
Automatic Gameplay Testing for Message
Passing Architectures

Jennifer Hernández Bécares, Luis Costero Valero
and Pedro Pablo Gómez Mart́ın

Facultad de Informática, Universidad Complutense de Madrid.
28040 Madrid, Spain

{jennhern,lcostero}@ucm.es

pedrop@fdi.ucm.es

Abstract. Videogames are highly technical software artifacts composed
of a big amount of modules with complex relationships. Being interactive
software, videogames are hard to test and QA becomes a nightmare. Even
worst, correctness not only depends on software because levels must also
fulfill the main goal: provide entertainment. This paper presents a way
for automatic gameplay testing, and provides some insights into source
code changes requirements and benefits obtained.

Keywords: gameplay testing, testing, automatisation

1 Introduction

Since their first appearance in the 1970s, videogames complexity has been con-
tinuously increasing. They are bigger and bigger, with more and more levels,
and they tend to be non-deterministic, like Massively Multiplayer Online games
where emergent situations arise due to players’ interactions.

As any other software, videogames must be tested before their release date,
in order to detect and prevent errors. Unfortunately, videogames suffer specific
peculiarities that make classic testing tools hardly useful. For example, the final
result depends on variable (nearly erratic) factors such as graphics hardware
performance, timing or core/CPU availability. Even worst, correctness measure
is complex because it should take into account graphic and sound quality, or AI
reactivity and accuracy, features that cannot be easily compared.

On top of that, videogames are not just software. For example, it is not
enough to test that physics is still working after a code change, but also that play-
ers can end the game even if a level designer has moved a power up. Videogames
quality assurance becomes nearly an art, which must be manually carried out
by skilled staff. Unfortunately, this manual testing does not scale up when
videogames complexity grows and some kind of automatisation is needed.

This paper proposes a way for creating automatic gameplay tests in order to
check that changes in both the source code and levels do not affect the global
gameplay. Next section reviews the existing test techniques when developing



2 J. Hernández Bécares, L. Costero Valero, P. P. Gómez Mart́ın

software. Section 3 describes the component-based architecture that has become
the standard for videogames in the last decade and is used in section 4 for
creating logs of game sessions that are replayed afterwards for testing. Section 5
puts into practise all these ideas in a small videogame, and checks that these
tests are useful when levels are changed. The paper ends with some related work
and conclusions.

2 Testing and Continuous Integration

Testing is defined by the IEEE Computer Society [1] as the process of analysing
a software item to detect the differences between existing and required condi-
tions and to evaluate the features of the software item. In other words, test-
ing is a formal technique used to check and prove whether a certain developed
software meets its quality, functional and reliability requirements and specifica-
tions. There are many testing approaches, each one designed for checking differ-
ent aspects of the software. For example, a test can be done with the purpose
of checking whether the software can run in machines with different hardware
(compatibility tests), or whether it is still behaving properly after a big change
in the implementation (regression tests). Alternatively, expert users can test the
software in an early phase of the development (alpha or beta tests) to report
further errors.

Unit testing is a particularly popular test type designed to test the function-
ality of specific sections of code, to ensure that they are working as expected.
When certain software item or software feature fulfills the imposed requirements
specified in the test plan, the associated unit test is passed. Pass or fail crite-
ria are decision rules used to determine whether the software item or feature
passes or fails a test. Passing a test not only leads to the correctness of the
affected module, but it also provides remarkable benefits such as early detection
of problems, easy refactoring of the code and simplicity of integration. Detect-
ing problems and bugs early in the software development lifecycle translates in
decreasing costs, while unit tests make possible to check individual parts of a
program before blending all the modules into a bigger program.

Unit tests should have certain attributes in order to be good and maintain-
able. Here we list some of them, which are further explained in [2, Chapter 3]:

– Tests should help to improve quality.
– Tests should be easy to run: they must be fully automated, self-checking

and repeatable, and also independent from other tests. Tests should be run
with almost no additional effort and designed in a way that they can be
repeated multiple times with the exact same results.

– Tests should be easy to write and maintain: test overlap must be
reduced to a minimum. That way, if one test changes, the rest of them
should not be affected.

– Tests should require minimal maintenance as the system evolves
around them: automated tests should make change easier, not more diffi-
cult to achieve.



Automatic Gameplay Testing for Message Passing Architectures 3

3 Game Architecture

The implementation of a game engine has some technological requirements that
are normally associated to a particular game genre. This means that we need
software elements specifically designed for dealing with different characteristics
of a game like the physics system, the audio system, the rendering engine or
the user input system. These software pieces are used by interactive elements of
the game like the avatar, non-player characters (NPCs) or any other element of
the game logic with a certain behaviour. The interactive elements of the game
are called “entities”, and they are organised inside game levels so that the user
experience is entertaining and challenging but still doable. Entities are specified
in external files that are processed during the runtime. This way, level designers
can modify the playability of the game without involving programmers.

One of the most important tasks of a game engine is the management of the
entities that are part of the game experience. An entity is characterised by a set
of features represented by several methods and attributes. Following an object-
oriented paradigm, each feature is represented by one or more classes containing
all the necessary methods and attributes. Connecting the different classes that
define the features of an entity leads to different game engine architectures, which
can be implemented in very different ways.

The classical way of relating the different entity features is using inheritance.
This way, an entity would be represented by a base class that will inherit from
multiple classes, granting the entity different features. This method, in addition
to the amount of time it requires to design a class structure and hierarchy, present
certain additional problems described in [5]:

– Difficult to understand: the wider a class hierarchy is, the harder it is
to understand how it behaves. The reason is that it is also necessary to
understand the behaviour of all its parent classes as well.

– Difficult to maintain: a small change in a method’s behaviour from any
class can ruin the behaviour of its derived classes. That is because that
change can modify the behaviour in such a way that it violates the assump-
tions made by any of the base classes, which leads to the appearance of
difficult to find bugs.

– Difficult to modify: to avoid errors and bugs, modifying a class to add a
method or change some other cannot be done without understanding all the
class hierarchy.

– Multiple inheritance: it can lead to problems because of the diamond
inheritance, that is, an object that contains multiple copies of its base class’s
members.

– Bubble-up effect: when trying to add new functionalities to the entities, it
can be inevitable to move a method from one class to some of its predecessors.
The purpose is to share code with some of the unrelated classes, which makes
the common class big and overloaded.

The most usual way to solve these problems is to replace class inheritance by
composition or aggregation associations. Thereby, an entity would be composed



4 J. Hernández Bécares, L. Costero Valero, P. P. Gómez Mart́ın

by a set of classes connected between them through a main class that contains
the rest of them. These classes are called components, and they form entities and
define their features.

Creating entities from a set of components is called Component-Based Archi-
tecture. It solves all the problems mentioned before, but because it does not have
a well-defined hierarchy, it is necessary to design a new mechanism of communi-
cation between components. The proposed mechanism is based on the use of a
message hierarchy that contains useful information for the different components.
Whenever a component wants to communicate with any other component, the
first one generates a message and sends it to the entity that owns the receiver
component. The entity will emit a message to all of its components, and each
of them will accept or reject the message and act according to the supplied
information. This technique used for communicating is called Message Passing.

Message passing is not only important for communicating between compo-
nents, but also for sending messages from one entity to another. These messages
between entities are essential when designing the playability of the game. The
reason for using messages between entities is that they need to be aware of the
events and changes in the game in order to respond accordingly.

4 Recording Games Sessions for Testing

Traditional software tests are not enough to check all the features that a game
has. Things such as playability and user experience need to be checked by beta
testers, who are human users that play the game levels over and over again, doing
something slightly different each time. Their purpose is to find bugs, glitches
in the images or incorrect and unexpected behaviours. They are part of the
Software Quality Assurance Testing Phase, which is an important part of the
entire software development process. Using beta testers requires a lot of time
and effort, and increases development costs. In fact, testing is so important and
expensive that has become a business by itself, with companies earning million
of dollars each year and successfully trading on the stock market1.

We propose an alternate form of testing, specifically designed for message-
passing architectures with a component-based engine design. The objective is to
have “high-level unit tests”, based on the idea of reproducing actions to pass the
test even when the level changes. To achieve that, we record game sessions and
then execute the same actions again, adjusting them slightly if necessary so that
the level can still be completed after being modified. Then, we check if the result
of this new execution is the expected. Next sections give a detailed explanation
on how to do this.

4.1 Using a New Component to Record Game Sessions

In order to record game sessions easily, having a component-based design is a
great advantage. Our solution is based on the creation of a new component called

1 http://www.lionbridge.com/lionbridge-reports-first-quarter-2015-results/,
last visited June, 2015.



Automatic Gameplay Testing for Message Passing Architectures 5

CRecorder added to any of the existing entities in the game. After that, when
an entity sends a message to all of its listeners, the CRecorder component will
also receive the message and act accordingly.

For example, a component aimed at recording actions in a game needs to
be registered as a listener of the entity Player. Thus, whenever an action takes
place in the game the component will be notified. Once the component has been
created and the messages handled, saving all the actions to an external file is
an easy task. Two different kind of files can be generated with this CRecorder

component. One of them contains which keys have been pressed and the mouse
movements, and the other one contains interesting events that happened during
the gameplay, such as a switch being pressed by the player.

4.2 Raw Game Replay

Today, it is not uncommon that keyboard and mouse input logs are gathered by
beta testers executables so programmers can reproduce bugs when, for example,
the game crashes during a game session. Our use of those logs is quite different:
compatibility and regression tests. Using logs of successful plays, the game can be
automatically run under different hardware configurations, or after some software
changes in order to repeat the beta testers executions to check if everything
is still working properly. Loading recorded game sessions and replaying them
contributes towards having repeatable and automated tests, which were some of
the advisable attributes of unit tests mentioned in section ??.

Our approach can go further by using the high-level logs for providing feed-
back when the execution fails. While replaying the log, the system not only knows
what input event should be injected next, but also what should happen under
the hood thanks to the high-level events gathered during the recording phase. If,
for example, after two minutes of an automatic game session an expected event
about a collision is missing, the test can be stopped by reporting a problem in
the physics engine.

4.3 Loading Recorded Game Sessions and Replicating The State

The previous raw game replay is not suitable when, for example, the map level
has changed, because the blind input event injection will make the player wander
incorrectly. For that reason, we introduce a new approach for replaying the game
that starts with knowing which actions can happen in the game and trying to
replicate the state to make the replay of this actions accurate.

Some of the attributes of a game are the actions that can happen, the physical
map or the state of the game. When the objective of recording a game is replaying
it afterwards, it is necessary to think about what attributes need to be stored in
the log. As an example, imagine an action in which a player picks up a weapon
from the ground. To replay that, it is required to know which player (or entity)
performs the action, what action is taking place and the associated entity (in
this case, the weapon). Another important thing to take into account is the time
frame for completing the action and the state of the game when it happens.



6 J. Hernández Bécares, L. Costero Valero, P. P. Gómez Mart́ın

A player cannot take a weapon if the weapon is not there or if he is not close
enough to take it. Therefore, the state needs to be as close as possible when the
time frame approaches so that replicating the action is feasible. On the other
hand, storing the position of the weapon is not required, as using that position
could lead to replaying a wrong action if the map changes. That information is
stored in a different file (a map file), it is loaded into the game and it can be
accessed during the run time.

With the purpose of modeling all these attributes, we use a powerful repre-
sentations called Timed Petri nets, which can be very helpful to replay recorded
games.

4.4 Modeling the Game With Timed Petri Nets

Petri nets [3, 4] are modeling languages that can be described both graphically
and mathematically. The graphical description is represented as a directed graph
composed by nodes, bars or squares, arcs and tokens. Elements of a Petri net
model are the following:

– Places: they are symbolized by nodes. Places are passive elements in the
Petri net and they represent conditions.

– Transitions: bars or squares represent transitions, which are the actions
or events that can cause a Petri net place to change. Thus, they are active
elements. Transitions are enabled if there are enough tokens to consume
when the transition fires.

– Tokens: each of the elements that can fire a transition are called tokens. A
discrete number of tokens (represented by marks) can be contained in each
place. Together with places they model system states. Whenever a transition
is fired, a token moves from one place to another.

– Arcs: places and transitions are connected by arcs. An arc can connect a
place to a transition or the other way round, but they can never go between
places or between transitions.

Figure 1 shows an example on how to model the actions of opening and
closing a door with a Petri net. Figure 1a shows the initial state, in which a
door is closed and a token is present. Figure 1b shows the transition that takes
place when a player opens the door. Then, the new state becomes 1c, making
the token move from S1 to S2. If then the player performs another action and
closes the door (showed in transition 1d), the token returns to the initial state
again, 1a. Notice that in figures 1b and 1d the tokens are in the middle of one
of the arcs. Petri Net models do not allow tokens to be out of places, but in this
example they have been put there to highlight the movement of the token.

Classic Petri nets can be extended in order to introduce an associated time
to each transition. When transitions last more than one time unit, they are
called timed Petri nets. Introducing time in the model is essential for replaying
games because actions are normally not immediate. For instance, if we want to
replay an action such as “opening a door”, firstly the player needs to be next



Automatic Gameplay Testing for Message Passing Architectures 7

(a) State 1: Closed door (b) Transition 1: Player opens the door

(c) State 2: Opened door (d) Transition 2: Player closes the door

Fig. 1. Modeling the actions of opening and closing a door with a Petri net.

to the door, and then perform the action of opening it. That means that the
transition could be much longer than just a time unit, and other actions could
be in progress at the same time. For that reason, modeling the game as a timed
Petri net makes it easier than modeling it as a state machine.

After loading a recorded file to the game with the purpose of replaying it,
actions need to be performed in a state as close as possible as the original state.
Moreover, actions are normally ordered: a player cannot walk through a door
if the door has not been opened before. In practice, some actions cannot be
performed until some other actions have finished.

If the game has several entities capable of firing transitions, they can be rep-
resented as different tokens in the Petri net model. A token firing a transition
may cause some other tokens to change their place, which is exactly what hap-
pens in games. Actions may affect several entities, not just one, so using Petri
nets to model that behaviour seems to be reasonable.

When we detect that a player made an action in the first execution of the
game and the corresponding Petri net transition is enabled (it is possible to
complete the action), the appropriate messages have to be generated and injected
to the application. There is no difference between messages generated when a real
person is playing and the simulated messages injected. Components accept the
messages, process them and respond accordingly. For that reason, the resulting
file should be exactly the same and it is possible to see that the actions that are
happening in the game have not changed.



8 J. Hernández Bécares, L. Costero Valero, P. P. Gómez Mart́ın

4.5 Replaying Game Sessions and Running Tests

There are two possible ways of replaying a recorded game session: replicating
the exact movements of the user or trying to reproduce specific actions using
an artificial intelligence (AI ). Replicating game sessions can be useful when we
want to make compatibility tests (running tests using different hardware) or
regression tests (introducing software improvements but not design changes).
However, replicating game sessions consists on simulating the exact keys pressed
by the user. These tests are very limited, since the slightest changes on the
map make them unusable. Reproducing specific actions can solve this limitation.
Saving detailed traces of the game sessions that we are recording gives us the
chance to use that information to make intelligent tests using an AI. That way,
we can still use the recorded game sessions to run tests even if the map also
changes.

Once that replaying games is possible, it can be used to design and run tests.
An input file with information for the tests can be written. In that file, the tester
can define several parameters:

– Objectives: the tester can specify which messages should be generated again
and if they should be generated in order or not. If those messages are gen-
erated, it means that the particular objective is fulfilled.

– Maximum time: sometimes it will not be possible to complete one of the
tasks or objectives, so the tester can set a maximum time to indicate when
the test will interrupt if the objectives are not completed by then.

– User input file: the name of the file containing all the keys pressed when
the user was playing and the associated time.

– Actions input file: the name of the file with all the high level actions that
the user performed, when he did them and the attributes of those actions.

Using those two ways of replaying the game can lead to the generation of
very different tests. It is also possible to combine both ways and run a test that
reproduces the actions in the input file and if and only if the AI does not know
how to handle a situation it replicates the movements in the user file.

Several different tests can be run to check whether it is possible to complete
a task. If any of them succeeds, then the objective is fulfilled. It is also possible
to launch the game more than once in the same execution so that various tests
are run and the objectives checked.

5 Example of Use: Time and Space

Time and Space is a game developed by a group of students of the Master en
Desarrollo de Videojuegos from the Universidad Complutense de Madrid. This
game consists on several levels with switches, triggers, doors and platforms. The
player has to reach the end of each level with the help of copies from itself.
These copies will step on the triggers to keep doors opened or platforms moving
while the player goes through them. Sometimes clones will even have to act as



Automatic Gameplay Testing for Message Passing Architectures 9

1 {
2 ”timestamp” : 73400 ,
3 ” type ” : ”TOUCHED” ,
4 ” i n f o ” : {
5 ” a s s o c i a t e d E n t i t y ” : {
6 ”name” : ” PlayerClone1 ” ,
7 ” type ” : ” PlayerClone ”
8 } ,
9 ” e n t i t y ” : {

10 ”name” : ” DoorTrigger1 ” ,
11 ” type ” : ” DoorTrigger ”
12 } ,
13 ” p layer ” : {
14 ”name” : ” Player ” ,
15 ” p o s i t i o n ” : ” Vector3 (37 . 0423 , −2.24262e−006 , −6.53315)” ,
16 ” type ” : ” Player ”
17 }
18 }
19 }

Fig. 2. Example of a trace generated when a copy push a button

barriers against enemies to keep them from shooting the player. Also, there are
platforms in the game that cannot be traversed by the player, but only by his
copies. These copies are not controlled by the person that is playing the game.
Their movements are restricted so they just reproduce the actions they made in
the previous execution of the level, before the player copied itself.2

When the tester activates the recording of traces, a file in json format is
generated. This format was chosen because of its simplicity to read and write
to a file using different styles (named objects or arrays). Figure 2 shows a trace
recorded when a player clone touches a button. This file contains the information
of the execution: what actions were performed, when they took place and the
entities that were associated to that action (player, switch, enemy, etc). Note
that the entity position is not recorded because it can be read from the map file.
The player position is also necessary to imitate the movements when this trace
is replayed.

To reproduce the previously recorded traces adapting them to the new level,
two different type of events can be distinguished:

– Generated by the player: these are the actions generated by the player
itself. The recorded trace available in the file consists on the timestamp,
the type of the action performed and the entity related to the action. Some
other information may be stored depending on the type of the action. The
actions can either be reproduced immediately or reproduced using the AI of
the videogame.

2 Full gameplay shown at https://www.youtube.com/watch?v=GmxV_GNY72w



10 J. Hernández Bécares, L. Costero Valero, P. P. Gómez Mart́ın

– Generated by some other entity: in this case, we try to make the state
of the player as close as possible as the player state when the trace was
recorded. With that purpose, we store the information needed to know the
player state along with the recorded event. In Time and Space, the state
of the player only consists on its position in the map, so that is the only
information we need to save in the trace log. Figure 2 shows an example of
this type of traces. For replicating the game state, we use again the AI of
the videogame, which is responsible for the moves of the player, making sure
that they are valid.

In order to detect and reproduce traces, the actions have been modeled by
a Petri net, introduced in section 4.4. Thanks to these models, it is possible to
replicate the actions in the same order that was recorded in the first place. This
is not something trivial. Some of the actions can be reproduced before some
previous ones if the player does not know how to carry out that action and gets
stuck without doing anything. Because of the nature of Time and Space and
the possibility of creating clones, all the Petri nets generated have a fed back
structure, with multiple tokens moving from state to state inside the net.

Timed Petri nets are used instead of simple Petri nets because most of the
actions cannot be reproduced until previous actions are done. For example, when
a clone of the player presses a button to open a door, it is necessary to wait until
the door is open before starting to go through the door, even if the clone has
already pushed the button. For that reason, performing all the actions from
a trace in order makes it easy to have almost an exact reproduction of the
gameplay.

Even if this solution is almost exact, this method has some limitations. Using
Petri nets to reproduce traces means that the videogame needs to have an AI
implemented, capable of controlling the player inside the game. Fortunately,
there are a lot of games (like Time and Space) that use an AI for directing all
non-player characters movements that can be reused for that. However, despite
the fact that the results we have from Time and Space are very promising, there
are some use cases in which the reproduction of traces is not going to work
properly. One of these examples is when the player needs to push a button that
is not on the same level as the ground in which the player is standing. In this case,
the AI of the videogame cannot find out where the button is, so the reaction
of the player will just be waiting there without moving. This situation shows
that the testing method proposed is valid, but remarks that an AI designed for
control the player is needed.

In order to automatise the testing phase we created a configuration file where
the tester can choose if he wants to record the game or load previous executions
that were recorded before. If he chooses to reproduce something recorded, then
he can specify the name of the file that contains the actions that are going to be
loaded and reproduced.

We have recorded game traces from a level that the user played and completed
successfully, that is, reaching the end of it. To check that the programmed replay
system works with Time and Space, we reproduced those exact traces without



Automatic Gameplay Testing for Message Passing Architectures 11

any modification in the same level. However, the map was slightly changed in
those new executions. Some of the tests that we carried out were the following:

– Firstly we tried to change the map and move the switches to reachable places
from the position in which they were initially placed. We then repeated the
same test but we also changed the end of level mark. Both of the tests were
still feasible after all the changes, and by replaying the same traces it is still
possible to complete the objectives and reach the end of the level. Another
test we made consisted in placing one of the switches behind a closed door.
In this case, we could see that the player detected that the new position was
not reachable and therefore he did not move from the position he had before
detecting he had to press the switch.

– After that, we recorded traces from a level in which the player needs three
different copies to win the level. To reach the end of the level, the player has
to go through a moving platform and some rays have to be deactivated. That
is why the player needs his clones. If the player tries to go through the rays
before deactivating them, he dies. To make the tests, several changes were
added to the map. For example, we tried to pass the test after interchanging
the switches between them. By doing that, they were closer or further away
from the player. Running the test allows us to see that despite of all the
changes, it is still possible to complete the level without difficulties. We
recorded a video that shows the reproduction of two of these tests3.

Because the game has been implemented following a standard component-
based architecture, it was not necessary to make major changes in it. To record
the game session we only added the CRecorder component as described in 4.1,
which receives all the messages generated during the gameplay. The code for
the CRecorder component and the required changes made in the original imple-
mentation are about 8 KB. Moreover, two new modules of about 127 KB were
created for recording and replaying the messages. These modules were designed
with a general purpose and only slightly modified to work with this game.

6 Related Work

With systems growth in size and complexity, tests are more difficult to design
and develop. Testing all the functions of a program becomes a challenging task.
One of the clearest examples of this is the development of online multiplayer
games [6]. The massive number of players make it impossible to predict and
detect all the bugs. Online games are also difficult to debug because of the
non-determinism and multi-process. Errors are hard to reproduce, so automated
testing is a strong tool which increases the chance of finding errors and also
improves developers efficiency.

Monkey testing is a black-box testing aimed at applications with graphical
user interfaces that has become popular due to its inclusion in the Android
Development Kit4. It is based on the theoretical idea that a monkey randomly

3 https://www.youtube.com/watch?v=1OBlBKly1pk
4 http://developer.android.com/tools/help/monkey.html



12 J. Hernández Bécares, L. Costero Valero, P. P. Gómez Mart́ın

using a typewriter would eventually type out all of the Shakespeare’s writings.
When applied to testing, it consists on a random stream of input events that are
injected into the application in order to make it crash. Even though this testing
technique blindly executes the game without any particular goals, it is useful for
detecting hidden bugs.

Due to the enormous market segmentation, again specially in the Android
market but more and more also in the iOS ecosystem, automated tests are es-
sential in order to check the application in many different physical devices. In
the cloud era, this has become a service provided by companies devoted to offer
cloud-based development environments.

Unfortunately, all those testing approaches are aimed at software, ignoring
the fact that games are also maps, levels and challenges. We are not aware of
any approach for automatic gameplay testing as described in this paper.

7 Conclusions and Future Work

Although some methods for automatising gameplay tests exist, they are aimed at
checking software aspects, not taking into account the necessity of checking that
both the maps and levels are still correct. Because these levels and maps also
evolve alongside software while developing games, finding a way to run automatic
tests to check that all the modifications introduced into levels are consistent is
a must.

In this paper we have introduced a proposal on how to carry out these tests.
Taking advantage of the component-based architecture, we have analised the
cost of introducing the recording and replaying of traces in games, which allow
us to automatically repeat gameplays after modifying the levels. This proposal
has been tested with a simple game, proving the viability of the idea.

Despite the promising results, the work we carried out is still on preliminary
stages. It is still necessary to test this technique in more complex games, as well
as proving its stability to more dramatic changes in them.

References

1. Software Engineering Technical Committee of the IEEE Computer Society: IEEE
Std 829-1998. IEEE-SA Standard Board (1998)

2. Meszaros, G: XUnit test patterns: refactoring test code. Addison-Wesley, (2007)
3. Popova-Zeugmann, L: Time and Petri Nets. Springer-Verlag Berlin Heidelberg

(2013)
4. Estevão Araújo, M., Roque, L.: Modeling Games with Petri Nets. DIGRA2009 -

Breaking New Ground: Innovation in Games, Play, Practice and Theory (2009)
5. Gregory, J.: Game Engine Architecture. A K Peters, Ltd. (2009)
6. Mellon, L.: Automatic Testing for Online Games. Game Developers Conference,

2006.


