
BIDCEP: A VISION OF BIG DATA COMPLEX
EVENT PROCESSING FOR NEAR REAL TIME

DATA STREAMING
POSITION PAPER – A PRACTITIONER VIEW

Ethan Hadar

Communities Informatics, Zefat Academic College, Zefat, Israel
ethan.hadar@gmail.com

Abstract: This position paper aims to trigger a technical discussion by proposing a con-

ceptual architecture for big data streaming integrated with complex event pro-
cessing (BiDCEP). BiDCEP expands the Lambda and Kappa (LK) architectures
for big data streaming to fit the complex event processing (CEP) and event
management domains of enterprise IT. BiDCEP links CEP components as de-
fined in previous work of Events Collections, Purifications and Enrichments
with the big data LK batch and speed layers, and wraps the LK service layer
with integration interfaces for expandable grid of interlinked BiDCEP units. The
BiDCEP architecture can enable the LK big data quality attributes of scale,
availability and latency to be maintained, while accounting for CEP enterprise
IT requirements of load and content shedding, basic and derived enrichment,
semantics transformation, and security enforcement. As such, open source big
data streaming strengths can be employed within the context of an enterprise-
grade IT with monitored service levels.

Keywords: Data streaming, big data, complex event processing, enterprise integration,
event management and automation, precision agriculture.

1 Introduction

Today’s IT business stakeholders expect to maximize the usage of their data originat-
ed from different sources and settings for different use cases. In particular, they strive
to maintain a scalable modular architecture (Gal and Hadar, 2010) for complex event
processing (CEP) that combines the benefits of a big data infrastructure for:

• Serving a single data consumer.
• Serving multiple consumers of the same product.
• Creating a cascade of data flow and a grid of data consumers and providers for

integrated solutions.

Some of the CEP requirements employed in previous field work (Gal and Hadar,
2010) for enterprise IT grade solutions are captured as components, such as (1) purifi-
cation component for removing noise and data cleansing and de-duplication; (2) en-
richment component that adds meta-data of sampling rate, source of data and time

stamp; and (3) semantics expansion component for adding information such as tags or
headers for self-explanatory data schema.

Yet, all these CEP components should leverage the advantages of big data stream-
ing architecture such as Lambda and Kappa (LK) architectures (Martz and Warren,
2015), and support low latency events management as well as high latency computed
analytics (Hirzel et al, 2013).

This practitioner position paper addresses the combination of the CEP with LK,
and proposes a conceptual architecture approach termed BiDCEP (Big Data CEP).
The paper triggers a technical discussion on the merits of combining the LK big data
streaming architecture with complex event processing architecture, as well as presents
a motivational example.

 The rest of the paper is organized as follows: The background section reviews the
required CEP stages and big data streaming constraints in an enterprise IT organiza-
tion. Section 3 reviews the requirements and challenges when mixing data streaming,
CEP, and big data quality needs. Section 4 details the conceptual architecture and how
it links CEP modules of events collections, purifications and enrichments as defined
by Gal and Hadar (2010) with big data Lambda and Kappa (LK) architectures batch
and speed layers, and how modular CEP should wrap the service layer with integra-
tion interfaces for a single consumer or a grid of interlinked BiDCEP units. Section 5
presents a motivational example to trigger a technical discussion of a Precision Agri-
culture that employs both big data type of information as well as complex event pro-
cessing. Lastly, a discussion about the potential quality attributes improvements, as
well as future usages and opportunities for extensions are presented.

2 Background

Common approaches for data sharing within enterprise integration frameworks may
include integrations using the hub-and-spoke canonical model (Reeve, 2013), data
warehousing for IT, and ERP for IT such as ITIL (ITIL, 2015), or semantically en-
riched CEP solution such as Event Management and Automation (Park et al., 2012).
Such approaches are based on structured or semi-structured data repositories and
XML/JSON-based documents. Each product collects data, purifies, enriches, and
aggregates the data, for the usage of reporting dashboards or command and control
consoles. Gal and Hadar (2010) proposed a modular structure for CEP units for a
single product, as well as a CEP grid for interconnected products to support event
management for real time systems. The proposal defined several components and
their capabilities, including data collection, purification, storing, enrichment, inferenc-
ing, and cross components policy and situation management. The implementation of
these components was part of an enterprise IT product set in the domain of Applica-
tion Performance Monitoring of IT management. In these classical CEP solutions,
providing data to consumers and other CEP grid elements is handled after data is pre-
processed, stored and structured, as done by the Extract-Transform-Load (ETL) ap-
proach for data warehouse solutions (Van der Lans, 2012). This approach fits well
with state-of-the-art IT situational applications and UI widgets portals such as dash-
boards and reporting tools.

Advanced big data analytics scenarios require historical raw data, such as in ma-
chine learning (ML) or natural language processing (NLP) techniques. In such cases,
additional data that is introduced to the historical dataset can change the computation
and system cognitive learning abilities (Kelly, 2015). In addition, when an evolution

to the computation algorithm is introduced, re-run of the computation over the entire
raw dataset is required. As such, historical raw data persistency system is needed. One
of the approaches to resolve the need for both historical and near real time data
streaming computation is the contemporary Lambda architecture (Martz and Warren,
2015), which duplicates incoming data into parallel processing lanes at different
speeds, primarily for the consumption of a single product. As presented in Figure 1,
the Lambda architecture approach is to split the batch and speed processing layers
into parallel lanes, repeating the same processing code. Later, within the serving lay-
er, the computation results of the slow yet accurate batch layer are merged with the
rapid and good-enough speed layer ones. Thus, a data subscriber can have an im-
proved compromise between the Consistency, Availability, and Partition-tolerance
(CAP) elements (Martz, 2011).

The Lambda architecture supports quality criteria such as fault-tolerance, linear
scale-out, and extensibility. The batch, speed and serving layers are tuned to handle
both high latency computations that use historical data, as well as low latency ones
that deal with recent data. This architecture and the specific selection of implementa-
tion technology of Hadoop for the batch layer, Impala for the serving layer, and Storm
and HBase for the speed layer, cater for a single consuming application. In order to
avoid data aggregation code duplication between the batch and speed layers, a varia-
tion of the solution, the Kappa architecture, was proposed (Kreps, 2014). The Kappa
architecture is focused on a single stream technology that performs historical re-
computation according to needs. A batch-processing cluster performs the near real
time computation, and is removed from production once completed. Both architec-
tures handle low and high latency computation, and enable re-computation when a
data change is detected, or an algorithm change is introduced.

Figure 1: The Lambda architecture for big data streaming of both real time incremen-
tal and batch aggregated computations.

3 The Challenge

CEP solutions provide a good solution for reporting tools providing descriptive ana-
lytics such as business intelligence, OLAP, and reporting visualizations, as well as
automated command and control tools that discover phenomena and examine their
sources based on statistics.

Yet, the approach needs to cope with near real-time escalations of big data stream-
ing solutions, where the data creation velocity and volume as well as format transfor-
mation are needed as pre-processing stages prior to discovering a new event. The CEP
data load and content shedding (Gal and Hadar, 2010) of raw data does not fit well
with cognitive computing, machine learning and adaptive solutions such as Predictive
Analytics. Such analytics approaches require historical raw data for the learning steps,
as well as regressively re-computing the decision-making criteria. CEP engines most-
ly archive their historical data for presentation needs only.

Serving different stakeholders, data streaming should expose data hoses at differ-
ent levels of the processing stream (Genkin, 2007)(Hadar and Perreira, 2007), for
CEP and analytics problems alike. Both CEP and LK should control data speed throt-
tling, computation algorithms modifications, pluggable visualizations for users inter-
actions, as well as ensure service levels for their quality attributes such as availability,
reliability, and recoverability.

Accordingly, a combined BiDCEP conceptual architecture should include:

• Legacy integration value maintenance. The hub-and-spoke and publish/subscribe
patterns should be kept for basic enterprise integration needs (Reeve, 2013).

• Open source-based implementation. Architects should be able to select their own
internal implementation technologies, such as secured pipe-and-filter (Fernandez
and Ortega-Arjona, 2009), big data repository and analytics publishing.

• Data sampling and granularity control (Hadar and Perreira, 2007). Velocity and
volume should be tuned according to external configuration policy and store pat-
tern, without changing the architecture (Homer et al, 2014).

• Data enrichment. Data structure variability should be easily transformed to enrich
the processed data (Ait-Sadoune and Ait-Ameur, 2010), starting at the agent lev-
el, and up to the serving layer.

• Scale according to the read/write nature of the business data usage. Persistency
systems should scale using inner big data repository capacities, improving per-
formance and customer-value proposition.

• Modular data resolution and latency response. Both raw data and compound data
should be consumed and produced according to business needs (Kinley, 2013).

• Footprint reduction. Sharing of the same measurement agents and tools across
products should be employed while maintaining data integrity.

4 The BiDCEP conceptual architecture

Adhering to the challenges detailed in the previous section, the BiDCEP conceptual
architecture expends and enhances the Lambda architecture with CEP components as
depicted in Figure 2. By using RESTfull services, the inner Lambda implementation

components can use Apache Hadoop, Elephant DB and Impala DB for the batch lay-
er, Apache Spark, Flum or Storm for the speed layer, and Druid, Cassandra and
HBase for the serving layer. The CEP components can be constructed from elements
such as CA Technologies EMA, or IBM Tivoli.

Figure 2: The BiDCEP architecture for interweaved Complex Event Processing (CEP)
and Big Data Lambda architecture for data streaming. Dashed blocks are the Lambda

components, and solid blocks are the CEP extensions ones.

The main components of the BiDCEP conceptual architecture, depicted in Figure

2 are:

• Data Inlets Server Provided Interface (SPI). This component is responsible for
connecting and disconnecting adapters to data sources, encapsulating communi-
cation of synchronic and a-synchronic protocols, ensuring payload guaranty de-
livery, and providing security access authorization.

• Events Collection. This component is responsible for data reduction (load shed-
ding) that is defined by matching computation latency and business usages dif-
ferences or by adding time delay to avoid jitter.

• Basic Enrichment. This component can enrich measurement with timestamp, data
source origin, and other inferred information or meta-data to be used for analytics
purposes, appended as batches or per event, according to business needs. This
approach can reduce payload size for Internet-of-Things (IoT) devices, delivering
only measurements after the protocol initial identification and message envelope
data transfer.

• The Lambda Batch layer expanded with Conversion and Enrichment CEP com-
ponents (Gal and Hadar, 2010). These components are used in cases where the

enrichment processing is computational by nature and slower than simple ap-
pending of information, as is usually done in Basic Enrichment component. Ex-
amples are data type conversion from strings to integers, and mathematical eval-
uation of a raw measurement for creating an informative status. This step can be
performed after the raw data persistency stage as well. In this case, the enriched
information will be stored in the aggregated serving layer.

• The Speed layer enhanced with the Data Content Shedding component. The
shedding component is responsible for noise reduction in which data is filtered
according to business needs. Filtering rules can remove duplicated information or
filter out a subnet. The Content Shedding component requires data transfor-
mation, interpretation, logic rules, and decision. As such, deferring actions to the
slow batch layer, within the Map Reduce and computation aggregation step, is
recommended.

• The Batch Extract-Transform. This component extracts raw yet enriched data
from the historical Big Data repository, without the mathematical transformation
created by the Map Reduce component or other derived historical computation.
Consequently, other BiDCEP units or consumers can use the data without addi-
tional manipulation.

• Events Execution. This component is the classical CEP component that drives
event actions for command and control or monitoring consumer applications.
However, this component wraps the serving layer of the Lambda architecture, in
order to segregate consumers’ access and their requested data structure, abstrac-
tion level, and performance needs.

• Near Real Time Data Hose. This component provides the same ability as the
Batch Extract Transform, yet is employed on the near real time content reduced
data stream, for those applications that require low latency data hoses. Both the
Data Inlets SPI component, and the Event Publication and Inferencing API com-
ponent, expose and consume the same type of interface so that each BiDCEP unit
can serve as a data source to other BiDCEP units, forming a grid of BiDCEPs.

• The Situational Management component. This component is responsible for con-
figuration of the BiDCEP components’ including inlets sampling rate; definitions
of enrichment; activation of data adapters; CEP rules setting; grid definitions of
publishers and subscribers connectivity; authentication and authorization poli-
cies; and all other streaming configurations.

The proposed conceptual architecture binds both legacy integration and big data
open-source implementations. Velocity and volume can be tuned according to exter-
nal policy and business needs, and data can be enriched in several steps. Linear scala-
bility can be achieved according to the inherent proprieties of the big data compo-
nents, and latency properties can be adjusted for both low and high latency consumers
according to the LK structure. Overall merging data source adapters technologies of
the LK and CEP architectures can reduce footprint, and a modular construction of a
data grid for segregation of control can be achieved.

5 Motivational Example: Precision Agriculture

As a triggering example for a technical discussion, consider a smart farm with auto-
mated irrigation systems (William, 2015), as an implementation for Precision Agri-

culture (Precision Agriculture, 2015). In this example, some sensors gather infor-
mation about the condition of the soil moisture, while others measure humidity corre-
lated with a GIS positioning. Additional data is gathered from weather channels, such
as historical forecast and actual conditions, and from social networks. The requested
insights should adapt and predict the irrigation and fertilizer automated system, in
order to optimize crops’ yield with reduced operational costs.

The system compound health encompasses the IT systems and applications side
availability as well as the things of the IoT, such as sensors, actuators, cellular con-
nectivity transport, Wi-Fi and cellular grid, mobile control devices, and more. In order
to activate the right valve at the right time, the prediction levels and planning requires
end-to-end availability of the systems, including monitoring, problem detection, ca-
pacity and configuration management. For instance, an irrigation plan should consider
the physical condition and flow capacity of old pumps and valves so that the water
pressure and flow rerouting will be adjusted to the device leakage limitations, in order
to prolong the device life-duration. Soil moisture conditions at the surroundings of the
valves and pumps, correlated with weather conditions, can assist in understanding if
there is a leakage and its severity. Accordingly, the system can control the water pres-
sure and required irrigation flow.

For exposed IoT actuators and sensors, cyber security issues are 100x more com-
plicated, since each of these devices is a vulnerability point into the secured network.
Sending misleading information from sensors can trigger a rise in water pressure that
will destroy the entire irrigation conduit plumbing.

Using the same sensors can serve different stakeholders. Security aspects will ex-
amine historical access, scheduled maintenance and personnel access patterns, as well
as overall changes of the system configuration for detecting unauthorized access.
Sustainability and maintenance aspects can include comparing soil humidity relative
to the irrigation plans, in order to discover irrigation conduit malfunctions, and sug-
gest an infrastructure repair action. Profit system for financial yields can compare the
timing and invested resources of water and fertilizers over time, in order to select the
less costly operation plan for crops growth. In a contradicting manner, the above secu-
rity aspect requires rapid CEP response, whereas the financial planning and sustaina-
bility one requires slow learning of historical data.

Extension from a single farm unit is done by creating a collective pattern baseline
for several connected smart farms, and alerting the grid on potential changes and se-
curity risks.

From the end-point IoT pumps and valves that control the real world, through IT
security and management aspects, all parts should be considered as key enablers for
different types of analytics: descriptive, predictive, and prescriptive. Descriptive ana-
lytics will generate reports on the quality of the weather forecast and irrigation plan-
ning in correlation with the IT system and device integrity. Descriptive analytics will
also indicate the security state, temporarily excluding tampered sensors and actuators
in order to employ an accurate control system. Predictive analytics will offer irriga-
tion infrastructure maintenance plans according to availability of data, sensors and
actuators, and according to cost of operation for water management savings (i.e.,
what-if analyses). Prescriptive analytics will automate the irrigation plans according
to actual measurements compared to previously analysed systems and will keep
evolving according to actual end-to-end component availability.

Descriptive, predictive, and prescriptive analytics vary in the requirements of data
sampling rates, control speed for valves activation, enriched data such as GIS location
of sensors, and malfunction risk considerations, such as an inactive valve versus a
broken water conduit. Consequently, the system situational management should bal-
ance and decide on sensor sampling rate, load and content shedding policies, data
enrichment, and resulting computation efforts for real time response with optimization
and planning considerations. The above motivational example requires both CEP and
LK architectures to work in conjunction, and as such, is suitable for a BiDCEP con-
sideration.

6 Discussion and future steps

The BiDCEP conceptual architecture binds both the challenges addressed by CEP and
the ones addressed by LK into a unified architectural approach. Specifically, the fol-
lowing challenges are handled:

• Maintaining enterprise IT CEP value.
• Enabling open source-based implementation.
• Controlling data sampling rate and granularity.
• Providing staged process for data enrichment.
• Enabling linear and decoupled scaling.
• Controlling data resolution for consumption.
• Separating data streams based on latency constraints.
• Reducing overall technology footprint and duplicated processing steps.
• Encapsulating and providing data segregation and data cleansing by using sepa-

rate BiDCEP units in a grid structure.

The concepts presented with BiDCEP are high level ones and assume integration is
done with RESTfull API provided by a micro-service container in order to achieve
maximum IT flexibility. Not all components must be applied, and overall filter-and-
pipe pattern should be applied to the entire streaming process. It is the author’s hope
that this aggregated conceptual architecture should trigger a technical discussion and
practical implementation in different use cases, yielding a construction of an out-of-
the-box BiDCEP open-source middleware.

7 References

1. Ait-Sadoune I, Ait-Ameur Y., 2010. Stepwise Design of BPEL Web Services Composi-
tions: An Event_B Refinement Based Approach. InSoftware Engineering Research, Man-
agement and Applications 2010 (pp. 51-68). Springer Berlin Heidelberg.

2. Apache Storm http://storm.apache.org/. Retrieved on 12 Dec 2015.
3. Fernandez EB, Ortega-Arjona JL. 2009. The secure pipes and filters pattern. In Database

and Expert Systems Application, 2009. DEXA'09. 20th International Workshop on 2009
Aug 31 (pp. 181-185). IEEE.

4. Gal A., Hadar E., 2010. Generic architecture of complex event processing systems. In
Principles and Applications of Distributed Event-Based Systems. IGI Global 2010, ISBN

9781605666983, edited by Annika Hinze and Alejandro Buchmann, IGI Global press,
2010. 1-18.

5. Genkin M., 2007. Best practices for service interface design in SOA, Part 1: Exploring the
development, interfaces, and operation semantics of services. IBM developerWorks, USA,
available at: http://www. ibm. com/developerworks/architecture/library/ar-
servdsgn1/,[Accessed 19th March 2010]. 2007.

6. Hadar E. and Perreira M., 2007. Web Services Variation Façade – Domain Specific Refer-
ence Architecture for Increasing Integration Usability. IEEE International Conference on
Web Services (ICWS 2007), Salt-Lake City, July 2007: 1207-1211.

7. Hirzel M, Andrade H, Gedik B, Jacques-Silva G, Khandekar R, Kumar V, Mendell M,
Nasgaard H, Schneider S, Soulé R, Wu KL., 2015. IBM Streams Processing Language:
Analyzing big data in motion. IBM Journal of Research and Development. 2013
May;57(3/4):7-1.

8. ITIL, 2015 https://www.gov.uk/service-manual/ operations/service-management.html, re-
trieved on Dec. 12, 2015.

9. Homer A, Sharp J, Brader L, Narumoto M, Swanson T., 2014. Cloud Design Patterns: Pre-
scriptive Architecture Guidance for Cloud Applications. Microsoft patterns & practices;
2014 Feb 17.

10. Kinley J., 2013. The Lambda architecture: principles for architecting real time big data
systems. http://jameskinley.tumblr.com/post/37398560534/the-lambda-architecture-
principles-for. Retrieved Dec. 6, 2015.

11. Kreps, J., 2014. Questioning the Lambda architecture. O’reilly Radar. Retrieved 3 De-
cember 2015.

12. Martz N., 2011. How to beat the CAP theorem. http://nathanmarz.com/blog/how-to-beat-
the-cap-theorem.html, Retrieved Dec. 3, 2015.

13. Martz N., Warren J., 2015. Big Data – the principles and best practices of scalable real-
time data systems. Manning Publication, 1st Edition, ISBN-10: 1617290343.

14. William A., 2015. Five big technology predictions into 2016. Frost & Sullivan,
http://ww2.frost.com/news/ press-releases/five-big-technology-predictions-2016-frost-
sullivan/. Retrieved Nov. 23, 2015.

15. Kelly J.E.III., 2015. Computing, cognition and the future of knowing. How humans and
machines are forging a new age of understanding.
http://www.research.ibm.com/software/IBMResearch/multimedia/Computing_Cognition_
WhitePaper.pdf. Retrieved Nov. 23, 2015. IBM Press.

16. Park Y, King R, Nathan S, Most W, Andrade H., 2012. Evaluation of a high‐volume, low‐
latency market data processing system implemented with IBM middleware. Software:
Practice and Experience. 2012 Jan 1;42(1):37-56

17. Precision Agriculture, 2015. https://en.wikipedia.org/wiki/ Precision agriculture. Retrieved
Dec. 13, 2015.

18. Reeve A., 2013. Managing Data in Motion: Data Integration Best Practice Techniques and
Technologies. Newnes; 2013 Feb 26.

19. Van der Lans R., 2012. Data Virtualization for business intelligence systems: revolutioniz-
ing data integration for data warehouses. Elsevier; 2012 Jul 25.

20. Williamson L., 2013. Tomorrow's cities: Just how smart is Songdo? BBC News, Seoul, 2
September 2013, http://www.bbc.com/news/technology-23757738

