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Abstract. Many relations between model elements are expressed in
OCL. However, tool support to enable synchronization of elements based
on OCL-expressed relations is lacking. In this paper, we propose to use
active operations in order to achieve incremental execution of some OCL
expressions. Moreover, bidirectionality can also be achieved in non-trivial
cases.

1 Introduction

Relations between model elements are often expressed as OCL [9] expressions.
These may be intra-model relations, which may for instance specify the values of
derived features with respect to the values of other features. They may also be
inter-model relations, which may for instance specify transformations. Although
it is generally easy to compute the value of OCL expressions, doing so in such
cases is often not enough.

Consider two variables a and b. A relation between them can be expressed in
several ways: 1) a = f(b), 2) b = g(a), 3) h(a) = i(b), or 4) j(a, b) = true, where
f , g, h, i, and j are functions denoting potentially complex OCL expressions
involving their arguments. It is easy to compute the value of a given b from 1),
or of b given a from 2). However, computing the value of b given a from 1), of
a given b from 2), or of a or b given the other from 3) or 4) can be much more
complex.

Moreover, models do change, thus potentially invalidating relations. Synchro-
nization corresponds to performing appropriate changes to make relations hold
again. It is generally not trivial. If changes always happen on one part (e.g.,
non-derived features, or source models), then relations may be expressed such as
the other part (e.g., derived features, or target models) can be computed easily.
If changes can happen on any part (e.g., with changeable derived features, or
bidirectional transformations), then there is no way to express relations in OCL
such that computation is always easy.

Figure 1 illustrates synchronization of two models MA and MB related by
relation R (decomposable into model-element-level relations). At some point,
MA evolves into M ′

A after some changes (denoted by an arrow labeled a), and
relation R may not hold between M ′

A and MB . Synchronizing MB with M ′
A

consists in evolving it into M ′
B by performing some changes (denoted by an
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arrow labeled b) such as R holds between M ′
A and M ′

B . Alternatively, changes
denoted by arrow b may happen before those denoted by arrow a, and MB may
be the first model to evolve into M ′

B , requiring MA to be evolved into M ′
A.

Fig. 1. Synchronization of models MA and MB related by relation R

Active operations [2,1] enable evaluation of operations on collections in a way
that is both: 1) incremental (i.e., propagating changes instead of recomputing
whole expressions), and 2) bidirectional (i.e., enabling changes to the value of an
expression to be propagated back to its source collection). Following a proposal
made during the OCL 2014 Workshop panel discussion (see Section 5 of [5]),
this paper presents how active operations can be applied to OCL in order to
partially address this synchronization problem. A Java implementation of an
active operation framework supporting EMF1 has been developed. As of writing
this paper, it is available in a development branch2 of Papyrus3. Manual rewriting
of OCL expressions into active operations has been experimented. The resulting
active operations have been used in a bidirectional transformation between a
profiled UML model, and a model conforming to a metamodel corresponding to
the profile. Change propagation in both directions have been extensively tested
to behave as expected.

Incrementality is defined in Section 2. Section 3 exposes what active oper-
ations consider as immutable and mutable values. Active operations are intro-
duced in Section 4, and their application to OCL is presented in Section 5. In
Section 6, our implementation is briefly described. Section 7 discusses some lim-
itations of the approach, along with some ways to mitigate them. Finally, some
related works are listed in Section 8, and Section 9 concludes.

1 Eclipse Modeling Framework: https://www.eclipse.org/modeling/emf/
2 http://git.eclipse.org/c/papyrus/org.eclipse.papyrus.git/

tree/extraplugins/aof?h=committers/fnoyrit/aofacade&id=

8bec1ad60253cc854cbd3734efa424bfed0e0bbe
3 https://eclipse.org/papyrus/
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2 Incrementality

When a model is represented by an immutable data structure (e.g., in purely
functional approaches), then the only way to perform synchronization is to com-
pute a new model. For derived features, this requires computing a new version of
the model in which the corresponding relations hold again. For transformations,
the model that was not changed need to be recomputed from the one that did
change such that the corresponding relations hold again. However, models are
often represented by mutable data structures (e.g., with EMF in Java). In such
a case, it is still possible to recompute whole models like with immutable data
structures. However, another possibility is to update models in-place by per-
forming small changes that make relations hold again. This is called incremental
synchronization.

Incremental synchronization has the potential to be more efficient because
only relatively small changes are typically required when compared to whole
model recomputation. It also updates traceability links between the synchro-
nized models instead of creating new ones with the recomputed model. More-
over, it also avoids creating new elements but rather updates existing ones. This
results, for instance, in an interesting advantage when models are being edited
in graphical views. Visual shapes are typically bound to the model elements they
represent, and are updated when they change. Updating models in-place means
that visual editors can directly reflect changes to users. Conversely, recomputa-
tion results in whole new models with elements not bound to any visual shape,
which means no change is being made visible to users.

Incremental evaluation of OCL expressions can be used to achieve incremen-
tal model synchronization. It is based on the same idea of in-place updates, and
similarly relies on mutable values4. Values resulting from expression evaluation
as well as intermediate values corresponding to sub-expressions are updated in-
place. For instance, given an ordered set s with initial value OrderedSet {1,
2, 3}, and expression s->collect(e | e + 2)->select(e | e > 4). The ini-
tial evaluation of the expression yields value OrderedSet {5} with intermediate
value (after the collect, but before the select): OrderedSet {3, 4, 5}. If s
changes into OrderedSet {1, 4, 3} (i.e., 2 is replaced by 4), then incremen-
tal evaluation will start by updating the intermediate value to OrderedSet {3,
6, 5} (i.e., replacing 4 by 6). Then, the value of the whole expression will be
updated into OrderedSet {6, 5} by adding 6 to it.

3 Mutability of Values

This section starts with values that cannot change before going into mutable
values that active operations consider. Finally, it is applied to models.

4 This does not prevent OCL expressions from always having the same values as if
they operated on immutable values, following the OCL specification [9].
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3.1 Immutable Values

Primitive values are defined as immutable. These notably include: booleans,
numbers, and strings. This is consistent with OCL, and is a choice made by
many programming languages (e.g., Java), even if they support mutability.

An immediate consequence is that operations on immutable values do not
need to propagate changes. Therefore, these operations are defined in the usual
way.

3.2 Mutable Values

Mutable values wrap other (mutable or immutable) values. There are two kinds
of mutable values supported by active operations: boxes and objects. A box can
be a singleton, or a collection. Each box is observable. It notifies listeners of its
changes: addition, removal, replacement, or move of a wrapped value.

Remark: the value wrapped by a singleton box may be replaced by another
one. Since a mutable primitive type variable cannot have its immutable primitive
value mutated, it is actually defined as a mutable singleton wrapping a primitive
value. In this way, changing the value of the variable actually corresponds to
replacing the value wrapped by the singleton box with another one (i.e., changing
the content of the box without changing the box itself).

The two kinds of singleton boxes, and four kinds of collection boxes are:

– Mandatory singletons (called one) are boxes that must contain exactly
one value. The contained value can be a different one at different times.

– Optional singletons (called opt) are boxes that may be empty or contain
exactly one value. They may notably become empty, or full.

– Collections are boxes that may contain any number of values. They are
further classified into four kinds, according to ordering and uniqueness:
– Sets (called set) forbid duplicate values and are unordered.
– Ordered sets (called oset) forbid duplicate values and are ordered.
– Bags (called bag) may contain duplicate values and are unordered.
– Sequences (called seq) may contain duplicate values and are ordered.

The type of a box is immutable. This means that, for instance, a set will
always remain a set and never become an oset, a bag, or a seq. The type of
elements contained in a box (its element type) may be written in brackets (e.g.,
one(String) for a mandatory singleton wrapping a string value). Objects are a
special kind of mutable value that contain named slots holding boxes as values.

3.3 Application to Models

Each model element is represented by an object having a fixed type, which is a
meta-element coming from a metamodel. The type of an object constrains the
types of its slots. Each slot of an object corresponds to a property (attribute
or reference) belonging to its meta-element. The type of box used to hold the
value of a slot is given by the multiplicity of its corresponding property: an opt
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for 0..1, a one for 1..1, and a collection box for n..m with m > 1. In the last
case, bounds narrower than 0..* are not enforced by the box itself. The specific
kind of collection box depends on ordering and uniqueness (as defined above).
The element type of a slot value is either a primitive type (for attributes) or a
meta-element (for references).

This scheme can be applied to any kind of modeling framework supporting
observation, even one not explicitly based on boxes. We have notably applied it
to EMF. We leverage the fact that EMF can notify listeners (called Adapters)
of changes to model element properties to provide a box-based view on models.
A box is created to represent each slot, but it delegates storage of its contents
to actual EObjects: there is no need for content duplication.

4 Active Operations

4.1 Operations on Boxes

Active operations enable bidirectional incremental evaluation of expressions in-
volving boxes. The result of each active operation is also a box. Available oper-
ations correspond to well-known OCL operations (e.g., conversion between box
types, concatenation, isEmpty, notEmpty, size) and iterators (e.g., collect,
select) on collections or operations available in other languages.

An example of the latter category is the zipWith operation (e.g., available
in Haskell). zipWith operates on two collections, and is given a function (called
a zipper) taking two arguments. It traverses both collections in parallel, and
expects them to have the same size. It returns a collection in which every element
is obtained by applying the zipper function to one element from each collection.
For instance, applying zipWith on OrderedSet {1, 2, 3} and OrderedSet {1, 1, 2} with
integer addition as zipper function results in OrderedSet {2, 3, 5}.

The additional bind operation can be used to propagate changes between
two result boxes. Each active operation propagates changes from its source(s)
to its result, and vice versa. It does so using operation-specific algorithms (see
[2,1]).

Active operations distinguish between: a) forward change propagation from
source to result, and b) reverse change propagation from result to source. For-
ward direction is always supported, but reverse direction often requires more
information. Consequently, reverse direction is only supported if enough informa-
tion is available. In practice, on a concrete bidirectional transformation, reverse
direction can be made to work in most cases. Note that only a) is necessary for
incrementality, but both a) and b) are necessary for bidirectional incrementality.

Here is how an operation like size works. It observes its source box, and its
result is a one(Integer) that contains as value the size of the box on which it is
applied (its source box). It is updated upon removal or addition of values in its
source box. The size operation is currently only implemented in a unidirectional
way: it only supports forward change propagation. However, limited support for
reverse change propagation could make sense, and therefore be implemented. For
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instance, replacing the value in its result box with a lower value could actually
resize its source box by dropping tail elements. Moreover, the size operation
could be augmented to a fully bidirectional operation size(p) where p would
be a provider function. Provider p would return the elements to append to the
source box whenever its size increases.

Although this paper is not the place to look at the algorithms between each
operation, an overview of how the collect operation works is useful. This oper-
ation is applied on a source box containing source elements, and is given a col-
lector function. It returns a box containing the result of applying the collector to
each source element. There are actually ten variants of the collect operation5

exposed to users. Each variant handles a specific combination of change propa-
gation direction (i.e., supporting reverse or not), and mutability of its collector.
There is also a forward variant that keeps traceability information, and uses it
in order to retrieve already computed elements. Finally, there is a corresponding
reverse variant that can read this traceability information.

Reverse change propagation is typically only supported if a reverse collector
function is also provided. Property navigation is handled in a special way, and is
able to support limited reverse change propagation without requiring a reverse
collector. Collecting different values depending on a mutable predicate (e.g.,
aCollection->collect(e | if p(e) then f(e) else g(e) endif)) also re-
quires special handling.

The collector function given to collect is either immutable or mutable. An
immutable collector is a function taking a value as argument, and returning an
immutable value. A mutable collector is a function taking a value as argument,
and returning a box. Collecting with an immutable collector only requires lis-
tening for changes on the container boxes (on the source box for forward change
propagation, and on the target box for reverse change propagation). Collecting
with a mutable collector further requires listening for changes on the result of
applying the collector to every source element (called inner boxes).

4.2 Lifting Immutable Operations

Immutable operations (functions or operators) defined on immutable values may
be lifted6 to work on boxes wrapping such immutable values. This enables change
propagation for many existing operations. It is trivial for bijective operations
such as number or boolean negation, by leveraging collect. Non-bijective oper-
ations (e.g., absolute value on numbers) can be easily lifted to support forward
change propagation on boxes. However, reverse change propagation can gener-
ally be performed in several way. For instance, setting the result of an absolute
value operation to a positive number (e.g., 5) may be reversed by setting its

5 Remark: there are also five variants of the select operation.
6 In this context, lifting consists in taking a function operating on simple values, and

transforming it into a function operating on boxed values. It works by taking the
values out of the boxes before operating on them, and putting them back in boxes
afterward.
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source to that number (e.g., 5), or to its opposite (e.g., −5). In general, this
requires ad hoc handling, but a default behavior may be provided (e.g., always
returning the positive value). In the general case where no default behavior can
solve every problem, users may have to implement the reverse behavior, or at
least choose among several possible behaviors (e.g., using annotations).

While collect can be used to lift unary operations, binary operations (e.g.,
the conjunction of boolean values) can be lifted by leveraging zipWith. As ex-
plained above, there are variants of collect without reverse collector that only
support forward change propagation, as well as variants with a reverse collector
that also support reverse change propagation. When the reverse direction is re-
quired to be supported, a reverse collector can be specified to implement default
or specific reverse behavior. Similarly, zipWith also exists in two variants: one
with only a forward zipper function supporting only forward change propaga-
tion, and one with an additional reverse zipper function also supporting reverse
change propagation. When the reverse direction is required to be supported, a
reverse zipper can be specified to implement default or specific reverse behavior.

5 Application to OCL

There are two main aspects to consider in order to apply active operations
to OCL: mapping OCL types to active operation types, and rewriting OCL
expressions to use active operations such as presented in Section 4.

5.1 Types Mapping

Collection box types and OCL collection types are very closely related, with
simple correspondences: set for Set, oset for OrderedSet, bag for Bag, and seq
for Sequence. Model elements are mapped to objects. Although we have not
experimented with OCL tuples yet, it seems that they could also map relatively
easily to objects.

As for singleton boxes, OCL does not explicitly distinguish nullable values
from non-nullable values. However, modeling languages like UML, MOF, and
Ecore do. The value of a slot typed by a property with multiplicity [0..1] is
mapped to an opt. The value of a slot typed by a property with multiplicity
[1..1] is mapped to a one. In order for every singleton expression to have a definite
one or opt box, static analysis of OCL expressions need to be extended with
nullability analysis, which determines whether each sub-expression can actually
be null.

5.2 Expression Rewriting

Firstly, operations on primitive values can be made to be the same with active op-
erations and OCL. Secondly, active operations on boxes are quite close to opera-
tions on OCL collections. However, several active operations actually correspond
to some OCL iterators such as collect or select. Therefore, in order to know
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which one to use, static analysis of OCL expressions need also be extended with
mutability analysis. That is, whether each sub-expression can actually mutate
must be determined. Moreover, complex collector functions need to be rewritten
into several simpler functions in order to make sure that each navigation step is
actually observed by an active operation. For instance, persons->collect(p |

p.bestFriend.name) needs to be rewritten into persons->collect(p | p.best-

Friend)->collect(p | p.name).
Manually writing relatively complex active operations expressions is cum-

bersome. But it showed that static mutability analysis can work. Indeed, in
our Java-based implementation of active operations, mutable values are distin-
guished as being instances of interface IBox. Any expression that types as an
IBox is therefore mutable. Of course, this still needs to be implemented for OCL.

Finally, the bind active operation generally corresponds to the OCL equality
operator applied on collections.

6 Implementation, Debugging and Testing

So far, our implementation of active operations does not handle translation from
OCL. However, it does support EMF models, and a significant-enough subset of
active operations that enables writing bidirectional incremental transformations.

Debugging is supported by three tools:

– Inspection. The first one is the inspect pseudo-operation. It has no effect
on the data flow, and returns its source box. It is similar to the trace

function in Haskell, or to the debug operation in ATL, except that it stays
active and listens to its source box. It logs every change in the console.

– Data Flow Serialization. Once an active operations expression has been
evaluated, a data flow graph exists in memory to handle change propagation.
It is possible to display this data flow graph textually, and to show it in the
variable inspection view of the Java debugger.

– Data Flow Visualization. Finally, the whole data flow corresponding to
the evaluation of all expressions can also be serialized to a textual file. This
file can then be further processed by graph layouting tools7.

Testing active operation expressions (e.g., used for derived features or trans-
formations) has two aspects. First, the passive functionality of the expression
(i.e., the computation it initially performs in the absence of change) needs to be
tested (e.g., using unit testing). This can be performed using traditional tech-
niques. Second, the active behavior needs to be tested to make sure: 1) that the
active operations implementation behaves properly (but this is not the responsi-
bility of a user of active operations), and 2) that the reverse change propagation
behaves as intended. The second point is especially important considering that
reverse change propagation can often be performed in several ways, but only one
may make sense in a given context. We built some tools to do this by comparing
the result of change propagation with full passive reexecution.

7 We use PlantUML: http://plantuml.com/.
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7 Limitations

Although the approach presented in this paper enables bidirectional incremental
evaluation of many useful OCL expressions, it has the following limitations in
addition to general bidirectionality issues:

1. Reverse change propagation typically requires more information than avail-
able in OCL expressions (e.g., reverse collector or zipper functions).

2. It is not clear yet that all OCL expressions can be rewritten using a fixed
set of active operations, and if so, what these operations are.

3. The current active operations algorithms do not support arbitrary-level traver-
sals such as can occur in arbitrary-level collection flattening or closures.

While all these points are open issues, it is possible to mitigate them:

– To mitigate 1:
• Lifted immutable operations may be annotated with information about

which reverse behavior to choose from. For instance, a lifted number
addition may be annotated to reverse propagate changes by modifying
only one of its operand, or both. If both are modified, it may distribute
the change evenly, or not.

• Specific active operations may be defined with semantics appropriate for
a given context. However, this is not trivial since this requires designing
a custom bidirectional propagation algorithm.

• A search-based approach that explores possible solutions to find a “good”
one (according to a fitness function) could be used. However, it is unclear
at this time how this could interact with active operations algorithms.

• Finally, if reverse propagation cannot be defined in a meaningful way, it
is always possible to make corresponding properties read only in meta-
models.

– To overcome 2 and 3, other techniques can be used for forward change prop-
agation (e.g., reevaluating whole sub-expressions). However, reverse change
propagation may not be possible in such a case.

– To ease the developer’s job despite 1 and 2, a development environment
could help. It could warn expression writers of problems (e.g., missing reverse
annotation, rewriting impossibility), thus making it easier to write in the
appropriate subset of OCL. At least it would make it easy to know when we
loose some property (e.g., support for reverse change propagation).

8 Related Work

Firstly, ad hoc solutions for bidirectional synchronization can be implemented in
general purpose languages such as Java. However, such approaches mix together
domain-specific concern with technical aspects. Some frameworks like AngularJS
do support data-binding that can perform change propagation. However, the
kind of supported relations is quite limited.
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Secondly, functional approaches based on lenses can be used to express re-
lations similarly to what can be done with OCL. Some approaches such as [6]
enable bidirectional transformations based on lenses. However, functional ap-
proaches are not easy to marry efficiently [7] with side-effect based modeling
frameworks like EMF.

Finally, there are some graph-pattern based approaches such as IncQuery
[10]. IncQuery uses a custom query language based on graph patterns. There is
tool support to translate some OCL expressions into these patterns [3]. Although
active operations also require some rewriting from OCL, expressions built us-
ing active operations are structurally similar to corresponding OCL expressions,
whereas graph patterns have different structure. Furthermore, IncQuery may be
used as part of VIATRA [4] transformations. VIATRA enables fine-grained cus-
tom reactions to specific change events. It should be possible to achieve similar
results with active operations, by coupling them with as powerful a transfor-
mation language (e.g., possibly by making VIATRA use active operations in
addition to IncQuery).

9 Conclusion

This paper proposes an approach that enables incremental (i.e., supporting for-
ward change propagation) evaluation of OCL expressions. Furthermore, this ap-
proach can also be made to support reverse change propagation directly in some
cases, and with additional annotations in others. Bidirectional incremental eval-
uation of OCL expressions can thus be achieved in some cases. Applying this
approach to the implementation of a model transformation has shown that bidi-
rectionality can be achieved in non-trivial cases.

The approach is based on active operations, of which an overview has been
given. Not all OCL expressions can be translated into active operations, and of
those which can, not all can propagate changes in the reverse direction. However,
it is not clear yet which subset of OCL can be translated, and which (smaller)
subset can support reverse propagation. We expect that further works on the
rewriting of OCL expressions into active operations will help define these subsets
more precisely. The presented approach is still missing automatic rewriting of
OCL expressions into active operations, and still has to be evaluated for perfor-
mance and scalability.

While working on this approach, we noted that it could be useful to have the
notion of optional values in OCL. This would enable tools to support null-checks
and safe navigation. By combining the approach presented in this paper with the
OCLT approach presented in [8], it may become possible to express bidirectional
incremental transformations directly in OCL.
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