

Cyber-Physical Systems Design for Runtime
Trustworthiness Maintenance Supported by Tools

Torsten Bandyszak1, Nazila Gol Mohammadi1, Mohamed Bishr1, Abigail Goldsteen2,
Micha Moffie2, Bassem I. Nasser3, Sandro Hartenstein4, Symeon Meichanetzoglou5

1paluno – The Ruhr Institute for Software Technology, University of Duisburg-Essen, Germany
{torsten.bandyszak, nazila.golmohammadi,

mohamed.bishr}@paluno.uni-due.de
2IBM Research - Haifa, Israel

{abigailt, moffie}@il.ibm.com
3It-Innovation Center, School of Electronics and Computer Science,

University of Southampton, UK
bmn@it-innovation.soton.ac.uk

4Department of Economics, Brandenburg University of Applied Sciences, Germany
sandro.hartenstein@fh-brandenburg.de

5Foundation for Research and Technology Hellas, Greece
simosme@ics.forth.gr

Abstract. The trustworthiness of cyber-physical systems is a critical factor for
establishing wide-spread adoption of these systems. Hence, especially the be-
havior of safety-critical software components needs to be monitored and man-
aged during system operation. Runtime trustworthiness maintenance should be
planned and prepared in early requirements and design phases. This involves
the identification of threats that may occur and affect user’s trust at runtime, as
well as related controls that can be executed to mitigate the threats. Further-
more, observable and measureable system quality properties have to be identi-
fied as indicators of threats, and interfaces for reporting these properties as well
as for executing controls have to be designed and implemented. This paper pre-
sents a process model for preparing and designing systems for runtime trustwor-
thiness maintenance, which is supported by several tools that facilitate the tasks
to be performed by requirements engineers and system designers.

Keywords: Trustworthiness Requirements, Runtime Monitoring, Threats, Mit-
igation, Adaptation, Trustworthiness-by-Design

1 Introduction

Cyber-Physical Systems (CPS) comprise humans as well as software and hardware
components, are distributed and connected via the Internet, and are able to dynamical-
ly adapt to context changes [1]. These software-intensive systems often perform criti-
cal tasks, and the consequences of software failures become tangible in terms of
threats to the physical environment. For instance, security vulnerabilities that may be

148

Copyright © 2015 by the authors. Copying permitted for private and academic purposes.
This volume is published and copyrighted by its editors.

mailto:%7d@paluno.uni-due.de
mailto:moffie%7d@il.ibm.com
mailto:bmn@it-innovation.soton.ac.uk
mailto:simosme@ics.forth.gr

exploited by malicious attacks are severe threats to CPS that control critical infra-
structures such as Vehicle-to-Vehicle communication systems [7]. Hence, decisions to
trust these systems heavily depend on their trustworthiness, which is especially cru-
cial for software components. We consider trustworthiness as an objective system
property that can be measured in terms of several software quality attributes and cor-
responding metrics (cf. [4]).

In requirements engineering and design, trustworthiness requirements need to be
analyzed so that their satisfaction can be monitored and controlled at runtime [14]. It
is crucial to explicitly document assumptions about the operational context of CPS in
the development, so that possible changes in the context can be predicted, especially
if these systems are designed to be long-living [12]. This involves the identification of
threats, i.e., undesired situations that may occur during system operation and nega-
tively affect the trustworthiness. A CPS needs to be aware of such situations, and
adapt by applying certain controls to mitigate the threats. To this end, capabilities of
monitoring and adaptation need to be considered in the requirements, and appropriate
interfaces should be designed to allow for monitoring trustworthy system behavior
and executing controls. Respective guidelines and tool support is necessary to support
developers in performing these tasks. Existing approaches towards design for moni-
toring quality of software services, have a very technical focus, e.g., on implementing
monitoring rules with assertions [5]. These approaches also often regard software
independently of the environment, and are usually specific to a certain technology or
modeling language. There is a gap in providing essential concepts, tasks, and guid-
ance for preparing runtime trustworthiness maintenance.

In this paper, we build upon our previous work on trustworthiness-by-design [3], a
risk-management approach for identifying threats and controls [6], and a runtime
trustworthiness maintenance system [2, 11]. We elaborate on how these approaches
and respective tools can be applied in order to support the design of adaptive CPS that
can be monitored and maintained w.r.t. trustworthiness at runtime. To this end, we
show a process model as generic guidance for developers, and introduce the tools that
support the involved steps. Our approach supports the preparation of runtime trust-
worthiness maintenance by guiding the designer in identifying threats and associated
controls, as well as observable and measureable system properties. Based on these
essential concepts, respective monitoring and control interfaces can be designed and
implemented. Eventually, the runtime trustworthiness maintenance system is config-
ured to allow for analyzing threat activities by means of the system behavior observed
from measureable properties. We illustrate our approach by showing its application to
a Distributed Attack Detection and Visualization (DADV) system that supervises
intrusions in a corporate network by means of sensors that attract malicious attacks.

The remainder of this paper is structured as follows: in Section 2, we introduce the
underlying concepts that we developed in previous works, and discusses related work
in the areas of alignment between requirements and design, and runtime monitoring.
In Section 3 we present our approach towards preparing for runtime maintenance in
requirements and design, and explain the tool support of the different steps. Section 4
provides an application example in order to illustrate our approach. Last, Section 5
summarizes the paper and provides an outlook on future work.

149

2 Fundamentals and Related Work

We consider trustworthiness as an objective system property that can be measured in
terms of several software quality attributes and corresponding metrics. Hence, trust-
worthiness can be seen as an objective system property, while trust is the subjective
perception of some trustor (cf. [4]). In [4] we presented a taxonomy of software quali-
ty attributes that contribute to trustworthiness (denoted as trustworthiness attributes),
and the derivation of metrics that can be used in order to quantify them. In order to
consider trust and trustworthiness throughout the system life cycle, we follow an ap-
proach that allows for tailoring and extending existing process models with trustwor-
thiness-by-design guidelines and best practices denoted as capability patterns [3].

Regarding the maintenance of trustworthiness at runtime, a reference architecture
and a prototype of a Trustworthiness Maintenance system that is capable of monitor-
ing trustworthiness properties and mitigating threats at runtime is described in [2].
The fully operational trustworthiness maintenance tool is described in [11] in the
context of CPS, including an updated architecture. This system consists of several
components that are orchestrated to realize trustworthiness maintenance, based on an
ontology that relates important key concepts of runtime trustworthiness maintenance.
Fig. 1 depicts a simplified version of this ontology.

Fig. 1. Runtime Maintenance Concepts (based on [2])

A threat to trustworthiness may cause a misbehaviour at runtime, which is observable
by means of events that the system or some observation probe reports. A threat un-
dermines an asset’s (i.e., system building block) value and reduces its trustworthiness
[2], while a misbehaviour is similar to the notion of a failure (cf. [13]). A control can
be executed to mitigate a threat and thereby protect an asset. Our risk-management
approach for identifying threats and controls, which we took over from the SERSCIS1
project, is described in [6]. Events are related to trustworthiness metrics and trustwor-
thiness properties that are observable and more tangible than trustworthiness attrib-
utes, i.e., trustworthiness properties can be quantified as values of a certain type [2].

Related work can be found in the area of service monitoring, since the quality of
software services is the basis for service-level agreements that need to be met during

1 Project website: www.serscis.eu

150

system operation. For instance, Baresi and Guinea [5] use source code assertions to
specify monitoring rules as constraints for the execution at runtime. There is also a
framework that involves the automated extraction of behavioural properties (i.e., for-
mal specifications of events) from service requirements, which are then used as input
for a monitor [8]. However, these approaches are on a very technical level and require
the use of certain languages and technologies, without explicitly considering general
aspects that need to be accounted for when planning and designing trustworthy soft-
ware-intensive systems that are maintainable at runtime.

De Miguel et al. [10] elaborate on the use of modelling languages throughout the
whole lifecycle (i.e., from requirements modeling to runtime monitoring and man-
agement phases) of quality-aware systems, and conclude that suitable modeling tech-
niques for describing service quality properties are needed to align the phases. Moisan
et al. [9] present a framework supporting the design, deployment and runtime moni-
toring of video-surveillance systems, which utilizes feature diagrams both for design
and runtime management. These models are used to describe possible feature configu-
rations that can be adapted at runtime, but do not specifically consider the specifica-
tion and mitigation of threats at runtime.

To summarize, there is a need for generic guidelines that support requirements en-
gineers and designers in preparing for runtime maintenance. Furthermore, regarding
CPS the existing approaches mentioned above focus on software exclusively, without
considering its relations to the physical environment.

3 Preparation for Trustworthiness Runtime Maintenance

In this section, we present the process of preparing for maintaining the trustworthiness
of CPS at runtime. Fig. 2 gives an overview of the relevant steps that should be per-
formed for designing adaptive trustworthy CPS, and the tools that support these tasks
(indicated by grey rectangles and dashed lines). This process can be seen as an im-
portant capability and guidance to develop trustworthy CPS, and aims at reducing the
effort required for runtime preparation. It can be added to common software engineer-
ing process models using the process model extension mechanism sketched in [3].

Fig. 2. Preparation for Trustworthiness Maintenance and Tools

151

The first step in Fig. 2 is the identification of potential threats that may occur at
runtime and thereby impact the trustworthiness of the system, as well as related con-
trols. These artifacts constitute trustworthiness requirements as outcome of a risk-
based analysis. As input, a model of the CPS is needed, which specifies its main
building blocks (assets) and their relations. This model involves software parts, as
well as humans and technical assets such as network hardware, since threats emerge
from the interplay between these assets, though they can be observed and also miti-
gated on the software. The System Analyser tool supports this task by automatically
generating a list of threats and controls per asset, based on an ontology of generic
threats for different asset types and their relations. In particular, a generic model spec-
ifies different (sub)types of assets, and comprises knowledge about potential threats
related to these generic asset types. This allows for analyzing these threats on con-
crete models specifying a system under development. Similarly, related controls can
be identified based on this comprehensive knowledge base.

Based on the list of threats and controls, the system designer has to identify ob-
servable system properties that can be interpreted as indicators for trustworthiness and
need to be observed by the trustworthiness maintenance system. Since the activeness
of threats may not be directly visible in the system behavior, it is essential to deter-
mine observable system characteristics that contribute to trustworthiness, and can be
objectively measured (cf. Section 2). To this end, the taxonomy of trustworthiness
attributes and corresponding metrics presented in [4] can be used as guidance, which
forms the theoretical basis of the Metric Tool. This tool provides a comprehensive
repository of metrics that are related to trustworthiness attributes and define trustwor-
thiness properties as inputs for calculations.

Next, the monitoring of these trustworthiness properties, as well as the execution of
controls has to be prepared. To this end, appropriate interfaces are designed in order
to realize the runtime observation. For instance, a REST interface could be prepared
by creating a respective interface design document. Implementing this interface will
allow the Trustworthiness Maintenance system (cf. [2]) to receive sensor utilization
statistics and thereby monitor the asset behavior w.r.t. trustworthiness. Furthermore,
for each control, the designer defines an interface that can be used by the trustworthi-
ness maintenance to invoke the control on a specific asset.

The final step of runtime trustworthiness maintenance preparation is configuring
the Trustworthiness Maintenance system. This requires not only to connect to the
interfaces to which the CPS periodically sends its trustworthiness property values as
events, but also to specify a relation between these observed properties and threats.
For each threat, misbehaviour symptoms that can be identified from the reported
events are determined. These misbehaviours will indicate the activeness of threats at
runtime, and are processed by the maintenance system to select controls (cf. [2]).
With the help of the Metric Tool, rules and thresholds for identifying the occurrence
of misbehaviors are defined.

Later in runtime monitoring, the events reported by through the observation inter-
faces are processed by the Trustworthiness Maintenance system, whose architecture is
based on control loops in autonomic computing (cf. [2]). This tool actually performs
the runtime monitoring, analysis, and mitigation tasks w.r.t. trustworthiness. More

152

information on the runtime trustworthiness maintenance system, i.e., its components
and functionality, can be found in [2, 11].

4 Application Example

In order to exemplify and illustrate our approach and the applications of the tools, we
use a Distributed Attack Detection and Visualization (DADV) system. This system
consists, among other components, of a number of sensors, i.e., virtual machine
honeypots that simulate vulnerabilities and thereby attract attacks to corporate net-
works. Sensors need to be hypervised, and a sensor’s trustworthiness should be moni-
tored and managed at runtime, as compromised sensors constitute security vulnera-
bilities. Hence, this maintainability and adaptivity needs to be considered and built
into the system design early in the development lifecycle. In the following, we will
illustrate the preparation for runtime maintenance in this case example.

As explained in Section 3, the first step in the process consists of identifying
threats and controls based on a system model including the main system components,
such as a “Sensor” asset. The system model also includes e.g. the human operator of
the DADV, as well as the organizations interested in the security of their corporate
network. In the background, the assets depicted in the system model are mapped to
generic asset types, which allows the System Analyser tool to generate a list of threats
and associated controls. Among others, the threat “Unauthorized Communication”
and the related control “Blacklisting” are derived for the sensor assets.

An observable property related to the threat mentioned above is the resource usage
of a sensor asset. In particular, e.g. CPU, memory or network consumption properties
are defined as parameters for performance metrics, which can be browsed in the Met-
ric Tool. Consequently, respective observation interfaces for the automatic reporting
of resource usage statistics in the form of events are designed. Similarly, control inter-
faces need to be designed for each of the identified controls. The DADV-specific
control “Blacklisting” can be executed by shutting down a sensor. To this end, the
sensor hypervisor component needs to provide a respective interface. In the DADV
system, all observation and control interfaces are specified and implemented using
REST.

Finally, the Trustworthiness Maintenance system needs to be configured to allow
for actual runtime maintenance by establishing connections to the interfaces described
above. Furthermore, the configuration comprises mapping trustworthiness properties
to misbehaviours (cf. Section 2). Based on the current resource usage, which have
been defined as relevant trustworthiness properties of a DADV sensor, the misbehav-
iour “Overloaded” can be determined. Rules and thresholds for identifying the occur-
rence of this misbehaviour include, e.g., current CPU usage above 10%. These
thresholds are indicators for an unauthorized communication caused by a compro-
mised sensor, since a DADV sensor’s normal resource consumption is very low.

The DADV system is also used in [11] as an application example and initial evalu-
ation of the Trustworthiness Maintenance system, in order to illustrate the actual
maintenance of trustworthiness at runtime.

153

5 Conclusion and Outlook

In this paper, we presented a process model of essential steps that need to be consid-
ered when planning and designing adaptive CPS. This process model aims at guiding
requirements engineers and designers to prepare for runtime maintenance w.r.t. trust-
worthiness. These systems should be monitored at runtime to assure that they remain
trustworthy; consequently, threats to trustworthiness need to be analyzed, and respec-
tive controls need to be executed to mitigate them, if necessary. All this requires that
threats, controls, and observable system trustworthiness properties are identified early
in the development process, as well as observation and control interfaces designed
and built into the system.

Future work will focus on the empirical evaluation of our tools. Especially the ben-
efits for developers in terms of effort required for planning and designing observation
and control interfaces should be investigated. Furthermore, extensions of our ap-
proach to take trust maintenance into account should be considered. It is important to
understand how trustworthiness properties actually influence the subjective trust of
the system users, so that systems can be designed to support monitoring and maintain-
ing trust at runtime.

Acknowledgements. The research leading to these results has received funding from
the European Union’s FP7/2007-2013 under grant agreement no. 317631 (OPTET).

References

1. Broy, M., Cengarle, M.V., Geisberger, E.: Cyber-Physical Systems – Imminent Challeng-
es. In: Calinescu, R., Garlan, D. (eds.) Monterey Workshop 2012. LNCS 7539, pp. 1–28.
Springer, Heidelberg (2012)

2. Gol Mohammadi, N., Bandyszak, T., Moffie, M., Chen, X., Weyer, T., Kalogiros, C., Nas-
ser, B., Surridge, M.: Maintaining Trustworthiness of Socio-Technical Systems at Run-
Time. In: Eckert, C. et al. (eds.): TrustBus 2014, LNCS 8647, pp. 1–12. Springer, Heidel-
berg (2014)

3. Gol Mohammadi, N., Bandyszak, T., Paulus, S., Meland, P.H., Weyer, T., Pohl, K.: Ex-
tending Development Methodologies with Trustworthiness-By-Design for Socio-Technical
Systems (Extended Abstract). In: Holz, T., Ioannidis, S. (eds.): TRUST 2014, LNCS 8564,
pp. 206–207. Springer, Heidelberg (2014)

4. Gol Mohammadi, N, Paulus, S., Bishr, M., Metzger, A, Könnecke, H., Hartenstein, S.,
Weyer, T., Pohl, K.: Trustworthiness Attributes and Metrics for Engineering Trusted In-
ternet-Based Software Systems. In: Helfert, M., et al. (eds): Cloud Computing and Ser-
vices Science, CCIS 453, pp 19–35. Springer, Heidelberg (2014)

5. Baresi, L., Guinea, S.: Towards Dynamic Monitoring of WS-BPEL Processes. In: Benatal-
lah, B., et al. (eds.): ICSOC 2005, LNCS 3826, pp. 269–282. Springer, Heidelberg (2005)

6. Surridge, M., Nasser, B., Chen, X., Chakravarthy, A., Melas, P.: Run-Time Risk Manage-
ment in Adaptive ICT Systems. In: ARES 2013, pp. 102–110. IEEE (2013)

154

7. Zalewski, J., Drager, S., Kornecki, A.J.: Threat Modeling for Security Assessment in Cy-
berphysical Systems. In: Proceedings of the Eighth Annual Cyber Security and Infor-
mation Intelligence Research Workshop (CSIIRW '13), Art. no. 10. ACM (2013)

8. Mahbub, K., Spanoudakis, G.: A Framework for Requirements Monitoring of Service
Based Systems. In: Proceedings of the 2nd International Conference on Service Oriented
Computing (ICSOC ’04), pp. 84–93. ACM (2004)

9. Moisan, S., Rigault, J., Acher, M., Collet, P., Lahire, P.: Run Time Adaptation of Video-
Surveillance Systems – A Software Modeling Approach. In: Crowley, J.L., Draper, D.,
Thonnat, M. (eds.): ICVS 2011, LNCS 6962, pp. 203–212. Springer, Heidelberg (2011).

10. De Miguel, M.A., Massonet, P., Silva, J.P., Briones, J.: Model Based Development of
4uality-Aware Software Services. In: Proceeedings of the 11th IEEE International Sympo-
sium on Object Oriented Real-Time Distributed Computing (ISORC 2008), pp. 563–569.
IEEE (2008)

11. Goldsteen, A., Moffie, M., Bandyszak, T., Gol Mohammadi, N., Chen, X., Meichan-
etzoglou, S., Ioannidis, S., Chatzidiam, P.: A Tool for Monitoring and Maintaining System
Trustworthiness at Runtime. In: Proceedings of the 1st International Workshop on Re-
quirements Engineering for Self-Adaptive and Cyber Physical Systems (RESACS), CEUR
Workshop Proceedings (2015)

12. Daun, M., Tenbergen, B., Brings, J., Weyer, T.: Documenting Assumptions about the Op-
erational Context of Long-Living Collaborative Embedded Systems. In: Proceedings of the
2nd Collaborative Workshop on Evolution and Maintenance of Long-Living Software Sys-
tems (2015)

13. ISO/IEC/IEEE: Systems and Software Engineering – Vocabulary. International Standard
ISO/IEC/IEEE 24765, First edition (2012)

14. Alebrahim, A., Gol Mohammadi, N., Heisel, M.: Challenges in Rendering and Maintaining
Trustworthiness for Long-Living Software Systems. In: Proceedings of the 2nd Collabora-
tive Workshop on Evolution and Maintenance of Long-Living Software Systems (2015)

155

