
System Ontology and its role in Software Development

Jan L.G. Dietz

Delft University of Technology
Chair of Information Systems Design
j.l.g.dietz@ewi.tudelft.nl

Abstract. The research reported upon in this paper aims at reducing errors in
both the requirements engineering and the system specification phase of
software development, by means of system ontology. The notion of system
ontology is introduced and discussed. A particular generic ontology is presented
as well as an accompanying diagramming technique. The application of system
ontology in software development is demonstrated and discussed, using the
design of a traffic control system as an example.

1 Introduction

Software development has been put in a bad light for decades. Huge amounts of
money are wasted in software development because of cancelled projects, projects
coming in over time and budget, and delivered software systems that are never or
scarcely used. In [16] it is estimated that these failures amount to an annual and
world-wide loss of about $120 billion. Most failures are caused in the early stages, in
determining requirements and in devising specifications.

The research that is reported upon in this paper concerns the use of system
ontologies in the design process of a software system. By doing this we aim at
reducing two major kinds of errors. The first one comprises the failures that are the
results of imperfectly performed requirements engineering. They are largely due to
the fact that the common strategy to perform this crucial activity is still the ‘waiter
strategy’. By this is meant the traditional way of asking the user what (s)he wants.
The fallacy in this approach is that users can only partly tell what they need, and also
that they ask for things they don’t need [6]. The second kind of failures are the results
of imperfectly devising the specifications of the system to be developed. It is still hard
to provide software specifications that are really and fully independent of the
programming code and that thus do not restrict or influence the programming freedom
in any way (cf. [14]).

The means by which a substantial reduction of these errors could be achieved is
system ontology. The notion of ontology is rather new in software engineering. In its
original meaning ontology is about what reality is, in fact what being is [2, 3]. It has
got almost world-wide attention through the work in the Semantic Web community
[1, 17]. In this community, ontology is mainly restricted to the specification of state
spaces, largely comparable to conceptual schemata [10]. In our view, the ontology of
a system should comprise the complete knowledge of the system, covering all

mailto:j.l.g.dietz@ewi.tudelft.nl

relevant aspects. We define the ontology of a system as the specification of its
construction and its operation, independent of its realization and independent of any
technology. In this paper we mean by system a technical system or an information
system or any software system. Other system categories, in particular social systems
like organizations, are excluded. Regarding the ontlogy of enterprises, the reader is
referred to [8].

The outline of the paper is as follows. In section 2, the SMART generic ontology is
introduced, both in an informal and a formal way. It builds on earlier work in [4, 5,
12, 13]. A graphical notation of ontologies according to the SMART model, which
improves the understanding of the generic model, is introduced in section 3. In section
4, a generic model of the design process is presented and the role of ontology is
demonstrated in the design of a traffic control system. Discussions of the findings as
well as the conclusions that can be drawn are provided in section 5.

2 System Ontology

A definition of the notion of ontology that is well received in the AI community, is
that an ontology is a specification of a conceptualization [11]. We like to add that this
conceptualization must be a true ontological one in Bunge’s sense [2], otherwise said
that it is a true white-box model of a piece of reality. Moreover, the ontology of a
system should not only cover the static perspective (the state space, which is the one
that has got the dominant attention in the Semantic Web community) but also the
kinematic perspective (process space), the dynamic perspective (action rules), and the
constructional perspective (composition, environment and structure), as well
explained by Bunge in [3]. As general requirements for a system ontology we
therefore propose that it be coherent, comprehensive, consistent, concise, and
essential. By coherent we mean that the distinct aspect models constitute a logical and
truly integral whole. By comprehensive we mean that all relevant issues are covered,
that the whole is complete. By consistent we mean that the aspect models are free
from contradictions or irregularities. By concise we mean that no redundant matters
are contained in it, that the whole is compact and succinct. The most important
property however is that an ontological model is essential, that it only shows the
essence of the system, its deep structure, abstracted from all realization and
implementation issues.

In this section we present the SMART model as an ontological generic model for
information systems. We consider these systems to operate in a discrete linear time
dimension, which means that there are distinct points in time and that the difference
between any two consecutive points in time is always the same. This time difference
is called the time unit. The variable Now represents the current time.

At every point in time t, a system is in a particular state, which is defined as the set
of facts that are current at t. The facts must be elements of the state base of the
system, being the set of all facts which may belong to a state of the system. A fact is
said to be current at the point in time t if it has been made existent before or at t, and
if it has not been made nonexistent since then. (Note. Making a fact existent or
nonexistent is the effect of a mutation, which will be explained shortly). Systems

activate each other through generating commands. A command is a pair <a,t> where a
is an action and t is a point in time. An action is something that a system must respond
to. The set of possible actions that a system can respond to is called the action base.
At every moment a system disposes of a set of commands, which is called its
agenda1. The action a in the agendum <a,t> is said to be current at the point in time t.
Although mostly only one action will be current at a point in time t, there may be a
number of concurrent actions. As soon as an action is current, the system will respond
to it instantly by performing a transition, resulting in the generation of a finite set of
facts, and a finite set of commands. The generated set of facts is called the mutation
of the system. These facts are elements of the mutation base of the system, which is
the set of all facts the system is able to generate. The facts in the mutation get a time
stamp, called the creation time, of which the value is the current time. The generated
set of commands is called the reaction of the system. The actions in these commands
are elements of the reaction base of the system, which is the set of all actions the
system is able to generate as the action part of a command. A system operates
autonomously, which has to be understood as follows. At every point in time the so-
called operating cycle is passed through. If there is a current action, it will be dealt
with, i.e. the corresponding transition rule is executed. If there is no current action,
nothing will happen.

The performance of a transition consists, mathematically spoken, of the evaluation
of a partial function, which is called the transition base of the system. Below, a
formal definition of a system according to the SMART model is presented. In this
definition, the power set of a set X is denoted as ℘X. Time values are represented by
natural numbers. The set of natural numbers is denoted by ℵ.

A system is defined by a tuple < S, M, A, R, T >, where:

S : a set of facts, called the state base
M : a set of facts, called the mutation base
A : a set of actions, called the action base
R : a set of actions, called the reaction base
T : a partial function, called the transition base :
 T ∈ A ∗ S → ℘(R ∗ ℵ) ∗ ℘M

The components S, M, A, and R are sufficiently explained above, the function T

needs further explanation. It can conveniently be represented by its extension, which
is a set of transition rules of the form <A,S,R,M> where:

A is the current action set; it is the set of actions a ∈ A that are current;
S is the current state; it is the set of facts f ∈ S that are current;
R is the current reaction; it is a set of pairs <r,d> with r ∈ R and d ∈ ℵ; d is the

delay of the reaction; the action r will become current at time Now+d;
M is the current mutation; M ⊂ M;

1 The word “agenda” is commonly taken as a singular noun. However, the original Latin word
is a plural noun, the singular form of it being “agendum”.

If a fact is contained in both the state of a system 1 and the state of a system 2, it
means that these systems ‘share the knowledge’ of that fact. This happens if the fact is
current and if it belongs to the intersection of the two state bases, thus to S1∩S2. The
effect of a mutation by a system 1 on a system 2 is as follows. If a fact in the mutation
belongs to M1∩S2, then there is an effect, otherwise there is no effect (on the system
2 at least; it may have effect on some other system). There are two possible effects. If
the fact is current (which implies that it belongs to the state of system 2), it will be
made nonexistent. If the fact is not current (which implies that it does not belong to
the current state of system 2), it will be made existent2. Likewise, the generating of a
command instantly changes the agenda of every system for which the contained
action belongs to its action base. More precisely, if the action in a command that is
contained in the reaction of a system 1, belongs to R1∩A2, then the command will
instantly be added to the agenda of system 2.

Because of the distinction between facts and commands, we distinguish between
two corresponding kinds of influencing among systems, called information and
activation. A system 1 is said to inform a system 2 if M1∩S2 ≠ ∅. If this is the case,
then every fact belonging to this intersection, produced by system 1, will change the
state of system 2 instantly through the addition or the deletion of the fact. A system 1
is said to activate a system 2 if R1∩A2 ≠ ∅. If this is the case, then every command
that is generated by system 1, and that regards an action that belongs to this
intersection, will instantly be added to the agenda of system 2. It is possible for a
system that R∩A ≠ ∅. This case is called self-activation: apparently, the system is
able to cause its own future transitions. In this way periodic activities can be modeled
elegantly. Also, it is possible that M∩S ≠ ∅. This case is called self-information: the
system is able to inspect facts that are generated by itself.

The distinctive difference between information and activation is that activation
implies the triggering of a system to perform a transition, whereas information does
not. Consequently, a system is not ‘aware’ of a state change at the time it takes place.
Instead, a system takes notice of a state change at some later point in time, namely the
next point in time that it is activated and needs to inspect the existence or non-
existence of the corresponding fact(s). So, between two adjacent points in time at
which a system performs a transition, it ‘sleeps’. In that period however a number of
state changes may occur. Although we recognize that in the implementation of a
software system there is no difference between activation and information, this
distinction is crucial at the ontological level of understanding the system.
Consequently, we reject the idea that events, i.e. instances of state changes, can cause
something; only actions can. The cause of much confusion about this, ontologically
clear, distinction, is in the way things are implemented. E.g. the floor sensors in an
elevator system send interrupts to the controlling system. They must however be
interpreted as informing the controlling system, not activating it. Although several
other approaches, like OMG’s MDA (Model Driven Architecture) [15], advocate the
use of implementation independent models, they are clearly more close to
implementation than the SMART model. Moreover, they lack a theoretically sound
basis from which the independence becomes evident.

2 The set-theoretic operator that produces the desired effect is the symmetric set difference,
denoted by ∆. For sets A and B it is defined as A ∆ B = (A \ B) ∪ (B \ A).

3 An ontology diagramming technique

The influencing relationships between systems can be made more comprehensible if a
collection of co-operating systems is modeled as a smartienet. A smartienet is a
network consisting of three kinds of components: processors, banks and channels.
Four kinds of links are distinguished. The smartienet representation of a system
consists of a processor (the kernel of the system) and a number of connected banks
and channels. If this processor is composite, the system can be decomposed into a
collection of co-operating elementary systems. A system of which the kernel is an
elementary processor is called an elementary system or a smartie. (Note. The notion
of elementary processor will be defined shortly). The environment of a system is
defined as the set of processors with which the kernel of the system has influence
relationships, be it activation or information.

action
link

reaction
link

B CP

elementary
processor P

CP

composite
processor CP

elementary
bank B

information
link

mutation
link

CB

composite
bank CB

elementary
channel C

CC

composite
channel CC

system
boundary

Figure 1 Legend of the smartienet diagram

Figure 1 exhibits the symbolic representations of the components of a smartienet

diagram. A processor represents the transition mechanism of a system, consisting of
its transition base and the operating cycle. Therefore it is also called the kernel of a
system. Banks serve to communicate facts. To this end, they are able to contain facts.
The set of stored facts at some moment, is called the contents of the bank at that
moment. The contents of a bank is updated and inspected by processors. A bank is

defined by its storage base, which is the set of all facts it is able to store. An
elementary bank contains facts exactly one fact type, a composite bank contains facts
of more than one fact type. The storage bases of the banks in a smartienet are disjoint.
Channels serve to communicate commands. To this end, channels are able to store
commands. The set of stored agenda at some moment, is called the contents of the
channel at that moment. The contents of a channel is updated and inspected by
processors. When a command becomes current, it is 'emitted'. A channel is defined by
its emission base, which is the set of all actions it is able to emit. An elementary
channel contains commands exactly one action type, a composite bank contains
commands of more than one action type. Emission means that the contained action is
dealt with by all processors that are connected to the channel through an action link.
The emission bases of the channels in a smartienet are disjoint. The boundary
separates the kernel from the environment. Banks and channels that are shared
between processors in the kernel and processors in the environment, are called
interface banks and interface channels respectively. They are drawn on the boundary
line.

A processor is connected to a bank by means of an inspection link if the storage
base of the bank is a sub set of the state base of the system of which the processor is
the kernel. Likewise it is connected to a bank by means of a mutation link if the
storage base of the bank is a sub set of the system’s mutation base. Next, a processor
is connected to a channel by means of an action link if the emission base of the
channel is a sub set of the action base of the system of which the processor is the
kernel. Likewise it is connected to a channel by means of a reaction link if the
emission base of the channel is a sub set of the system’s reaction base. We are now
able to define the elementary processor. It is a processor that has only one action link.
In terms of the SMART model it means that the action base is the extension of exactly
one action type. A composite processor has multiple action links. Generally it
represents a network of elementary processors that are interconnected through banks
and channels. Otherwise said, it ‘covers’ a smartienet. In the next section, the notions
of elementary and composite processors will be exemplified.

P1 informs P2 through bank B

P1 P2B

P1 P2C

P1 activates P2 through channel C

P B

self-information of P through bank B

P C

self-activation of P through channel C

Figure 2. The basic constructs in a smartienet

As examples of the diagrammatical notation of smartienets, the basic constructs in
a smartienet are drawn in Figure 2. Bank B is called a mutation bank of processor P1
and an information bank of processor P2. Likewise, Channel C is called a reaction
channel of processor P1 and an action channel of processor P2. On the right hand
side of the figure the self-information and the self-activation of a processor P are
exhibited. The bank B is both a mutation bank and an information bank of P. Also, the
channel C is both a reaction channel and an action channel of P.

4 The System Design Process

Although almost every systems development method has its own picture of the
process of designing and developing a system, they have a common core, as exhibited
in Figure 3, be it probably not as articulated as in this figure. The system to be
designed is called the object system (OS). It is going to support a system that is called
the using system (US). The starting point is the ontology or ontological model of the
US. It is the top of a layered set of white-box models (cf. [7]) of the US. Usually, this
set of models is extracted from the current US by means of reverse engineering.
However, it may also have been constructed from scratch. Based on the ontology of
the US, the requirements concerning the needed support by the OS are determined.
The result is a black-box model of the OS, called its functional model. Being a black-
box model of the OS means that it is expressed in terms of the white-box models of
the US. From this functional model, the specifications for the OS are devised. They
are expressed in terms of the white-box models of the OS, starting with its ontology.
To exemplify this, we take an example from the enterprise domain. A requirement
could be that the monthly turnover of an enterprise is provided on the first day of the
next month. So, the US is this enterprise. The notion of turnover is meaningful for the
actors in the US. In the specifications for the OS, turnover is defined as the outcome
of some calculation. Although the same name may be used, the OS ‘does not know
about turnover’, it only ‘knows about calculating’ (and even that is questionable of
course).

devising

specifications

determining

requirements

functional
model

of the OS
ontology
of the US

using system
(US)

object system
(OS)

ontology
of the OS

en
gi

ne
er

in
greverse

en gineering

Figure 3. Picture of the design process of a system

The ontology of the OS has to be transformed into more detailed models of which

the last one can be implemented directly on a machine. The process of constructing
the layered set of white-box models of the OS is called engineering. Generally, at

least three layers are needed: the ontology, a software construction model (e.g.
expressed in UML), and executable specifications (e.g. programs in Java). The
importance of the ontological model or specifications is that it provides the basis for
identifying the object classes and all other items in the second layer.

To illustrate the design process, we take the traffic at a simple crossing of two
roads (called road 1 and road 2) as the US. Let us assume that the responsible
municipal officer wants the traffic be controlled and has thought up the next
requirements for what (s)he has named the traffic control system (TCS). If the traffic
on road 2 is moving, the traffic on road 1 must wait. There is a minimum time that the
traffic on road 2 may move on, called the standard move time. As long as there is no
traffic waiting on road 1, the move time is prolonged. However, as soon as a car on
road 1 wants to cross (and if the standard move time for road 2 has passed), the traffic
on road 2 must be signaled to stop during an amount of time that is called the stop
time. To let traffic that could not stop in time leave the crossing, there is an extra
amount of time, called the clear time, during which the traffic on both roads has to
wait. Next, the traffic on road 1 is signaled to move on, while the traffic on road 2 is
waiting. Figure 4 summarizes these requirements in a graphical way. Of course, the
same requirements hold when road 1 and road 2 are exchanged. However, each may
have its own standard move time, stop time, and clear time.

clear time standard move time

stop time

movewait

move stop wait

time

Road 1

Road 2

standard move time
Figure 4. The traffic control cycles and their interdependencies

What we do have now is a functional model of the TCS (which is our SS) from

which we will devise the ontology of the TCS. Instead of ‘road’ we decide to use the
term ‘cycle’. We first present the global ontology of the TCS, in order to clearly set
the boundary of the system (cf. Figure 5). There are two interface banks (called
‘param’ and ‘phase’), and one interface channel (called ‘let_pass’). Next, two
environmental processors are identified. As said earlier, these processors are in
principle composite. The processor ‘traffic’ activates the traffic controller by means
of ‘let_pass’ commands. This processor also inspects the bank ‘phase’. The processor
called ‘supervisor’ informs the traffic controller by stating and changing control
parameters like e.g. the duration of the “stop” time.

Space limitations prohibit us to discuss the process of constructing the complete
ontology of the TCS. We therefore just present the results of this process, being the
specification of the components S, M, A, and R of the TCS:

S = {phase(Cycle), move_time(Cycle), stop_time(Cycle), clear_time(Cycle)};
M = {phase(Cycle)};
A = {let_pass(Cycle), set_phase(Cycle)};
R = {set_phase(Cycle)};

traffic

let_
pass

param.traffic
controller

super-
visor

phase

Figure 5. Global ontology of the TCS

 Possible facts in the traffic control system are ‘phase(1)=wait’ meaning that cycle

1 is in its wait phase, and ‘move_time(2)=20’ meaning that the standard move time in
cycle 2 is 20. The arguments ‘1’ and ‘2’ are values of the variable Cycle. Possible
actions are ‘let_pass(1)’ and ‘set_phase(2)’. The transition base T can be specified as
follows, using a pseudo-algorithmic language that is based on the one in [9]:

on let_pass(1) →
 if phase(1) = wait and phase(2) = move →
 generate set_phase(2,stop) with delay
 max(0, (move_time(2) - age(phase(2) = move)))
 fi
no

on set_phase(2,stop) →
 if phase(2) = move →
 generate set_phase(2,wait) with delay stop_time(2);
 phase(2) := stop
 fi
no

on set_phase(2,wait) →
 if phase(2) = stop →
 generate set_phase(1,move) with delay clear_time(1);
 phase(2) := wait
 fi
no

on set_phase(1,move) →
 if phase(1) = wait and phase(2) = wait → phase(1) := move
 fi
no

The next explanation holds if these rules are executed at time Now. First, between
‘on’ and ‘→’ the current action is mentioned to which the system has to respond.
Next, the truth value of the condition between ‘if’ and ‘→’ is verified. If it is true, the
actions between ‘→’ and ‘fi’ are performed. If it is not true, nothing will happen. In
the first rule, the condition is true if cycle C1 is in its wait phase and cycle C2 is in its
move phase. The (single) action consists of generating a command of which the
action part is ‘set_phase(2,stop)’. By giving the delay the specified number, the phase
of C2 will be changed to “stop” exactly after it has been in its “move” phase for the
standard move time, provided it is still in its standard “move” phase at the time of
executing the rule (cf. Figure 4). If C2 is in its prolonged “move” phase at that time,
the delay will be zero. This command will become current at time CT + the delay.
There is no change of the state of some system because there is no mutation (M is
empty). The effect of the mutation ‘phase(2) := stop in the second rule is that the
phase of cycle C2 turns from “move” to “stop”. More precisely, the fact ‘phase(2) =
move’ becomes nonexistent at time CT, and the fact ‘phase(2) = stop’ becomes
existent at CT. A similar reasoning holds for the mutations in the other rules. The
condition ‘phase(2) = wait’ in the fourth rule is an extra safety condition. Similar rules
as the ones above hold for the other cycle, mutatis mutandis.

let_
pass param.

traffic controller

super-
visor

set_
phase

input
control

ler

phase
control

ler
phase

traffic

Figure 6. Detailed ontology of the traffic control system

We are now able to show the detailed ontology of the traffic control system

(Figure 6). There are two internal elementary processors (called input_controller and
phase_controller) and one internal channel (called set_phase). The storage base of the
bank ‘param’ is the union of the extensions of move_time(Cycle), stop_time(Cycle)
and clear_time(Cycle). The storage base of the bank ‘phase’ is the extension of
phase(Cycle). The emission base of the channel ‘let_pass’ is the extension of
let_pass(Cycle), and the emission base of the channel ‘set_phase’ is the extension of

set_phase(Cycle). The first action rule above belongs to the processor
‘input_controller’, the other three to ‘phase_controller’. The links between the
components of the smartienet follow from the SMART specification of the system.

5 Discussion and conclusions

The notion of ontology, as presented and elaborated in this paper, is a rigorous and
fully systemic notion, heavily relying on the work of Mario Bunge [2, 3]. We think
that such a rigorously defined notion is necessary for the (re)designing and
(re)engineering of technical systems and software systems. From many example cases
in several courses at Delft University of Technology it has become apparent that
ontologies improve the understanding of requirements and of specifications by system
developers. Although the traffic control system is a rather simple system, it showed
how hard it is to comprehend a system completely and deeply, but still independent
from its (possible) implementation. This is in line with the findings in [14]. The
obvious benefits of starting from the ontology of a system (both of the US and of the
OS, cf. Figure 3) is the not being hampered by technological issues but instead having
the right design freedom to choose among possible implementations.

Moreover, an ontology of a system according to the SMART model can rightly be
said to possess the properties that we proposed in the introduction: constructional,
coherent, comprehensive, concise, and essential. As discussed, these quality criteria
can only partly be met by current modeling techniques, like the UML and OMG’s
MDA.

References

1. Berners-Lee, T., J. Hendler, O. Lasilla, The Semantic Web, Scientific American, May
2001.

2. Bunge, M.A., Treatise on Basic Philosophy, vol.3, The Furniture of the World, D.
Reidel Publishing Company, Dordrecht, The Netherlands, 1977

3. Bunge, M.A., Treatise on Basic Philosophy, vol.4, A World of Systems, D. Reidel
Publishing Company, Dordrecht, The Netherlands, 1979

4. Dietz, J.L.G., K.M. van Hee, A framework for the conceptual modelling of discrete
dynamic systems. In: C. Rolland, F. Bodart, M.leonard (eds.) Temporal Aspects in
Information Systems, North-Holland, Amsterdam, 1988, pp. 61-76.

5. Dietz, J.L.G., A Communication Oriented Approach to Conceptual Systems
Modelling, in: H.G. Sol, K.M. van Hee (eds.) Dynamic Modelling of Information
Systems, North-Holland, Amsterdam, 1991, pp 37-60

6. Dietz J L G, J.A. Barjis; Petri net expressions of DEMO process models as a rigid
foundation for requirements engineering. In: Proceedings. 2nd International
Conference on Enterprise Information Systems, Escola Superior de Tecnologia do
Instituto Politécnico, Setúbal, Portugal, 2000, p. 267-274. ISBN: 972-98050-1-6

7. Dietz, J.L.G., The Atoms, Molecules and Fibers of Organizations, Data and
Knowledge Engineering, vol. 47, pp 301-325, 2003

8. Dietz, J.L.G. and N. Habing. A meta Ontology for Organizations. In Workshop on
Modeling Inter-Organizational Systems (MIOS), LNCS 3292. 2004. Larnaca, Cyprus:
Springer Verlag.

9. Dijkstra, E.W., A Discipline of Programming, Prentice-Hall Inc. New Jersey, 1976.
10. Falkenberg, E.D., (ed.), A Framework for Information Systems Concepts, IFIP 1998

(available as web edition from www.wi.leidenuniv.nl/~verrynst/frisco.html)
11. Gruber, T.R., A translation approach to portable ontologies, Knowledge Acquisition,

5(2): 199-220, 1993.
12. Hee, K.M. Van, G-J Houben, J.L.G. Dietz, Modeling of Discrete Dynamic Systems -

Framework and Examples. In: Information Systems, vol. 14, no.4, pp 277-289.
Pergamon Press 1989.

13. Houben, G-J, J.L.G. Dietz, K.M. van Hee, The SMARTIE framework for modelling
discrete dynamic systems. In: P. Varaiya, A.B. Kurzhanski (eds.), Discrete Event
Systems: Models and Applications, Lecture Notes in Control and Information Science
103, Springer-Verlag, New York, 1988.

14. Meyer, B., On Formalism in Specifications, in IEEE Software, vol. 3, no. 1, January
1985.

15. OMG, MDA Guide V1.0.1, http://www.omg.org/cgi-bin/doc?omg/03-06-01
16. Special report, The Economist, November 27th 2004, page 75.
17. W3C, OWL, Web Ontology Language Overview, http://www.w3.org/TR/2004/REC-

owl-features-20040210/

http://www.wi.leidenuniv.nl/~verrynst/frisco.html
http://www.omg.org/cgi-bin/doc?omg/03-06-01

