)
is usually modelled through the resource abstraction, as a
non-intelligent entity either continuously producing events or
reactively waiting for requests to perform its function.

Finally, in any non-trivial MAS, activities depend on other
activities (social dependencies), as well as on environment
change (situated dependencies). Thus, dependencies motivate
and cause interaction, both social and situated, based on the
sort of dependency taking place.



Furthermore, the core notion linking the TuCSoN ar-
chitecture to its meta-model is that of event. Despite their
intrinsic diversity, activities and environment change constitute
altogether the only sources of dynamics – thus complexity – in
a MAS. In order to provide a uniform representation of MAS
dynamics and to promote a coordination-oriented approach
in modelling social as well as situated dependencies, both
activities and environment changes trigger events. Therefore, in
TuCSoN, events reify any social and any situated interaction
taking place within the MAS, driving the coordination process.

Given the above abstractions, MAS designers should think
about the problem at hand in terms of (i) a bunch of goal-
directed/oriented activities (agents) (ii) interacting with each
other and influenced by / influencing some sort of (iii) changes
in their environment (resources), therefore (iv) generating
events, which (v) have to be properly coordinated.

III. MODEL & DESIGN: THE TuCSoN ARCHITECTURE

In this section we first overview the TuCSoN architecture
by describing its main components, directly stemming from
the TuCSoN meta-model introduced in Section II. Then we
sketch how such components collaborate to properly support
the modelling of activities and environment changes in TuC-
SoN (Subsection III-A and Subsection III-B), in particular
focussing on agent-environment interactions—that is, situated
dependencies (Subsection III-C).

TuCSoN1 [7] is a Java-based, tuple-based coordination
infrastructure for open distributed MAS. Its main architectural
run-time components are—as depicted in Fig. 1:

agents — Any computational entity willing to exploit
TuCSoN coordination services [10] is a TuCSoN
agent. In order for agents to be recognised as co-
ordinables [11] by TuCSoN, they need to obtain

1http://tucson.unibo.it

Fig. 1. TuCSoN architecture. ACC and transducers mediate the interactions
between agents and the environment by translating activities and changes
into events, which are then handled by tuple centres so as to support both
coordination and situatedness. The “inner cloud” can be seen as a TuCSoN
node, that is, a single “place” in which the coordination between MAS entities
happens. Actually, such node can be distributed across networked devices,
blurring the distinction between a TuCSoN node and a TuCSoN system.

an ACC (see below), released by TuCSoN itself.
Agents (interaction-oriented) activities result into
coordination operations, targeting the coordina-
tion media (a tuple centre, see below) actually
handled by the ACC.

ACC — Agent Coordination Contexts [12] are TuC-
SoN architectural components devoted to rep-
resent and mediate agents activities within the
MAS. In particular, an ACC maps coordination
operations (thus both social and situation actions)
into events, dispatches them to tuple centres, waits
for the outcome of dependency resolution (that
is, coordination), then sends the operation result
back to the agent. ACC are also the fundamental
run-time entities that preserve agent autonomy
[12]: in fact, while the ACC takes care of asyn-
chronously dispatching events – consequence of
agent’s activity – to tuple centres, the agent is
free to undertake other activities. This enables
decoupling in control, reference, space and time.

probes — Environmental resources in TuCSoN are called
probes. They can be either sources of percep-
tions (like sensors), targets of actions (like ac-
tuators), or even both: TuCSoN models them in
the same way, using transducers. In fact, actions
over probes are carried out by transducers: as for
agents with ACC, probes do not directly interact
with the MAS, but through transducer mediation.

transducers — Analogously to ACC for agents, TuC-
SoN transducers [13] are the architectural run-
time components in charge of representing and
mediating environment changes regarding probes.
Each probe is assigned a transducer, which is
specialised to handle events to/from that probe.
So, in particular, transducers translate (i) probes
properties changes into events, to be dispatched
to tuple centres and properly coordinated, and
(ii) MAS events into properties changes, to be
sensed/effected on probes.

events — TuCSoN adopts the ReSpecT [14] event
model – adapted from [15] in TABLE I on page 8
–, representing any sort of event happening in the
MAS in a uniform way—both the events gener-
ated from agents activities and those from changes
in the environment. Events are the data structure
reifying all the relevant information about the
activity or change that generated them. In partic-
ular, TuCSoN events record: the immediate and
primary cause of the event [16], its outcome, who
is the source of the event, who is its target, when
and where the event was generated. Thus, any
event captured by TuCSoN – through ACC and
transducers – is situated both in space and time,
as well as within its execution context. This lays
at the core of the notion of situated coordination,
meaning that tuple centres can effectively coor-
dinate events (thus resolve dependencies) while
accounting for the situated nature of interactions.

tuple centres — ReSpecT tuple centres [17] are the TuC-
SoN architectural component mediating all inter-
actions happening in the MAS, thus in charge of
handling events in order to resolve dependencies.

http://tucson.unibo.it


They are run by the TuCSoN middleware to rule
and decouple (in control, reference, space, and
time) dependencies between agent activities as
well as environment change—in other words, both
social and situated interactions [6]. By adopting
ReSpecT tuple centres, TuCSoN relies on (i)
the ReSpecT language to program coordination
laws, and (ii) the ReSpecT situated event model
to implement events.

Summing up, MAS designers aiming at exploiting TuCSoN
coordination services should: (i) rely on ACC and therein
defined primitives to interact with other TuCSoN-coordinated
entities, (ii) define suitable transducers to represent the relevant
portions of MAS environment, (iii) program TuCSoN tuple
centres through ReSpecT specifications to handle TuCSoN
events—therefore, to effectively coordinate the MAS.

As a last note, we would like to highlight that ReSpecT
event model (TABLE I) is general enough to model any kind of
social/situated coordination event, not any kind of (whatever)
event which can happen in a MAS. In particular, we do not
aim at foreseeing at design time all possible events which can
happen in a MAS; rather, we simply aim at foreseeing the
general structure of any coordination-related event, to be later
instantiated through a TuCSoN event at run-time. Then, con-
sidering only such a restricted subset of events, we can achieve
adaptation as well as tolerance to unpredictability thanks to
ReSpecT programmability and TuCSoN transducers, respec-
tively. In fact, programmability of ReSpecT reactions makes it
possible to change event handling (thus, coordination policies)
at run-time, whereas run-time addition/removal of transducers
along with situatedness of ReSpecT events instantiation helps
in dealing with unpredictability of environment.

A. Agent side

The agent side of a TuCSoN-coordinated MAS is basically
represented by the run-time relationships between agents,
ACC, and tuple centres.

First of all, as depicted in Fig. 2, TuCSoN agents have to
acquire an ACC before issuing any sort of coordination opera-
tion towards the TuCSoN infrastructure. They do so by asking
the TuCSoN middleware to release an ACC. Whether an ACC
is actually released, and which one among those available2 is

2See the TuCSoN official guide at http://www.slideshare.net/andreaomicini/
the-tucson-coordination-model-technology-a-guide.

Fig. 2. ACC acquisition by TuCSoN agents. Nothing can be done by an
agent with the TuCSoN middleware prior to ACC acquisition.

dynamically determined by the TuCSoN middleware itself,
based upon the agent request and its expected role inside the
MAS [18].

Once a TuCSoN agent obtains an ACC, all of its inter-
actions are mediated by the ACC itself, with no role for the
TuCSoN node. In particular, as depicted in Fig. 3, in the case
a coordination operation is requested through a synchronous
invocation:

(i) first of all (messages 2 − 2.1.2), the target tuple centre
associated to the ACC is dynamically instantiated by the
TuCSoN run-time infrastructure, and its network address
given to the ACC for further reference

(ii) then (message 2.2), the ACC takes charge of building
the corresponding event and of dispatching it to the tuple
centre target of the interaction

(iii) finally (messages 2.2.1 − 2.2.2.1), the ACC is notified
when the outcome of the coordination operation re-
quested is available – after a proper coordination stage,
possibly involving other events from other entities – so
that it can send the operation result back to the agent

Only the coordination operation request from the agent to its
ACC is a synchronous method call: any other interaction is
asynchronous as well as event-driven. This is necessary in
every open and distributed scenario, and enables the already
mentioned decoupling in control, reference, space, and time.
Nevertheless, in such a scenario – synchronous operation
invocation – the control flow of the caller agent is retained
by the ACC as long as the operation result is not available
(message 2.2.2.1).

Conversely, Fig. 4 depicts the asynchronous invocation
scenario: the only difference w.r.t. the synchronous one lays in
the fact that the control flow is given back to the caller agent as
soon as the corresponding event is dispatched to the target tuple
centre (messages 3.3−3.4). The actual result of the requested
coordination operation is dispatched to the agent as soon
as it becomes available, asynchronously (message 3.3.2.1).
TuCSoN lets client agents choose which semantics to use for
their coordination operations invocation, either synchronous or
asynchronous. As a side note, the scenario depicted in Fig. 4
assumes that the target tuple centre is already up and running
– e.g., as a consequence of a previous operation invocation
– thus, the TuCSoN node simply retrieves its reference, and
passes it to the ACC.

Fig. 5. ACC release by TuCSoN agents. Nothing can be done by an agent
with the TuCSoN middleware after ACC release.

http://www.slideshare.net/andreaomicini/the-tucson-coordination-model-technology-a-guide
http://www.slideshare.net/andreaomicini/the-tucson-coordination-model-technology-a-guide


Fig. 3. Synchronous operation invocation. The control flow is released back to the agent only when the operation result is available—thus, only when the
coordination process ends.

Fig. 4. Asynchronous operation invocation. The control flow is released back to the agent as soon as the event related to the request is generated and dispatched
by the ACC.

Whenever an agent no longer needs TuCSoN coordination
services, it should release its ACC back to TuCSoN middle-
ware, which promptly destroys it in order to prevent resources
leakage—as depicted in Fig. 5. It should be noticed that there is
no way to re-acquire an already-released ACC – e.g., to restore
interactions history –, since whenever an ACC is requested
a new one is created and assigned. Since ACC are used to
represent and identify agents within a TuCSoN-coordinated
MAS, an agent obtaining an ACC multiple times is recognised
every time as a new agent by the TuCSoN middleware.

Summing up, designers of agents exploiting TuCSoN
should make their agents: (i) acquire an ACC; (ii) choose
each operation invocation semantics, and (iii) expect operations
result to be available accordingly; (iv) release their ACC when
TuCSoN services are no longer needed—notice at agents
shutdown TuCSoN automatically releases “orphan” ACCs.

B. Environment side

On the environment side of the TuCSoN architecture,
agents and ACC are replaced by probes and transducers,



Fig. 6. Probes registration and transducers association. No events can be
perceived nor actions undertaken on a probe prior to transducer association.

respectively—as depicted by Fig. 6. Thus, first of all, probes
should register to the TuCSoN middleware in order to get their
transducer and interact. After probe registration, any interac-
tion resulting from environmental property change affecting
the MAS is mediated by the transducer. Fig. 7 depicts the
interaction among TuCSoN run-time entities in the case of a
sensor probe, thus a sensor transducer, whereas Fig. 8 shows
the case of an actuator probe. By comparing the two pictures,
the flow of interactions is almost the same, except for the first
invocation, which depends on the nature of the probe—either
sensor (Fig. 7) or actuator (Fig. 8).

In particular, a perception by a sensor probe works as
follows—Fig. 7:

(i) first of all (messages 2 − 2.1.2), the target tuple centre
associated to the transducer is dynamically instantiated
by the TuCSoN run-time infrastructure, and its network
address passed to the transducer for further reference

(i) then (message 2.2), the transducer builds the event corre-
sponding to the perception operation, and dispatches it to
the tuple centre target of the interaction

(i) finally (messages 2.2.1 − 2.2.2), the tuple centre enacts
the coordination process triggered by such event (if any),
properly dispatching its outcome

As far as probe interaction is concerned, there is no distinction
between synchronous or asynchronous semantics. In fact,
being representations of environmental resources, probes are
not supposed to expect any feedback from the MAS: they
simply cause / undergo changes that are relevant to the MAS.
For this reason, the semantics of situation operations invocation
on probes is always asynchronous—as depicted in Fig. 7 and
Fig. 8: the control flow is always returned to the probe as soon
as the corresponding event is generated.

When a probe is no longer needed, it should be de-
registered from TuCSoN, which subsequently destroys the
associated transducer—as depicted in Fig. 9.

Wrapping up, TuCSoN situatedness services require MAS
designers to: (i) always register probes causing their trans-
ducer instantiation; (ii) be aware that environmental events
are always generated asynchronously; (iv) de-register probes
when they are no longer needed—no automatic de-registration
is performed by the TuCSoN middleware.

Fig. 9. Probe de-registration. Nothing can be either sensed or effected by
the MAS upon the de-registered probe, since the mediating transducer is no
longer running.

C. Between agents and environment: Situated coordination

Putting together the agent and the environment side of
the TuCSoN event-driven architecture, Fig. 10 and Fig. 11
depict a synchronous interaction of an agent with a sensor,
and an asynchronous interaction of an agent with an actuator,
respectively. By inspecting the whole interaction sequence, one
could see how (i) TuCSoN ACC and transducers play a central
role in supporting distribution and decoupling of agents and
probes within the MAS, and (ii) how TuCSoN tuple centres
and the ReSpecT language are fundamental to support both
situatedness and objective coordination [19], [20].

In particular, in Fig. 10 the agent is issuing a syn-
chronous coordination operation request involving a given tu-
ple sense(temp(T))—message 1. After event dispatching
(all the dynamic instantiation interactions were left out for the
sake of clarity), the tuple centre target of the operation reacts
to such invocation by triggering the ReSpecT reaction in
annotation 1.1.1, which generates a situated event (step 1.1.2)
aimed at executing a situation operation (getEnv(temp,
T)) on the probe (sensor). The transducer associated to the
tuple centre and responsible for the target probe intercepts such
an event and takes care of actually executing the operation on
the probe (message 1.1.2.1). The sensor probe reply (message
1.1.2.2) generates a sequence of events propagation terminat-
ing in the response to the original coordination operation issued
by the agent (message 1.1.2.3.2.1).

The role of the tuple centre in supporting situatedness
should pointed out here: in fact, step 1.1.2.3.1 properly reacts
to the completion of situation operation getEnv(temp, T)
by the sensor probe, emitting exactly the tuple originally
requested by the agent (sense(temp(T))).

In Fig. 11 the sequence of interactions as well as the
annotations are very similar to those in Fig. 10. In par-
ticular, annotation 2.1.1 shows how the ReSpecT reaction
triggering event matches the event raised as a consequence
of agent coordination operation request (act(temp(T))),
while annotation 2.1.2.3.1 highlights how the tuple centre
maps the situation operation outcome (setEnv(temp, T))
in the original tuple (act(temp(T))) through a proper
ReSpecT reaction. The only differences w.r.t. Fig. 10 are the
asynchronous invocation semantics used by the agent and the
actuator nature of the interacting probe—thus, the names of
messages 2.1.2.1 and 2.1.2.2.

In summary, as shown by Fig. 10 and Fig. 11, ReSpecT



Fig. 7. Sensor probe interaction. The control flow returns to the probe as soon as the environmental event is generated and dispatched by the transducer, thus,
everything happens asynchronously.

Fig. 8. Actuator probe interaction. Again, everything happens asynchronously.

is fundamental to program TuCSoN tuple centres so as to
correctly bind coordination operations with situation opera-
tions – while preserving the autonomy of interacting entities
–, ultimately supporting agent-environment interactions – thus,
situatedness – in distributed, open environments

IV. IMPLEMENTATION: ReSpecT API

This section focusses on ReSpecT programming for sit-
uatedness and events handling, by discussing the ReSpecT
language API. In particular, it is meant to explain what
programmers can do in the implementation stage of TuCSoN-
coordinated MAS by exploiting ReSpecT situated event
model to its full extent. Notice, what follows is not merely
done to describe implementation details; instead, it is meant
to show which situatedness-related properties are available for
inspection/handling and how these properties are dynamically

instantiated: this contributes to clarify what situatedness means
and how it can be supported.

Starting from the reaction annotating message 1.1.1 in
Fig. 10, and according to ReSpecT formal syntax and se-
mantics [14], we can distinguish:

in(sense(temp(T)))— (part of) the triggering event.
As soon as the operation invocation event gen-
erated by the ACC arrives to the target tuple
centre (message 1.1), the ReSpecT VM scans
its ReSpecT program searching for any reac-
tions whose triggering event matches the one
received—where matching means unification in
the first-order logic ReSpecT language. Any re-
action found is collected and candidate for ex-
ecution. In this case, the triggering event cor-
responds to an Activity , using the terminology



Fig. 10. Synchronous situation operation querying a sensor. ReSpecT plays a fundamental role in binding both the agent coordination operation to its
corresponding situation operation (annotation in step 1.1.1) and the probe response back to the agent original request (annotation in step 1.1.2.3.1).

Fig. 11. Asynchronous situation operation commanding an actuator. As in Fig. 10, ReSpecT role in enabling situatedness is visible in annotations 2.1.1 and
2.1.2.3.1.



〈Event〉 ::= 〈StartCause〉, 〈Cause〉, 〈Evaluation〉
〈StartCause〉 , 〈Cause〉 ::= 〈Activity〉 | 〈Change〉, 〈Source〉, 〈Target〉, 〈Time〉, 〈Space:Place〉

〈Source〉 , 〈Target〉 ::= 〈AgentId〉 | 〈TCId〉 | 〈ProbeId〉 | ⊥
〈Evaluation〉 ::= ⊥ | {〈Result〉}

TABLE I. ReSpecT SITUATED event model.

of ReSpecT event model in TABLE I—that is,
something coming from an agent.

(operation, invocation) — the guard predicates.
Triggered reactions are further filtered based upon
evaluation of their guards, that is, logic predi-
cates allowing fine-grained control over reaction
triggering, which can evaluate to either true
or false. In this case, the operation guard
filters coordination operation events whereas the
invocation guard filters events from the ACC
to the tuple centre. If all the guards of the reaction
are evaluated to true, such reaction is scheduled
for execution.

[...] ? getEnv(temp, T) — the actual reaction.
After guard-based filtering phase, the tuple centre
non deterministically selects one reaction from
the pool of those scheduled and starts executing
it. In this case, the only computation to carry
out is a Change , again, using the terminology
of TABLE I. In particular, the situation operation
(getEnv(...)) on probe sensor – whose full
name is the 〈ProbeId〉 in TABLE I –, which
causes a situation operation event to be generated
and dispatched first to the associated transducer,
then to the actual probe.

After the request is served, field 〈Evaluation〉 from TABLE I
is still empty—waiting for completion to be carried out. In
fact, due to the asynchronous nature of events dispatching in
TuCSoN, the tuple centre itself does not suspend execution
waiting for a response from the probe. This is necessary, e.g.,
to face the issues of network communications in a distributed
scenario.

For these reasons, the ReSpecT reaction annotating mes-
sage 1.1.2.3.1 in Fig. 10 is complementary and necessary to
complete the situated interaction in a meaningful way. In such
reaction, the triggering event, the guards, and the reaction are,
respectively:

getEnv(temp, T) — the situation operation event
corresponding to the Change execution by the
tuple centre (through the probe transducer) in the
first reaction (messages 1.1.2 - 1.1.2.3). The first
reaction, in fact, requests the operation execution
to the probe transducer, whereas this reaction
manages such request reply.

(from_env, completion) — filtering situation op-
eration events (from_env) representing the out-
come of an execution (completion). Using
these guards, MAS programmers are guaranteed
to make the tuple centre react only when the
requested situation operation has been actually
executed on the target probe.

out(sense(temp(T))) — the computation emitting
in the tuple centre the tuple reifying the infor-
mation perceived by the sensor probe. Such a
tuple perfectly matches the one used as argument
of the coordination operation issued by the inter-
acting agent: thus, coupled with the synchronous
invocation semantics chosen, this ensures MAS
programmers that their agent will resume its ex-
ecution only when the perception operation has
been successfully carried out.

The above description of ReSpecT reactions machinery
should make the role played by the tuple centre coordination
abstraction in supporting situatedness evident—thus, the con-
cept of situated coordination. The reactions annotating Fig. 11
can be explained in a similar way, thus they are left out from
discussion.

Finally, a list of some of the methods available in the
Respect2PLibrary Java class within TuCSoN distribution
follows in the remainder of this section, which exposes the
API for ReSpecT programmers. Such API allows inspection
of any event property on any TuCSoN event from within any
ReSpecT reaction, according to the event model in TABLE I.
In the particular scenario depicted by ReSpecT reaction 1.1.1
of Fig. 10, for instance:

event_predicate_1(Term p) — makes it possible
to inspect the 〈Activity〉 | 〈Change〉 field of the
event which directly caused (〈Cause〉) the trig-
gering of the ReSpecT reaction. In this case, it
unifies p with in(sense(temp(T))).

event_source_1(Term s) — makes the 〈Source〉 of
the event observable—that is, who caused event
generation. In this case, it unifies s with the
〈AgentId〉 of the agent issuing the coordination
operation (message 1).

event_target_1(Term t) — allows inspection of
the 〈Target〉 field of the event. In this case, it
unifies t with the 〈TCId〉 of the tuple centre target
of the event (message 1.1).

event_time_1(Term t) — makes the 〈Time〉 when
the event was generated observable. In this case, it
unifies t with the time at which the ACC receives
the coordination operation request (message 1).

event_place_1(Term s, Term p) — allows the
〈Space:Place〉 field of the event to be inspected,
once the sort of space is chosen from a pre-defined
set of admissible spaces—either absolute physi-
cal position (s=ph), IP address (s=ip), domain
name (s=dns), geographical location (s=map),
organisational position (s=org). In this case, it
unifies p with, e.g., the network address of the
agent which caused reaction triggering.



If the same methods were used in ReSpecT reaction annotat-
ing message 1.1.2.3.1, the results would be different—due to
situatedness of events:

event_predicate_1(Term p) — would unify p
with getEnv(temp, T).

event_source_1(Term s) — would unify s with
the 〈ProbeId〉 of the probe source of the event
(message 1.1.2.2).

event_target_1(Term t) — would unify t with
the 〈TCId〉 of the tuple centre target of the event
(message 1.1.2.3).

event_time_1(Term t) — would unify t with the
time at which the transducer receives the situation
operation completion (message 1.1.2.2).

event_place_1(Term s, Term p) — would unify
p with, e.g., the network address of the sensor
probe that caused reaction triggering.

V. DEPLOYMENT: SMART HOME APPLIANCES
COORDINATION

In this section, we look at a smart home scenario with
the aim of deploying TuCSoN as its underlying situated
coordination infrastructure. This allows us to sketch how
requirement analysis and modelling & design can be dealt with
while evaluating (in principle) both the TuCSoN approach and
its architecture—the implementation is left out being it too
application-specific.

Scenario: In order to lose as less generality as possible,
we could depict a smart home scenario. There, many different
“smart appliances” (e.g., smart fridge, smart thermostat, smart
lights, smart A/C, etc.) are scattered in an indoor environment
(e.g., a flat). Either inhabitants have an Android smartphone
or a desktop PC is available in the environment (or even
both)—this ensures the TuCSoN middleware can be run-
ning, being the JVM its only requirement. Some kind of
connection is available at least between each appliance and
the smartphone/desktop—appliances may also be connected
together to improve distribution thus resilience, although not
strictly necessary. Inhabitants want the “smart home system”
to self-manage toward a given goal (e.g., always optimise
power consumption) according to their preferences (e.g., prefer
turning on fans rather than switching A/C on), while keeping
the capability to control it despite such self-management, when
desired (e.g., “I want frozen beers now, forget about power
consumption!”).

Requirement Analysis: Essentially, the core requirement of
our proposed scenario is that environmental resources (e.g., the
A/C, the fridge, etc.) should be able to adapt to environment
change (e.g., temperature drops, food depletion, etc.) as well as
user actions (e.g., I’m coming home late, order pizza), striving
to achieve a system goal (e.g., optimise inhabitants comfort)
while accounting for each user desires.

According to the TuCSoN meta-model as described in
Section II, this can be interpreted as follows:

• users continuously and unpredictably perform their
daily activities. . .

• . . . which may depend on the environment being in a
certain “enabler state” (e.g., food must be available to

enable cooking dinner), as well as may both impact
and be affected by (other form of dependencies) the
environment. . .

• . . . causing some change to happen (e.g., since I’ll be
late delay lights turn on time, there is no food thus I
must go to the grocery shop)

Once we recognise that activities and environment changes
both make events happen, thus managing dependencies be-
tween activities and change ultimately amount to managing
events, we have a perfect and complete match with TuCSoN
reference meta-model.

Modelling & Design: Once the problem at hand (smart
home appliances coordination) has being re-interpreted ac-
cording to the TuCSoN meta-model, TuCSoN architecture
provides all the necessary components to build a solution.
Thus: activities of users are generated by agents, making it
possible to also ascribe goals to actions, and mediated by
ACCs, enabling and constraining interactions according to
the system goals; changes in the environment are generated
by probes and mediated by transducers, enabling a uniform
representation of environmental properties despite appliances
heterogeneity; both activities and changes (thus ACCs and
transducers) generate events as their own representation within
the situated MAS coordinated by TuCSoN, which are then
managed by tuple centres suitably programmed with adaptable
coordination laws.

Consequently, in our smart home we have: agents deployed
to users’ personal devices (smartphone/desktop pc), probes
deployed to home appliances, ACCs and transducers deployed
either on-board along with agents and probes, respectively
(e.g., on the smartphone), or remotely (e.g., on the desktop),
tuple centres deployed again either on board or remotely, all
performing activities and enacting/undergoing changes gener-
ating events, automatically handled by TuCSoN according to
designed coordination laws.

Considerations: Notice a similar scenario is depicted in
[21], although much more thoroughly. There, TuCSoN is taken
as the underlying infrastructure on top of which the “Butlers
Architecture” for smart home management is deployed—
further evaluating its architecture (in principle, at least). In
particular, it should be noticed that agents are used therein to
model environmental resources as well (e.g., home appliances),
whereas our proposed approach would model them as probes,
thus handled (coordinated) within the MAS by transducers.
Benefits of doing so are not limited to a cleaner architecture
and separation of concerns, but also include smaller computa-
tional load (transducers are “simpler” than full-fledged agents),
better run-time adaptiveness (replacing a transducer is much
simpler than replacing an agent), improved management of
heterogeneity (despite probes API differences, transducers map
any event to a common event structure).

VI. CONCLUSION

Comparing the methodological approach discussed here
with the whole lot of AOSE methodologies available nowa-
days would be unfeasible for reasons of space. However, it
may easily be noted that the only AOSE methodology that
clearly resembles our coordination-based approach is SODA



[22], in particular regarding its concern with interaction and
environment in MAS. Also, most of the possible remarks can
be easily found in [8], where the issues of situatedness and
environment engineering in MAS, along with the relationship
between agent infrastructure and methodologies, is throughly
reviewed.

So, in this paper we introduce the TuCSoN approach to
situated coordination in MAS, by describing the support to
situated MAS engineering provided by the TuCSoN model
and architecture in each typical stage of software development:
the abstractions to be used for the requirement analysis step,
the architectural components available to model the MAS at
hand, the software API to program situatedness-related aspects
from a coordination standpoint.

The solutions promoted by the TuCSoN technology to
deal with the issues of open and distributed MAS are also
highlighted: in particular, the need to rely on mediating ab-
stractions such as ACC, transducers, and tuple centres as the
means to decouple individual components (agents and probes)
interactions, along with the need for an asynchronous event-
driven communication model to correctly deal with the most
common issues of system distribution.
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