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ABSTRACT

Detecting events using social media such as Twitter has
many useful applications in real-life situations. Many al-
gorithms which all use different information sources—either
textual, temporal, geographic or community features—have
been developed to achieve this task. Semantic information
is often added at the end of the event detection to clas-
sify events into semantic topics. But semantic information
can also be used to drive the actual event detection, which
is less covered by academic research. We therefore sup-
plemented an existing baseline event clustering algorithm
with semantic information about the tweets in order to im-
prove its performance. This paper lays out the details of
the semantics-driven event clustering algorithms developed,
discusses a novel method to aid in the creation of a ground
truth for event detection purposes, and analyses how well the
algorithms improve over baseline. We find that assigning se-
mantic information to every individual tweet results in just
a worse performance in F; measure compared to baseline. If
however semantics are assigned on a coarser, hashtag level
the improvement over baseline is substantial and significant
in both precision and recall.
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1. INTRODUCTION

Traditional media mainly cover large, general events and
thereby aim at a vast audience. Events that are only inter-
esting for a minority of people are rarely reported. Next to
the traditional mass media, social media such as Twitter and
Facebook are a popular source of information as well, but ex-
tracting valuable and structured data from these media can
be challenging. Posts on Twitter for example have a rather
noisy character: written text is mostly in colloquial speech
full of spelling errors and creative language use, such posts
often reflect personal opinions rather than giving an objec-
tive view of the facts, and a single tweet is too short to grasp
all the properties that represent an event. Nevertheless the
user-contributed content on social media is extensive, and
leveraging this content to detect events can complement the
news coverage by traditional media, address more selective
or local audiences and improve the results of search engines.

In the past researchers mostly used textual features as their
main source of information to perform event detection tasks
in social media posts. Next to the text itself, other char-
acteristic features such as the timestamp of the post, user
behavioural patterns and geolocation have been successfully
taken into account [1, 4, 15, 17, 18, 22]. Less used are so-
called semantic features, in which higher-level categories or
semantic topics are captured for every tweet and used as
input for the clustering algorithm. These semantic topics
can either be very specific—such as sports, politics, disas-
ters...—or can be latent abstract categories not known be-
forehand; such an abstract topic is usually a collection of
semantically related words. In most applications semantics
are determined on event level after the actual event detection
process [19]. We however propose to use semantic informa-
tion on tweet level to drive the event detection algorithm.
After all, events belonging to different semantic categories—
and thus also its associated tweets—are likely to be dis-
cerned more easily than semantically related events. For
example then it is relatively easy to distinguish the tweets
of a sports game and a concurrent politics debate.

The use case we address in this paper consists of dividing a
collection of tweets into separate events. In this collection
every tweet belongs to a certain event and it is our task to
cluster all tweets in such a way that the underlying event
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structure is reflected through these clusters of tweets. For
this purpose we adopt a single pass clustering mechanism.
As a baseline we use a clustering approach which closely
resembles the algorithm proposed by Becker et al. to clus-
ter Flickr photo collections into events [2, 3], and in which
we only use plain textual features. We then augment this
baseline algorithm, now incorporating semantic information
about the tweets as a second feature next to the text of
the tweet. As it turns out, solely using a semantic topic
per tweet only marginally improves baseline performance;
the attribution of semantic labels on tweet level seems to
be too fine-grained to be of any predictive value. We there-
fore employ an online dynamic algorithm to assign semantic
topics on hashtag level instead of tweet level, which results
in a courser attribution of topic labels. As will be shown in
this paper, the latter approach turns out to be significantly
better than baseline performance.

The remainder of this paper is structured as follows. In Sec-
tion 2 we shortly discuss the most appropriate related work
in recent literature, after which we describe the methodol-
ogy to extract events from a collection of Twitter posts in
Section 3. The collection of data and the construction of a
ground truth is treated in Section 4. Finally we analyse the
results of the developed algorithms in Section 5.

2. RELATED WORK

Since the emergence of large-scale social networks such as
Twitter and their growing user base, the detection of events
using social information has attracted the attention of the
scientific community. In a first category of techniques, Twit-
ter posts are clustered using similarity measures. These can
be either based on textual, temporal, geographical or other
features. Becker et al. were among the first to implement
this idea by clustering a Flickr photo collection [2, 3]. They
developed a single pass unsupervised clustering mechanism
in which every cluster represented a single event. Their ap-
proach however scaled exponentially in the number of de-
tected events, leading to Reuter et al. improving their algo-
rithm by using a prior candidate retrieval step [15], thereby
reducing the execution time to linear scaling. Petrovié et
al. used a different technique based on Locality Sensitive
Hashing, which can also be seen as a clustering mechanism
[14]. In this work, tweets are clustered into buckets by means
of a hashing function. Related tweets are more probable to
fall into the same bucket, which allows for a rapid compari-
son between tweets to drive the event detection process.

The techniques in a second category of event detection al-
gorithms mainly use temporal and volumetric information
about the tweets being sent. Yin et al. for example use a
peak detection strategy in the volume of tweets to detect
fire outbreaks [22], and Nichols et al. detect volume spikes
to identify events in sporting games [13]. By analysing com-
munication patterns between Twitter users, such as peaks in
original tweets, retweets and replies, Chierichetti et al. were
able to extract the major events from a World Cup foot-
ball game or the Academy Awards ceremony [7]. Sakaki
et al. regarded tweets as individual sensor points to detect
earthquakes in Japan [17]. They used a temporal model to
detect spikes in tweet volume to identify individual events,
after which a spatial tracking model, such as a Kalman fil-
ter or a particle filter, was applied to follow the earthquake

events as they advanced through the country. Bursts of
words in time or in geographic location can also be calcu-
lated by using signal processing techniques, e.g. a wavelet
transformation. Such a technique was successfully used by
Weng et al. in their EDCoW algorithm to detect Twitter
events [21], and by Chen and Roy to detect events in Flickr
photo collections on a geographic scale [6].

Semantic information is often extracted after the events are
detected to classify them into high level categories [16]. This
can be done in either a supervised way, using a classifier like
Naive Bayes or a Support Vector Machine, but most of the
times unsupervised methods are preferred, since they do not
require labelled data to train models and are able to discover
semantic categories without having to specify these cate-
gories beforehand. Popular unsupervised techniques are La-
tent Dirichlet Allocation (LDA), clustering, Principal Com-
ponent Analysis (PCA) or a neural auto-encoder. LDA was
introduced by Blei et al. in 2003 as a generative model to
extract latent topics from a large collection of documents
[5]. Since then many variants of LDA have emerged tailored
to specific contexts. Zhao et al. created the TwitterLDA
algorithm to extract topics from microposts, such as tweets,
assuming a tweet can only have one topic. Using commu-
nity information next to purely textual information, Liu et
al. developed their own version of LDA as well, called Topic-
LinkLDA [10]. A temporal version of LDA, called TM-LDA,
was developed by Wang et al. to be able to extract topics
from text streams, such as a Twitter feed [20]. By batch
grouping tweets in hashtag pools, Mehrotra et al. were able
to improve standard LDA topic assignments to individual
tweets [12].

3. EVENT CLUSTERING

In this section we will describe the mechanics to discover
events in a collection of tweets. In the dataset we use, every
tweet ¢ is assigned a set of event labels E;. This set contains
more than one event label if the tweet belongs to multiple
events. The dataset itself consists of a training set Tirain
and a test set Tiest. The details on the construction of the
dataset are found in Section 4. We will now try to recover
the events in the test set by adopting a clustering approach.
First the mechanisms of an existing baseline algorithm will
be expounded. Next we will extend this algorithm using
semantic information calculated from the tweets.

3.1 Baseline: Single Pass Clustering

Our baseline algorithm will use single pass clustering to ex-
tract events from the dataset. Becker et al. elaborated such
an algorithm to identify events in Flickr photo collections [2,
3]; their approach was criticized and improved by Reuter et
al. for the algorithm to function on larger datasets [15]. In
this paper we will adopt single-pass clustering as a baseline
that closely resembles the algorithm used by Becker et al.

As a preprocessing step, every tweet in the dataset is repre-
sented by a plain tf-idf vector and sorted based on its times-
tamp value. In the following we will use the same symbol
t for the tweet itself and for its tf-idf vector. As the algo-
rithm proceeds, it will create clusters of tweets, which are
the retrieved events. We denote the cluster to which tweet ¢
belongs as S¢; this cluster is also characterized by a cluster
center point s;. We refer to a general cluster and corre-
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sponding cluster center point as resp. S and s. The set A
contains all clusters which are currently active, i.e. being
considered in the clustering procedure. During execution of
the algorithm, a cluster is added to A if it is newly created.
After some time a cluster can become inactive by removing
this cluster from the set A. In Section 5 we will specify how
a cluster can become inactive.

The baseline algorithm works as follows. When the current
tweet ¢ is processed, the cosine similarity cos(¢, s) between ¢
and cluster center s is calculated for all S in A. A candidate
cluster S; (with cluster center s;) to which ¢ could be added,
and the corresponding cosine similarity cos(t, s;), are then
calculated as

S; = arg max cos(t, s), (1)
cos(t, sy) = réleazccos(t, s). (2)

If S} does not exist—this occurs when A is empty—we assign
t to a new empty cluster Si, we set s, =t and S, is added
to A. If S; does exist, we need to decide whether ¢ belongs
to this candidate cluster or not. For this purpose we train
a logistic regression classifier from LIBLINEAR [8] with a
binary output. It takes cos(s;,t) as a single feature and
decides whether ¢ belongs to S;. If it does, then we set S;
to S; and we update its cluster center s; as follows:

2res, t
St = —. 3
t B 3)
If t does not belong to S; according to the classifier, then
as before we assign ¢ to a new empty cluster S; and we set
St = t.

In the train routine we assign every tweet one by one to
a cluster corresponding to their event label. At every step
we calculate the candidate cluster S; for every tweet ¢ in
Tirain and verify whether this cluster corresponds to one of
the event labels of ¢ in the ground truth. If it does, we
have a positive train example, otherwise a negative example.
The number of positive and negative examples are balanced
by randomly removing examples from either the positive or
negative set, after which the examples are used to train the
classifier.

In the original implementation by Becker et al. the process-
ing of a tweet is far from efficient since every event cluster
has to be tested. After a certain time period, the amount
of clusters becomes very large. The adjustments by Reuter
et al. chiefly aim at improving this efficiency issue. We do
not consider these improvements here, since in Equation (1)
we only test currently active clusters, which is already a
performance gain.

3.2 Semantics-driven Clustering

To improve the baseline single pass clustering algorithm we
propose a clustering algorithm driven by the semantics of
the tweets. For example tweets that belong to the same se-
mantic topic—e.g. sports, disasters, ...—are more likely to
belong to the same event than tweets about different topics.
Discerning two events can become easier as well if the two
events belong to different categories.

To calculate a semantic topic for each of the tweets in the
dataset, we make use of the TwitterLDA algorithm [23]. It
is an adjustment of the original LDA (Latent Dirichlet Allo-
cation) algorithm [5] for short documents such as tweets, in
which every tweet only gets assigned a single topic—instead
of a probabilistic distribution over all the topics—and sin-
gle user topic models are taken into account. After running
the TwitterLDA algorithm, every tweet ¢t gets assigned a
semantic topic ;.

The actual clustering algorithm has the same structure as
the baseline algorithm, but it uses the semantic topic of the
tweets as an extra semantic feature during clustering. We
define the semantic fraction o (¢, S) between a tweet and an
event cluster as the fraction of tweets in S that have the
same semantic topic as t:

t:t e SAyy =
‘{ ‘Slfyt ’7’5}'. (4)

o(t,S) =

To select a candidate cluster S; (with cluster center s}) to
which ¢ can be added, we use the cosine similarity, as before,
as well as this semantic fraction:

S; = arg max cos(t, s) - o(t, S). (5)

We choose to multiply cosine similarity and semantic frac-
tion to select a candidate cluster since both have to be as
large as possible, and if one of the two factors provides seri-
ous evidence against the candidate cluster, we want this to
be reflected. Now we use both cos(t, s;) and o (¢, S;) features
to train a logistic regression classifier with a binary output.
The rest of the algorithm continues in the way the baseline
algorithm does.

3.3 Hashtag-level Semantics

As pointed out by Mehrotra et al. the quality of topic mod-
els on Twitter data can be improved by assigning topics to
tweets on hashtag level instead of on tweet level [12]. To
further improve the semantics-driven clustering, we there-
fore use a semantic majority voting scheme on hashtag level,
which differs from the approach by Mehrotra et al. in that
it can be used in an online fashion and that we consider
multiple semantic topics per tweet.

In the training set we assign the same topic to all tweets
sharing the same event label by performing a majority vote:

YVt € Tirain: Yt =
argmgx‘{t/:'yt/:’y/\Et/ﬁEtaé@}}. (6)

This way every tweet in the training set is represented by a
semantic topic that is dominated on the level of the events
instead of on tweet level, resulting in a much coarser attri-
bution of semantic labels. We cannot do this for the test set,
since we do not know the event labels for the test set while
executing the algorithm. We can however try to emulate
such a majority voting at runtime. For this purpose, every
tweet t is associated with a set of semantic topics I't. We
initialize this set as follows:

Vt S Ttest: Ft = {'Yt} (7)

Next to a set of topics for every tweet, we consider a dedi-
cated hashtag pool Hj, for every hashtag h, by analogy with
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[12]. With every pool H we associate a single semantic topic
Br. As the algorithm proceeds, more and more hashtag
pools will be created and filled with tweets.

When a tweet t is processed in the clustering algorithm, it
will first be added to some hashtag pools, depending on the
number of hashtags in ¢. So for every hashtag h in ¢, ¢ is
added to Hy. When a tweet ¢ is added to a hashtag pool H,
a majority vote inside this pool is performed:

Buew,H = argmax{{t/: t' e HA~y = fy}| . (8)
¥

We then update I'; for every tweet ¢t in H:
Vte H: Fnew,t = (Fold,t \ {ﬂH}) U {Bnew,H}- (9)

Finally Bnew,m becomes the new semantic topic of H. Note
that every tweet t keeps its original semantic topic ~;.

What still needs adjustment in order for the clustering al-
gorithm to use this new information, is the definition of the
semantic fraction from Equation (4). We altered the defini-
tion as follows:

o'(t,S) = max v e SAgeFt/}l.

1
g€l ‘S‘ ( 0)

Since Equation (10) implies Equation (4) if I'; contains only
one element for every tweet ¢, this is a justifiable generaliza-
tion.

4. DATA COLLECTION AND PROCESSING

In the past many datasets have been assembled to per-
form event clustering on social media. Unfortunately many
of these datasets are not publicly available; this is espe-
cially true for Twitter datasets. We therefore choose to
build our own dataset, available at http://users.ugent.
be/“cdboom/events/dataset.txt. To speed up this task
we follow a semi-manual approach, in which we first collect
candidate events based on a hashtag clustering procedure,
after which we manually verify which of these correspond to
real-world events.

4.1 Event Definition

To identify events in a dataset consisting of thousands of
tweets, we state the following event definition, which con-
sists of three assumptions. ASSUMPTION 1 — a real-world
event is characterized by one or multiple hashtags. For ex-
ample, tweets on the past FIFA world cup football matches
were often accompanied by hashtags such as #USAvsBel-
gium and #WorldCup. ASSUMPTION 2 — the timespan of
an event cannot transgress the boundaries of a day. This
means that if a certain real-world event takes place at several
days—such as a music festival-—this real-world event will be
represented by multiple event labels. The assumption will
allow us to discern events that share the same hashtag, but
occur on a different day of the week, and will speed up the
eventual event detection process. The hashtag #GoT for ex-
ample will spike in volume whenever a new episode of Game
of Thrones is aired, which are thus different events according
to our definition. ASSUMPTION 3 — there is only one event
that corresponds to a certain hashtag on a given day.

Assumption 3 is not restrictive and can easily be relaxed.
For example if we would relax this Assumption and allow

multiple events with the same hashtags to happen on the
same day, we would need a feature in the event detection
process to incorporate time differences, which is easily done.
Alternatively we could represent our tweets using df-idf; vec-
tors, instead of tf-idf vectors, which also consider time as-
pects of the tweets [1].

4.2 Collecting Data

We assembled a dataset by querying the Twitter Streaming
API for two weeks, between September 29 and October 13
of the year 2014. We used a geolocation query and required
that the tweets originated from within the Flanders region
in Belgium, at least by approximation. Since only very few
tweets are geotagged, our dataset was far from a represen-
tative sample of the tweets sent during this fortnight.

We therefore augment our dataset to make it more repre-
sentative for an event detection task. If a real-world event is
represented by one or more hashtags (Assumption 1), then
we assume that at least one tweet with these hashtags is geo-
tagged and that these hashtags are therefore already present
in the original dataset. We thus consider every hashtag in
the original dataset and use them one by one to query the
Twitter REST API.

A query to the REST API returns an ordered batch of tweets
(ti)ix1, where m is at most 100. By adjusting the query
parameters—e.g. the maximum ID of the tweets—one can
use multiple requests to gather tweets up to one week in the
past. To make sure we only gather tweets from within Flan-
ders, the tokens in the user location text field of every tweet
in the current batch are compared to a list of regions, cities,
towns and villages in Flanders, assembled using Wikipedia
and manually adjusted for multilingual support. If the user
location field is empty, the tweet is not considered further.
We define a batch (¢;);%; to be valid if and only if

[{t:: t; in Flanders}|
timestamp(¢,,) — timestamp(t1)

> T, (11)

where 71 is a predefined threshold. If there are 7o subse-
quent invalid batches, all batches for the current considered
hashtag are discarded. If there are 73 batches in total for
which less than 74 tweets were sent in Flanders, all batches
for the current considered hashtag are discarded as well. If
none of these rules apply, all batches for the current hashtag
are added to the dataset. When the timestamp(-) function
is expressed in minutes, we set 71 = 1, 72 = 12, 73 = 25 and
74 = 10, as this yielded a good trade-off between execution
time and quality of the data.

4.3 Collecting Events

Using the assembled data and the event definition of Section
4.1 we can assemble a ground truth for event detection in
three steps. Since events are represented by one or more
hashtags according to Assumption 1, we first cluster the
hashtags in the tweets using a co-occurrence measure. Next
we determine whether such a cluster represents an event, and
finally we label the tweets corresponding with this cluster
with an appropriate event label.

To assemble frequently co-occurring hashtags into clusters,
a so-called co-occurrence matrix is constructed. It is a three-
dimensional matrix @) that holds information on how many
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times two hashtags co-occur in a tweet. Since events can
only take place on one day (Assumption 2), we calculate
co-occurrence on a daily basis. If hashtag k and hashtag ¢
CO-OCCUr Gk ¢,4 times on day d, then

Ak,e,d
> Ohyid

To cluster co-occurring hashtags we adopt the standard DB-
SCAN clustering algorithm. This is an online clustering al-
gorithm that requires two thresholds to be set: the minimum
number of hashtags minj, per cluster and a minimum simi-
larity measure € between two hashtags above which the two
hashtags reside in the same e-neighbourhood. The similarity
measure between hashtags k and ¢ on day d is defined as

Qk.t.a + Qe
3 .
If we run DBSCAN for every day in the dataset, we obtain

a collection of clusters of sufficiently co-occurring hashtags
on the same day.

Yk, 0, d: Qpa = (12)

(13)

Simk,gyd =

A lot of these clusters however do not represent a real-world
event. Hashtags such as #love or #followme do not exhibit
event-specific characteristics, such as an isolated, statisti-
cally significant peak in tweet volume per minute, but can
rather be seen as near-constant noise in the Twitter feed. In
order to identify the hashtags that do represent events and
to filter out the noise, we follow a peak detection strategy.
For this purpose we treat each cluster of hashtags separately,
and we refer to the hashtags in these clusters as ‘event hash-
tags’. With each cluster C' we associate all the tweets that
were sent on the same day and that contain one or more
of the event hashtags in this cluster. We gather them in a
set Tc. After sorting the tweets in T¢ according to their
timestamp, we calculate how many tweets are sent in ev-
ery timeslot of five minutes, which makes up for a sequence
(ve,i)i= of tweet volumes, with n the number of time slots.
We define that some vc ;+ is an isolated peak in the sequence
(ve,:) if and only if

Vot > 01 AVi 75 i veyix > Vo, + 927 (14)

with 0; and 62 predefined thresholds. Only if one such iso-
lated peak exists (Assumption 3), we label all tweets ¢ in T
with the same unique event label e; and add them to the
ground truth. Since we used the event hashtags from C to
construct this event, we have to remove all event hashtags
in C' from the tweets in T, otherwise the tweets themselves
would already reflect the nature of the events in the ground
truth.

With this procedure it is however likely that some tweets
will belong to multiple events, but only get one event label.
This is possible if a tweet contains multiple event hashtags
that belong to different event hashtag clusters. We therefore
alter the ground truth in which every tweet ¢ corresponding
to an event is associated with a set of event labels E; instead
of only one label. Of course, for the majority of these tweets,
this set will only contain one event label.

In our final implementation we set min, = 1, ¢ = 0.3,
01 = 10 and 02 = 5. These values were chosen empirically,
such that, with these parameters, clusters of co-occurring
hashtags are rarely bigger than three elements. After man-
ual inspection and filtering, the final dataset contains 322
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Figure 1: Plot of tweet volume in function of time
slot for two example events in the dataset, with their
associated hashtags.

different events adding up to a total of 63,067 tweets. We
assign 2/3 of the events to a training set and 1/3 to a test
set, leading to 29,844 tweets in the training set and 33,223
in the test set.

Figure 1 shows a plot of the tweet volume in function of time
slot for two events in the dataset. The plot only covers the
first week in the dataset. The events are two football games
of the French team LOSC Lille—which is a city very near
Flanders, and therefore shows up in our dataset. The first
event is characterised by the single hashtag #wearelosc, and
the second event by two hashtags: #wearelosc and #ollosc.
Our algorithm detects the peaks in tweet volume during the
games, and since only one significant peak exists per day, we
assign the same event label to all tweets with the associated
hashtags sent during that day.

The final dataset is made available at the earlier mentioned
URL. We provide for every tweet its tweet ID, timestamp,
corresponding event labels and event hashtags, and whether
it belongs to either the training or test set. Due to Twitter’s
restrictions, we cannot directly provide the text of all tweets.

5. RESULTS

5.1 Performance Measures

To assess the performance of the clustering algorithms, we
report our results in terms of precision P, recall R and Fi
measure, as defined in [3, 15], and restated here:

1 ‘St n {t/: €y = 6t}|

P=— -, (15)
P
1 ‘St N {tli €y = et}|

R=— —_— Y, 16
T2 s er — el 16)

P-R
F =2'm7 (17)

in which T stands for the total dataset of tweets. When
tweets can have multiple event labels, these definitions how-
ever do not apply any more. We therefore alter them as
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Precision  Recall  Fj-measure Purity  Number of events
Baseline 47.12%  35.35% 40.40% Baseline 61.29% 409
Semantics-driven 52.80%  30.60% 38.74% Semantics-driven 64.76% 662
Hashtag semantics 48.62%  36.97% 42.00% Hashtag semantics 61.15% 441
Bascline (multi) 64.96%  36.36%  46.62% Bascline (multi) 75.51% 100
Semantics-driven (multi) 69.27%  31.47% 43.28% Semantics-driven (multi) 77.74% 662
Hashtag semantics (multi) | 64.06%  37.77% 47.52% Hashtag semantics (multi) | 73.72% 441

Table 1: Using hashtag-level semantics clearly out-
performs baseline and plain semantics-driven clus-
tering.

follows:
1 |Stﬂ{t':eEEt«/\e€Et}\
P=— max ) (18)
7 2 EA
! ’
R*iz |Stﬂ{t.€€Et /\eEEt}‘ (19)

{t':e€ Ey Ne € E}

Note that Equations (18) and (19) imply Equations (15) and
(16) if there is only one event label per tweet.

We will also use purity as an indicator of the quality of the
event clusters we obtain. We have chosen the definition of
purity as in [11] and adapted it to our context as follows:
. 1 [Sen{t':e=-eux}|
purity = — » max ———————. (20)
] 2 El

It is a measure that is closely related to precision. For mul-
tiple event labels, we alter this measure to the following
expression:
. 1 [Sen{t':e€ Ey}
purity = — » max ————————=, (21)
T 2 ||

teT

5.2 Results

We now discuss the results of the algorithms explained in
Section 3 with the use of the dataset constructed in Sec-
tion 4. In the algorithms we make use of a set A of active
event clusters, which become inactive after some time pe-
riod. We could for example use an exponential decay func-
tion to model the time after which a cluster becomes inactive
since the last tweet was added. Using Assumption 2 how-
ever we can use a much simpler method: when a new day
begins, all event clusters are removed from A and thus be-
come inactive. This way we start with an empty set A of
active clusters every midnight.

For the semantics-driven clustering algorithm we assign the
tweets to 10 TwitterLDA topics using the standard param-
eters proposed in [23] and 500 iterations of Gibbs sampling.
Table 1 shows the results of the baseline algorithm, the
semantics-driven algorithm and the hashtag-level semantics
approach, both for one event label and multiple event labels
per tweet. Note that, since we have removed the event hash-
tags from the tweets in the ground truth, the hashtag-level
semantics approach does not use any implicit or explicit in-
formation about the nature of the events.

We note that the hashtag-level semantics approach outper-
forms the baseline clustering algorithm, with an increase of
1.6 percentage points in Fi-measure for single event labels.

Table 2: A comparison of baseline, plain semantics-
driven clustering and hashtag semantics in terms of
purity and number of event clusters.

In terms of precision and recall, hashtag-level semantics per-
forms better in both metrics than baseline in the single label
case (significant improvement, p < 0.001 in ¢-test). When
using multiple event labels per tweet, precision is decreased
by 0.9 percentage points, but raises recall with 1.4 percent-
age points, leading to an increase of Fi-measure by 0.9 per-
centage points.

Compared to the standard semantics-driven algorithm we
do 6 percentage points better in recall, but 4 percentage
point worse in precision for single event labels. Hashtag-
level semantic clustering seems to manage to account for
the substantial loss in recall that occurs when using the ba-
sic semantics-driven method, but lacks in precision; the pre-
cision is however still 1.5 percentage points better than the
baseline algorithm. The plain semantics-driven approach is
1.7 percentage points worse than baseline in terms of Fj-
measure, but provides much more precision by sacrificing
in recall. For multiple event labels the differences are even
more pronounced between the standard semantics approach
and the other algorithms. The former performs 3.3 percent-
age points worse in Fj-measure compared to baseline, and
4.2 percentage points worse compared to hashtag semantics.
Using multiple event labels, the plain semantics-driven al-
gorithm however has a much higher precision than baseline
and hashtag semantics.

To assess the significance of the differences in F; measure be-
tween our three systems, we used a Bayesian technique sug-
gested by Goutte et al. [9]. First we estimated the true pos-
itive, false positive and false negative numbers for the three
systems. Next we sampled 10,000 gamma variates from the
proposed distribution for F; for these systems and calculated
the probability of one system being better than another sys-
tem. We repeated this process 10,000 times. Hashtag se-
mantics resulted in a higher F; measure in 99.99% of the
cases; our results are thus a significant improvement over
baseline. By contrast, the plain semantics-driven approach
is significantly worse than baseline, also in 99.99% of the
cases. Concerning multiple event labels, the hashtag seman-
tics approach is better in 98.5% of the cases than baseline,
which is also a significant improvement—although less than
in the single event label case.

We also compare our three approaches in terms of cluster
purity and the number of detected event clusters. These
numbers are shown in Table 2. We see that the purity of
the clusters in the plain semantics-driven approach is higher
than baseline and hashtag semantics, but the number of
detected event clusters is even substantially larger. This
explains the high precision and low recall of the semantics-
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driven algorithm. The purity of baseline and hashtag seman-
tics is almost equal, but the latter approach discerns more
events than baseline, thereby explaining the slight increase
in precision and recall for the hashtag semantics approach
compared to baseline. Concerning multiple event labels, the
purity increases significantly compared to single event labels.
Since the number of detected events remains the same, this
explains the substantial increase in precision for the multi-
label procedure.

5.3 An Illustrative Example

As a matter of example, consider the tweet “we are ready
#belgianreddevils via Qsporza”. This tweet was sent on the
occasion of a football game between Belgium and Andorra—
the Belgian players are called Red Devils and the airing tele-
vision channel was Sporza. Since most tweets on this foot-
ball game were sent in Dutch or French, the baseline clus-
tering approach is not able to put this tweet in the correct
cluster, but rather in a cluster in which most tweets are in
English. This tweet is however related to a sports-specific
topic, so that in both the semantics approaches the tweet
is assigned to a correct cluster. It is clear that the hash-
tag #belgianreddevils has something to do with sports—
and in particular a football game of the Belgian national
team—but there exist tweets that contain this hashtag and
that have not been categorized into the sports category by
the TwitterLDA algorithm. For example the tweet “met 11
man staan verdedigen, geweldig! #belgiumreddevils” (which
translates to “defending with 11 men, fantastic!”) belongs
to a more general category. This shows that calculating se-
mantic topics on tweet level results in a fine-grained, but also
more noisy assignment of these topics, which is reflected in
the number of detected events shown in Table 2. By assign-
ing the semantic topics on hashtag level however, all tweets
with the hashtag #belgianreddevils will eventually belong
to the sports category. It will result in a coarser, less de-
tailed assignment of the topics, resulting in a more accurate
event detection, and fewer detected events.

6. CONCLUSION

We developed two semantics-based extensions to the single-
pass baseline clustering algorithm as used by Becker et al. to
detect events in Twitter streams. In this we used semantic
information about the tweets to drive the event detection.
For this purpose we assigned a topic label to every tweet us-
ing the TwitterLDA algorithm. To evaluate the performance
of the algorithms we semi-automatically developed a ground
truth using a hashtag clustering and peak detection strat-
egy, to aid the manual labelling of tweets with events. When
using the topic labels at the level of individual tweets, the
algorithm performs significantly worse than baseline. When
however gathering the semantic labels of the tweets on a
coarser, hashtag level we get a significant gain over base-
line. We can conclude that high-level semantic information
can indeed improve new and existing event detection and
clustering algorithms.
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