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Abstract. The research reported upon in this paper aims at reducing errors in 
both the requirements engineering and the system specification phase of 
software development, by means of system ontology. The notion of system 
ontology is introduced and discussed. A particular generic ontology is presented 
as well as an accompanying diagramming technique. The application of system 
ontology in software development is demonstrated and discussed, using the 
design of a traffic control system as an example. 

1 Introduction 

Software development has been put in a bad light for decades. Huge amounts of 
money are wasted in software development because of cancelled projects, projects 
coming in over time and budget, and delivered software systems that are never or 
scarcely used. In [16] it is estimated that these failures amount to an annual and 
world-wide loss of about $120 billion. Most failures are caused in the early stages, in 
determining requirements and in devising specifications. 

The research that is reported upon in this paper concerns the use of system 
ontologies in the design process of a software system. By doing this we aim at 
reducing two major kinds of errors. The first one comprises the failures that are the 
results of imperfectly performed requirements engineering. They are largely due to 
the fact that the common strategy to perform this crucial activity is still the ‘waiter 
strategy’. By this is meant the traditional way of asking the user what (s)he wants. 
The fallacy in this approach is that users can only partly tell what they need, and also 
that they ask for things they don’t need [6]. The second kind of failures are the results 
of imperfectly devising the specifications of the system to be developed. It is still hard 
to provide software specifications that are really and fully independent of the 
programming code and that thus do not restrict or influence the programming freedom 
in any way (cf. [14]). 

The means by which a substantial reduction of these errors could be achieved is 
system ontology. The notion of ontology is rather new in software engineering. In its 
original meaning ontology is about what reality is, in fact what being is [2, 3]. It has 
got almost world-wide attention through the work in the Semantic Web community 
[1, 17]. In this community, ontology is mainly restricted to the specification of state 
spaces, largely comparable to conceptual schemata [10]. In our view, the ontology of 
a system should comprise the complete knowledge of the system, covering all 
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relevant aspects. We define the ontology of a system as the specification of its 
construction and its operation, independent of its realization and independent of any 
technology. In this paper we mean by system a technical system or an information 
system or any software system. Other system categories, in particular social systems 
like organizations, are excluded. Regarding the ontlogy of enterprises, the reader is 
referred to [8]. 

The outline of the paper is as follows. In section 2, the SMART generic ontology is 
introduced, both in an informal and a formal way. It builds on earlier work in [4, 5, 
12, 13]. A graphical notation of ontologies according to the SMART model, which 
improves the understanding of the generic model, is introduced in section 3. In section 
4, a generic model of the design process is presented and the role of ontology is 
demonstrated in the design of a traffic control system. Discussions of the findings as 
well as the conclusions that can be drawn are provided in section 5. 

2 System Ontology 

A definition of the notion of ontology that is well received in the AI community, is 
that an ontology is a specification of a conceptualization [11]. We like to add that this 
conceptualization must be a true ontological one in Bunge’s sense [2], otherwise said 
that it is a true white-box model of a piece of reality. Moreover, the ontology of a 
system should not only cover the static perspective (the state space, which is the one 
that has got the dominant attention in the Semantic Web community) but also the 
kinematic perspective (process space), the dynamic perspective (action rules), and the 
constructional perspective (composition, environment and structure), as well 
explained by Bunge in [3]. As general requirements for a system ontology we 
therefore propose that it be coherent, comprehensive, consistent, concise, and 
essential. By coherent we mean that the distinct aspect models constitute a logical and 
truly integral whole. By comprehensive we mean that all relevant issues are covered, 
that the whole is complete. By consistent we mean that the aspect models are free 
from contradictions or irregularities. By concise we mean that no redundant matters 
are contained in it, that the whole is compact and succinct. The most important 
property however is that an ontological model is essential, that it only shows the 
essence of the system, its deep structure, abstracted from all realization and 
implementation issues. 

In this section we present the SMART model as an ontological generic model for 
information systems. We consider these systems to operate in a discrete linear time 
dimension, which means that there are distinct points in time and that the difference 
between any two consecutive points in time is always the same. This time difference 
is called the time unit. The variable Now represents the current time. 

At every point in time t, a system is in a particular state, which is defined as the set 
of facts that are current at t. The facts must be elements of the state base of the 
system, being the set of all facts which may belong to a state of the system. A fact is 
said to be current at the point in time t if it has been made existent before or at t, and 
if it has not been made nonexistent since then. (Note. Making a fact existent or 
nonexistent is the effect of a mutation, which will be explained shortly). Systems 



activate each other through generating commands. A command is a pair <a,t> where a 
is an action and t is a point in time. An action is something that a system must respond 
to. The set of possible actions that a system can respond to is called the action base. 
At every moment a system disposes of a set of commands, which is called its 
agenda1. The action a in the agendum <a,t> is said to be current at the point in time t. 
Although mostly only one action will be current at a point in time t, there may be a 
number of concurrent actions. As soon as an action is current, the system will respond 
to it instantly by performing a transition, resulting in the generation of a finite set of 
facts, and a finite set of commands. The generated set of facts is called the mutation  
of the system. These facts are elements of the mutation base of the system, which is 
the set of all facts the system is able to generate. The facts in the mutation get a time 
stamp, called the creation time, of which the value is the current time. The generated 
set of commands is called the reaction  of the system. The actions in these commands 
are elements of the reaction base of the system, which is the set of all actions the 
system is able to generate as the action part of a command. A system operates 
autonomously, which has to be understood as follows. At every point in time the so-
called operating cycle is passed through. If there is a current action, it will be dealt 
with, i.e. the corresponding transition rule is executed. If there is no current action, 
nothing will happen. 

The performance of a transition consists, mathematically spoken, of the evaluation 
of a partial function, which is called the transition base  of the system. Below, a 
formal definition of a system according to the SMART model is presented. In this 
definition, the power set of a set X is denoted as ℘X. Time values are represented by 
natural numbers. The set of natural numbers is denoted by ℵ. 

 
A system is defined by a tuple  < S, M, A, R, T >, where: 
 
S : a set of facts, called the state base  
M : a set of facts, called the mutation base  
A : a set of actions, called the action base  
R : a set of actions, called the reaction base  
T : a partial function, called the transition base : 
  T ∈  A ∗ S →  ℘(R ∗ ℵ) ∗ ℘M 
 
The components S, M, A, and R are sufficiently explained above, the function T 

needs further explanation. It can conveniently be represented by its extension, which 
is a set of transition rules of the form <A,S,R,M> where: 

 
A is the current action set; it is the set of actions a ∈ A that are current; 
S is the current state; it is the set of facts f ∈ S that are current; 
R is the current reaction; it is a set of pairs <r,d> with r ∈  R and d ∈ ℵ; d is the 

delay of the reaction; the action r will become current at time Now+d; 
M is the current mutation; M ⊂ M; 

 
                                                           

1 The word “agenda” is commonly taken as a singular noun. However, the original Latin word 
is a plural noun, the singular form of it being “agendum”. 



If a fact is contained in both the state of a system 1 and the state of a system 2, it 
means that these systems ‘share the knowledge’ of that fact. This happens if the fact is 
current and if it belongs to the intersection of the two state bases, thus to S1∩S2. The 
effect of a mutation by a system 1 on a system 2 is as follows. If a fact in the mutation 
belongs to M1∩S2, then there is an effect, otherwise there is no effect (on the system 
2 at least; it may have effect on some other system). There are two possible effects. If 
the fact is current (which implies that it belongs to the state of system 2), it will be 
made nonexistent. If the fact is not current (which implies that it does not belong to 
the current state of system 2), it will be made existent2. Likewise, the generating of a 
command instantly changes the agenda of every system for which the contained 
action belongs to its action base. More precisely, if the action in a command that is 
contained in the reaction of a system 1, belongs to R1∩A2, then the command will 
instantly be added to the agenda of system 2. 

Because of the distinction between facts and commands, we distinguish between 
two corresponding kinds of influencing among systems, called information and 
activation. A system 1 is said to inform  a system 2 if M1∩S2 ≠ ∅. If this is the case, 
then every fact belonging to this intersection, produced by system 1, will change the 
state of system 2 instantly through the addition or the deletion of the fact. A system 1 
is said to activate  a system 2 if R1∩A2 ≠ ∅. If this is the case, then every command 
that is generated by system 1, and that regards an action that belongs to this 
intersection, will instantly be added to the agenda of system 2. It is possible for a 
system that R∩A ≠ ∅. This case is called self-activation: apparently, the system is 
able to cause its own future transitions. In this way periodic activities can be modeled 
elegantly. Also, it is possible that M∩S ≠ ∅. This case is called self-information: the 
system is able to inspect facts that are generated by itself. 

The distinctive difference between information and activation is that activation 
implies the triggering of a system to perform a transition, whereas information does 
not. Consequently, a system is not ‘aware’ of a state change at the time it takes place. 
Instead, a system takes notice of a state change at some later point in time, namely the 
next point in time that it is activated and needs to inspect the existence or non-
existence of the corresponding fact(s). So, between two adjacent points in time at 
which a system performs a transition, it ‘sleeps’. In that period however a number of 
state changes may occur. Although we recognize that in the implementation of a 
software system there is no difference between activation and information, this 
distinction is crucial at the ontological level of understanding the system. 
Consequently, we reject the idea that events, i.e. instances of state changes, can cause 
something; only actions can. The cause of much confusion about this, ontologically 
clear, distinction, is in the way things are implemented. E.g. the floor sensors in an 
elevator system send interrupts to the controlling system. They must however be 
interpreted as informing the controlling system, not activating it. Although several 
other approaches, like OMG’s MDA (Model Driven Architecture) [15], advocate the 
use of implementation independent models, they are clearly more close to 
implementation than the SMART model. Moreover, they lack a theoretically sound 
basis from which the independence becomes evident. 

                                                           
2 The set-theoretic operator that produces the desired effect is the symmetric set difference, 
denoted by ∆. For sets A and B it is defined as A ∆ B = (A \ B) ∪ (B \ A). 



3 An ontology diagramming technique 

The influencing relationships between systems can be made more comprehensible if a 
collection of co-operating systems is modeled as a smartienet. A smartienet  is a 
network consisting of three kinds of components: processors, banks and channels. 
Four kinds of links are distinguished. The smartienet representation of a system 
consists of a processor (the kernel of the system) and a number of connected banks 
and channels. If this processor is composite, the system can be decomposed into a 
collection of co-operating elementary systems. A system of which the kernel is an 
elementary processor is called an elementary system or a smartie. (Note. The notion 
of elementary processor will be defined shortly). The environment of a system is 
defined as the set of processors with which the kernel of the system has influence 
relationships, be it activation or information. 
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Figure 1  Legend of the smartienet diagram 

 
Figure 1 exhibits the symbolic representations of the components of a smartienet 

diagram. A processor represents the transition mechanism of a system, consisting of 
its transition base and the operating cycle. Therefore it is also called the kernel of a 
system. Banks  serve to communicate facts. To this end, they are able to contain facts. 
The set of stored facts at some moment, is called the contents of the bank at that 
moment. The contents of a bank is updated and inspected by processors. A bank is 



defined by its storage base, which is the set of all facts it is able to store. An 
elementary bank contains facts exactly one fact type, a composite bank contains facts 
of more than one fact type. The storage bases of the banks in a smartienet are disjoint. 
Channels  serve to communicate commands. To this end, channels are able to store 
commands. The set of stored agenda at some moment, is called the contents of the 
channel at that moment. The contents of a channel is updated and inspected by 
processors. When a command becomes current, it is 'emitted'. A channel is defined by 
its emission base, which is the set of all actions it is able to emit. An elementary 
channel contains commands exactly one action type, a composite bank contains 
commands of more than one action type.  Emission means that the contained action is 
dealt with by all processors that are connected to the channel through an action link. 
The emission bases of the channels in a smartienet are disjoint. The boundary 
separates the kernel from the environment. Banks and channels that are shared 
between processors in the kernel and processors in the environment, are called 
interface banks and interface channels respectively. They are drawn on the boundary 
line. 

A processor is connected to a bank by means of an inspection link if the storage 
base of the bank is a sub set of the state base of the system of which the processor is 
the kernel. Likewise it is connected to a bank by means of a mutation link if the 
storage base of the bank is a sub set of the system’s mutation base. Next, a processor 
is connected to a channel by means of an action link if the emission base of the 
channel is a sub set of the action base of the system of which the processor is the 
kernel. Likewise it is connected to a channel by means of a reaction link if the 
emission base of the channel is a sub set of the system’s reaction base. We are now 
able to define the elementary processor. It is a processor that has only one action link. 
In terms of the SMART model it means that the action base is the extension of exactly 
one action type. A composite processor has multiple action links. Generally it 
represents a network of elementary processors that are interconnected through banks 
and channels. Otherwise said, it ‘covers’ a smartienet. In the next section, the notions 
of elementary and composite processors will be exemplified. 
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Figure 2. The basic constructs in a smartienet 

 



As examples of the diagrammatical notation of smartienets, the basic constructs in 
a smartienet are drawn in Figure 2. Bank B is called a mutation bank  of processor P1 
and an information bank  of processor P2. Likewise, Channel C is called a reaction 
channel  of processor P1 and an action channel  of processor P2. On the right hand 
side of the figure the self-information and the self-activation of a processor P are 
exhibited. The bank B is both a mutation bank and an information bank of P. Also, the 
channel C is both a reaction channel and an action channel of P. 

4 The System Design Process 

Although almost every systems development method has its own picture of the 
process of designing and developing a system, they have a common core, as exhibited 
in Figure 3, be it probably not as articulated as in this figure. The system to be 
designed is called the object system (OS). It is going to support a system that is called 
the using system (US). The starting point is the ontology or ontological model of the 
US. It is the top of a layered set of white-box models (cf. [7]) of the US. Usually, this 
set of models is extracted from the current US by means of reverse engineering. 
However, it may also have been constructed from scratch. Based on the ontology of 
the US, the requirements concerning the needed support by the OS are determined. 
The result is a black-box model of the OS, called its functional model. Being a black-
box model of the OS means that it is expressed in terms of the white-box models of 
the US. From this functional model, the specifications for the OS are devised. They 
are expressed in terms of the white-box models of the OS, starting with its ontology. 
To exemplify this, we take an example from the enterprise domain. A requirement 
could be that the monthly turnover of an enterprise is provided on the first day of the 
next month. So, the US is this enterprise. The notion of turnover is meaningful for the 
actors in the US. In the specifications for the OS, turnover is defined as the outcome 
of some calculation. Although the same name may be used, the OS ‘does not know 
about turnover’, it only ‘knows about calculating’ (and even that is questionable of 
course). 
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Figure 3. Picture of the design process of a system 

 
The ontology of the OS has to be transformed into more detailed models of which 

the last one can be implemented directly on a machine. The process of constructing 
the layered set of white-box models of the OS is called engineering. Generally, at 



least three layers are needed: the ontology, a software construction model (e.g. 
expressed in UML), and executable specifications (e.g. programs in Java). The 
importance of the ontological model or specifications is that it provides the basis for 
identifying the object classes and all other items in the second layer. 

To illustrate the design process, we take the traffic at a simple crossing of two 
roads (called road 1 and road 2) as the US. Let us assume that the responsible 
municipal officer wants the traffic be controlled and has thought up the next 
requirements for what (s)he has named the traffic control system (TCS). If the traffic 
on road 2 is moving, the traffic on road 1 must wait. There is a minimum time that the 
traffic on road 2 may move on, called the standard move time. As long as there is no 
traffic waiting on road 1, the move time is prolonged. However, as soon as a car on 
road 1 wants to cross (and if the standard move time for road 2 has passed), the traffic 
on road 2 must be signaled to stop during an amount of time that is called the stop 
time. To let traffic that could not stop in time leave the crossing, there is an extra 
amount of time, called the clear time, during which the traffic on both roads has to 
wait. Next, the traffic on road 1 is signaled to move on, while the traffic on road 2 is 
waiting. Figure 4 summarizes these requirements in a graphical way. Of course, the 
same requirements hold when road 1 and road 2 are exchanged. However, each may 
have its own standard  move time, stop time, and clear time.  
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Figure 4. The traffic control cycles and their interdependencies 

 
What we do have now is a functional model of the TCS (which is our SS) from 

which we will devise the ontology of the TCS. Instead of ‘road’ we decide to use the 
term ‘cycle’. We first present the global ontology of the TCS, in order to clearly set 
the boundary of the system (cf. Figure 5). There are two interface banks (called 
‘param’ and ‘phase’), and one interface channel (called ‘let_pass’). Next, two 
environmental processors are identified. As said earlier, these processors are in 
principle composite. The processor ‘traffic’ activates the traffic controller by means 
of ‘let_pass’ commands. This processor also inspects the bank ‘phase’. The processor 
called ‘supervisor’ informs the traffic controller by stating and changing control 
parameters like e.g. the duration of the “stop” time. 

Space limitations prohibit us to discuss the process of constructing the complete 
ontology of the TCS. We therefore just present the results of this process, being the 
specification of the components S, M, A, and R  of the TCS: 

S = {phase(Cycle), move_time(Cycle), stop_time(Cycle), clear_time(Cycle)}; 
M = {phase(Cycle)}; 
A = {let_pass(Cycle), set_phase(Cycle)}; 
R = {set_phase(Cycle)}; 
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Figure 5. Global ontology of the TCS 

 
 Possible facts in the traffic control system are ‘phase(1)=wait’ meaning that cycle 

1 is in its wait phase, and ‘move_time(2)=20’ meaning that the standard move time in 
cycle 2 is 20. The arguments ‘1’ and ‘2’ are values of the variable Cycle. Possible 
actions are ‘let_pass(1)’ and ‘set_phase(2)’. The transition base T can be specified as 
follows, using a pseudo-algorithmic language that is based on the one in [9]: 
 
on let_pass(1) → 
 if phase(1) = wait and phase(2) = move → 
  generate set_phase(2,stop) with delay
   max(0, (move_time(2) - age(phase(2) = move))) 
 fi 
no 

 
on set_phase(2,stop) → 
 if phase(2) = move → 
  generate set_phase(2,wait) with delay stop_time(2); 
  phase(2) := stop 
 fi 
no 
 
on set_phase(2,wait) → 
 if phase(2) = stop → 
  generate set_phase(1,move) with delay clear_time(1); 
  phase(2) := wait 
 fi 
no 
 
on set_phase(1,move) → 
 if phase(1) = wait and phase(2) = wait → phase(1) := move 
 fi 
no 
 



The next explanation holds if these rules are executed at time Now. First, between 
‘on’ and ‘→’ the current action is mentioned to which the system has to respond. 
Next, the truth value of the condition between ‘if’ and ‘→’ is verified. If it is true, the 
actions between ‘→’ and ‘fi’ are performed. If it is not true, nothing will happen. In 
the first rule, the condition is true if cycle C1 is in its wait phase and cycle C2 is in its 
move phase. The (single) action consists of generating a command of which the 
action part is ‘set_phase(2,stop)’. By giving the delay the specified number, the phase 
of C2 will be changed to “stop” exactly after it has been in its “move” phase for the 
standard move time, provided it is still in its standard “move” phase at the time of 
executing the rule (cf. Figure 4). If C2 is in its prolonged “move” phase at that time, 
the delay will be zero. This command will become current at time CT + the delay. 
There is no change of the state of some system because there is no mutation (M is 
empty). The effect of the mutation ‘phase(2) := stop in the second rule is that the 
phase of cycle C2 turns from “move” to “stop”. More precisely, the fact ‘phase(2) = 
move’ becomes nonexistent at time CT, and the fact ‘phase(2) = stop’ becomes 
existent at CT. A similar reasoning holds for the mutations in the other rules. The 
condition ‘phase(2) = wait’ in the fourth rule is an extra safety condition. Similar rules 
as the ones above hold for the other cycle, mutatis mutandis. 
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Figure 6. Detailed ontology of the traffic control system 

 
We are now able to show the detailed ontology of the traffic control system 

(Figure 6). There are two internal elementary processors (called input_controller and 
phase_controller) and one internal channel (called set_phase). The storage base of the 
bank ‘param’ is the union of the extensions of move_time(Cycle), stop_time(Cycle) 
and clear_time(Cycle). The storage base of the bank ‘phase’ is the extension of 
phase(Cycle). The emission base of the channel ‘let_pass’ is the extension of 
let_pass(Cycle), and the emission base of the channel ‘set_phase’ is the extension of 



set_phase(Cycle). The first action rule above belongs to the processor 
‘input_controller’, the other three to ‘phase_controller’. The links between the 
components of the smartienet follow from the SMART specification of the system. 

5 Discussion and conclusions 

The notion of ontology, as presented and elaborated in this paper, is a rigorous and 
fully systemic notion, heavily relying on the work of Mario Bunge [2, 3]. We think 
that such a rigorously defined notion is necessary for the (re)designing and 
(re)engineering of technical systems and software systems. From many example cases 
in several courses at Delft University of Technology it has become apparent that 
ontologies improve the understanding of requirements and of specifications by system 
developers. Although the traffic control system is a rather simple system, it showed 
how hard it is to comprehend a system completely and deeply, but still independent 
from its (possible) implementation. This is in line with the findings in [14]. The 
obvious benefits of starting from the ontology of a system (both of the US and of the 
OS, cf. Figure 3) is the not being hampered by technological issues but instead having 
the right design freedom to choose among possible implementations. 

Moreover, an ontology of a system according to the SMART model can rightly be 
said to possess the properties that we proposed in the introduction: constructional, 
coherent, comprehensive, concise, and essential. As discussed, these quality criteria 
can only partly be met by current modeling techniques, like the UML and OMG’s 
MDA. 
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