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Abstract. More smart objects and more applications on the Internet of
Things (IoT) mean more security challenges. In IoT security is crucial but
difficult to obtain. On the one hand the usual trade-off between highly
secure and usable systems is more impelling than ever; on the other hand
security is considered a feature that has a cost often unaffordable. To
relieve this kind of problems, IoT designers not only need tools to assess
possible risks and to study countermeasures, but also methodologies to
estimate their costs. Here, we present a preliminary methodology, based
on the process calculus I0oT-LyYSA, to infer quantitative measures on
systems evolution. The derived quantitative evaluation is exploited to
establish the cost of the possible security countermeasures.

1 Introduction

Within few years the objects we use every day will have computational capabilities
and will be always connected to the Internet. In this scenario, called the Internet
of Things (IoT), these “smart” devices are equipped with sensors to automatically
collect different pieces of information, store them on the cloud or use them to
affect the surrounding environment through actuators. For instance, our smart
alarm clock can drive our heating system to prepare us a warm bathroom in the
morning, while an alarm sensor in our place can directly trigger an emergency
call to the closest police station. Also, in a storehouse stocking perishable food,
equipped with sensors to determine the internal temperature and other relevant
attributes, the refrigeration system can automatically adapt the temperature
according to the information collected by sensors.

The IoT paradigm introduces new pressing security challenges. On the one
hand, the usual trade-off between highly secure and usable systems is more critical
than ever. On the other hand, security is considered a costly feature for devices
with limited computational capabilities and with limited battery power.

Back to the refrigerator system above, an attacker can easily intercept sensors
communications, manipulate and falsify data. We can resort to cryptography and

* Work supported by project PRA_2016_ 64 “Through the fog” (University of Pisa).

Copyright © by the paper’s authors. Copying permitted for private and academic pur-
poses.

V. Bil6, A. Caruso (Eds.): ICTCS 2016, Proceedings of the 17th Italian Conference on
Theoretical Computer Science, 73100 Lecce, Italy, September 7-9 2016, pp. 163-176
published in CEUR Workshop Proceedins Vol-1720 at http://ceur-ws.org/Vol-1720


http://ceur-ws.org/Vol-1720

164 Chiara Bodei and Letterio Galletta

to consistency checks to prevent falsification and to detect anomalies. But is it
affordable to secure all the communications? Can we still obtain a good level of
security by protecting only part of communications?

ToT designers have to be selective, e.g. in choosing which packets to encrypt.
To this aim, designers not only need tools to assess possible risks and to study
countermeasures, but also methodologies to estimate their costs. The cost of
security can be computed in terms of time overhead, energy consumption, band-
width, and so on. All these factors must be carefully evaluated for achieving an
acceptable balance among security, cost and usability of the system.

First, we introduce functions over the enhanced labels to associate costs to
transitions. Here, the cost of a system is specified in term of the time spent for
transitions, and it depends on the performed action as well as on the involved
nodes. However, we can easily treat other quantitative properties, e.g. energy con-
sumption. Intuitively, cost functions define exponential distributions, from which
we compute the rates at which a system evolves and the corresponding CTMC.
Then, to evaluate the performance we calculate the stationary distribution of
the CTMC and the transition rewards.

Usually, formal methods provide designers with tools to support the devel-
opment of systems and to reason about their properties, both qualitative and
quantitative. Here, we present some preliminary steps towards the development
of a formal methodology to support the analysis of the security cost in IoT sys-
tems. We aim at providing a general framework with a mechanisable procedure
(with a small amount of manual tuning), where quantitative aspects are symbol-
ically represented by parameters. Their instantiation is delayed until hardware
architectures and cryptographic algorithms are fixed. By only changing these
parameters designers could compare different implementations of an IoT system
and could choose the better trade-off between security and costs.

Technically, we define an enhanced semantics for ToT-LYS A, a process cal-
culus recently proposed to model and reason about IoT systems [4]. IoT-LySa
is equipped with a static analysis that safely approximates how data from sensors
spread across the system and how objects interact each other’s. Our enhanced
semantics follows the methodology of [7], where each transition is associated
to a cost in the style of [17,1]. Here, the cost is specified in term of the time
spent for the transition i.e. it is the rate of the transition. From rates we me-
chanically derive a continuous-time Markov chains that can be analysed using
standard techniques and tools [19,22]. For simplicity, here we consider a subset of
IoT-LySaA without actuators where intra-node communication is carried out
through message passing instead of a shared store. Note that our approach can
be extended to deal with other optimisation criteria, e.g. energy consumption,
particularly critical in IoT systems.

Structure of the paper. In the next section, we briefly introduce the process
calculus IOT-LySA. In Section 3, we present a simple function that assigns
rates to transitions, and we show how to obtain the CTMC associated with a given
system of nodes and how to extract performance measures from it. Concluding
remarks and related work are in Section 4.
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2 TIoT-LySA and its Enhanced Semantics

In [4] an IoT system consists of a set of nodes that communicate through message-
passing. Each node is uniquely identified by a label and is made of logical (pro-
cesses) and physical (sensors and actuators) components that interact through
a shared store. For simplicity, in the following we do not consider actuators,
and we replace conditional construct with non deterministic choice. Furthermore,
following the approach in [3] we assume a finite set of keys that are known a
priori by the nodes.

Syntaz. In IOT-LYSA systems N € N consist of a fixed number of nodes that
host control processes P € P and sensors S € S. The syntax is in Tab. 1, where
V denotes the set of values, while X and Z are the local and the global variables,
respectively, and K C V denotes the set of cryptographic keys (e.g. Kjp).

N > N ::= systems of nodes B 3 B ::= node components
0 inactive node P process
{:[B] single node S sensor
Ni | N2 composition B| B composition
P ::= control processes
0 nil
(E1,--+ ,Eg). P intra-node output
(Er, - ,Ex)>L.P multi-output LC £
(Ery-- By xjg1,- ,xk). P input (with match.)
P+ P summation
Ay, .-, Yn) recursion
decrypt E as decryption (with match.)
{E17~“,Ej; l‘j+1,~~~,$k}K0 in P
(35 2z:).P clear input from sensor i
({4 2z} k)-P crypto input from sensor %
S ::= sensor processes E := terms
7.8 internal action v value
(i,v). S i*" output x variable
{i,v}x). S i*" enc. output z sensor’s variable
A(yr, .-, Yn) recursion {Eh, -+, Ex}k, encryption
f(E1,---,E,) function appl.

Table 1. Syntax of IOT-LYSA.

In the syntax of systems, 0 denotes the null inactive system; a single node
£ : [B] is uniquely identified by a label £ € £ (which represents a node property
such as location). Node components B are obtained by the parallel composition
(through the operator ||) of control processes P, and of a fixed number of sensors
S. We assume that sensors are identified by an unique identifier ¢ € Z,.

In the syntax of processes, 0 represents the inactive process (inactive compo-
nents of a node are all coalesced). The process (F1,- -, Ej). P sends the tuple
FE4, -+, Ey to another process in the same node and then continues like P.
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The process (E1,---,Fg)) > L.P sends the tuple Fy,..., E; to the nodes
whose labels are in L and evolves as P. The process (E1, -+, Ej; 41, , k). P
receives a tuple EY, - - -, E}: if the first j terms of the received message pairwise
match the first j terms of the input tuple, the message is accepted, otherwise is
discarded (see later for details). The operator || describes parallel composition of
processes, while + denotes non-deterministic choice. An agent is a static definition
of a parameterised process. Each agent identifier A has a unique defining equation
of the form A(y1,...,yn) = P, where y1, ..., y, are distinct names occurring free
in P. The process decrypt E as {E1,--- , Ej; Tj41,- - ,:L'k}KO in P tries to decrypt
an encrypted value using the key Ky, provided that the first j elements of the
decrypted term coincide with the terms Fj.

A sensor can perform an internal action 7 or send an (encrypted) value v,
gathered from the environment, to its controlling process and continues as S. We
do not provide an explicit operation to read data from the environment but it
can be easily implemented as an internal action.

Finally, in the syntax of term, a value represents a piece of data (e.g. keys or
values read the environment). As said above, we have two kinds of disjoint vari-
ables: x are standard local variables, used as in w-calculus; while sensor variables
z belong to a node and are globally accessible within it. As usual, we require
that variables and names are disjoint. The encryption function {E1,--- , Fx} K,
returns the result of encrypting values E; for i € [1, k] with the key Ky. The term
f(Eq,---, E,) is the application of function f to n arguments; we assume given
a set of primitive aggregation functions, e.g. functions for comparing values.

Working Example We set a simple IoT system up to keep the temperature under
control inside a storehouse with perishable food (a big quadrangular room).
We install four sensors, one for each corner of the storehouse. Each sensor S;
periodically senses (by means of the function sense;()) the temperature and sends
it through a wireless communication to a control unit P, in the same node Nj.
The unit P, computes the average temperature and checks if it is within accepted
bounds. If this is not the case, P, sends an alarm through other nodes and the
Cloud. We want to prevent an attacker from intercepting and manipulating data
sent by sensors. A possible approach consists in exploiting the fact that sensors
on the same side should sense the same temperature, with a difference that can be
at most a given value e. The control unit can easily detect anomalies and discard
data tailored by an attacker, comparing values coming from the sensors that
are on the same side of the room. But what happens if the attacker falsifies the
data sent by more than one sensor? A possible solution consists in enabling some
sensors (in our example S; and S3) to use cryptography for obtaining reliable
data. Nevertheless, before adopting this solution we would like to evaluate it
by estimating its cost. The control process P. in the node N7 reads data from
sensors, compares them and compute their average and sends them to the node
N;. The process Q. of Ny sends an alarm or an ok message to the node N3
depending on the received data, together with the average temperature. The
process R, of N3 is an Internet service that waits for messages from N, and
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handles them (through the internal action 7). The ToT-LYSA specification of
the storehouse system follows:

N = Ni| Nz | Ny=0:[Pe|l (Soll Sil| Sall S3)] | €2:[Qc || 0] | £5: [Re || O]
P. = (0; z0).7.({1;21} Ky )-7-(2; 2z2).7.({3; 23} k3).T-

{emp(zo, ..., 23), avg(zo0, ..., 23))) > {2 }.T. Pe
Qc = (true; Tavg). {0k, Tavg) > {€3}.7.Qc + (false; Tavg).(@larm, Tauvg) > {€3}.7.Qc
R. = ( Wres, wavg) T.R.
Sm = (m, sensem()). 7.5m m=0,2
S; = ({4, sense; ()} ;). 7.5 ji=13

The function ¢mp performs consistency checks, by comparing data coming from
insecure sensors with data from secure ones: it returns true if data are within
the established bounds, false otherwise. The function avg computes the average
of its arguments. We suppose that processes and sensors perform some internal
activities (7-actions). Another possible solution consists in having just one sensor
that uses cryptography. This new system of nodes N differs from the previous
one in the specification of the process P, in the first node:

P, = (0; z0).7.({1;21} k1 )-7-(2; 22).7.(3; 23). 7.
(halfemp(z0, 21), avg(z0, ..., 23))) > {£2}.7.P.
where the comparison function halfcmp uses only two arguments. We expect
that this second solution is less expensive, and we apply our methodology to
formally compare the relative costs of the two solutions.

Enhanced Operational Semantics. To estimate cost, we give an enhanced reduc-
tion semantics following [2,6,7]. The underlying idea is that each transition is
enriched with an enhanced label , which records information about the transition.
Actually, we label transitions for communications and decryptions. For communi-
cations, we record the action (input or output) with the corresponding prefixes,
and the labels of the involved nodes. For decryption, we store the label of the
node performing the operation and information about the data. Note that in the
following we use the abbreviations out, in, dec, for denoting the communication
prefixes, the decryption constructs and the possible function calls f inside them.
We can obtain a standard semantics by simply removing the labels.

Definition 1. Given ¢,4p,¢;,{p € L, enhanced labels theta are defined as:

030 == {{ {out},l {in}) internal secure communication
(€ out, £ in) internal communication
(Lo out, Ly in) inter-nodes communication
{¢p dec} decryption of a message

As usual, our semantics consists of the standard structural congruence = on
nodes, processes and sensors and of a set of rules defining the transition relation.
Our notion of structural congruence = is standard except for the following con-
gruence rule for processes that equates a multi-output with empty set of receivers
to the inactive process: (E1,---, Ex)>0.0=0.
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Our reduction relation i>§ N x N is defined as the least relation on closed
nodes, processes and sensors that satisfies a set of inference rules. Our rules are
quite standard apart from the five rules for communications shown in Tab. 2 and
briefly commented below. We assume the standard meaning for terms [E].

(Sensor-Com)

(loﬂin)g:[

£ [(i,vi). S || (35 2:). P || B] Si || P{vi/zi} || B{vi/zi}]

(Crypto-Sensor-Com)

0 [(ividie) S || (i zid)-P || B S 0 (80| Pos/zi) || Blwi/zi)]

(Intra-Com)

Aizivi = [E] A AL, [Bi] = [E]
L:[(Ey, .. Ex). P | (B, ... Ejs 241, @r).Q || B

(€ out L in)

C: [P || Q{ujra/mje, o v /i) || B
(Multi-Com)

tre L A Comp(f,la) A N vi=[E] A N_, [E] = [E]

O [(By, .., Ex) > LoPu || Bp] | £ 2 [(BY, oy B wjgn, s xk).Qu || Bel

(€1 out,ly in)
—

by [(Bry e, Bx) > LN\ {62} P || Bp] | €2 2 [Qui{vj41/Tj41, s vk /Ti} || B

Table 2. Operational semantic rules for communication.

The rule (Sens-Com) is for communications among sensors and processes:
the variables used in the input are assumed global inside the node, in such a
way that sensors are considered as a shared data structure z1, - - - , z,,. Therefore,
the substitution is performed in all the processes of the node. The rule (Crypto-
Sens-Com) is similar but it also requires that the receiving process successfully
decrypts the encrypted data sent by a sensor. The rule (Intra-Com) is for intra-
node communications. This construct implements also a matching feature: the
communication succeeds, as long as the first j values of the message match the
evaluations of the first j terms in the input. If this is the case, the result of
evaluating each F; is bound to each x;.

The rule (Multi-Com) implements the inter nodes communication: the com-
munication between the node labelled ¢; and the node {5 succeeds, provided that
(i) 42 is in the set L of receivers, (ii) the two nodes are compatible according to
the compatibility function Comp, and (iii) the matching mechanism succeeds. If
this is the case, the sender removes ¢ from the set of receivers L, while in the sec-
ond node, the receiving process continues bounding the result of each F; to each
variable x;. Outputs terminate when all the nodes in L have received the message
(see the congruence rule). Note that point-to-point communication amounts to
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the case in which L is a singleton. The compatibility function C'omp defined over
node labels is used to model constraints on communication, e.g. proximity, with
Comp(ly,0s) that yields true only when the two nodes ¢1, ¢5 are in the same
transmission range. Of course, this function could be enriched for considering
other notions of compatibility.

Hereafter, we assume the standard notion of transition system. Intuitively,
it is a graph, in which systems of nodes form the nodes and (labelled) arcs
represent the possible transitions between them. As will be clearer in the next
section, we will only consider finite state systems, because finite states have an
easier stochastic analysis. Note that this does not mean that the behaviour of
such processes is finite, because their transition systems may have loops.

Ezample (cont’d) Back to our example, consider the following run of the first
system where, for brevity, we ignored their internal actions 7

05 e -
NJ" =% Nifi=0

N&N’&N”%N’”&N"”h{ )
Ny 25 N f g =1

the systems of nodes N/, N, N, N"" N""" are the intermediate ones reached
from N during the computation and the labels §; annotate the j** transi-
tion (#;; depending on the branch of the summation). In the run, fully spec-
ified below, the sensors of N; send a message to the process P,., which checks
the received data and sends the checking result to No. We denote with P,
(QL, R., resp.) the continuations of P. (Q., R., resp.) after the first input pre-
fixes, with vcomp the value cmp(vo, ..., v3), With V4.4 the value avg(vy, ..., v3),
and with v,es, (with ¢ = 0,1) the value ok (alarm respectively), depending
on which branch of the summation is chosen. The evolution of the second
system N is analogous to the one of N: the transition labels are such that
04 = (€1 ({halfcmp(vo,v1), avg(vo, - - - ,v3))), €2 (Vbool; Tavg)) and O = ; for | # 4i
(the transition labels ; are presented below, after the run of N).

N = 61 : [(O, Zo)PC/ H P || (<0,86n8€0()>‘7'.50“ 51” SQH 53)] | NQ | N3 &
N' =t [P{0/z0} || (7.Sol| Sull Sall S3)] | Na | Ny 222
N =y : [Pi{0/20,1/21,2/22,3/23} || (Soll S| Sz|l S3)] | N2 | N3 =

41t [((veomps Vavg) > {€2}.7.Pe || (Sol| Sil| Szl S3)] |

£y [(true;xavg)‘«0k7 xavg» > {63}~T~Qc +

(false;xavg)'«alarma xavg» > {KS}TQ(,} | N3 &>

N =ty Pe I Pl (Soll Sill Szl Ss)] |

L2 1 [Qe{Vavg/Tavg}) || O] €5 : [(; wres, Wavg).T-Re || O] =

[
[
bz [Pe || P (Soll Sull Sl Ss)] |
[
[

054
Lo« [((Vres; Vavg)) > {€s}.7.Qc || 0] | £3 : [(; wres, Wavg).T-Re || O] =
N =/, : [P, H P H (SDH S1H SQ” 53)] ‘62 : [QCHO] |é3 : [R/C{Uresi/wres,'Uavg/wavg}HO}

0o = 02 = (£1(j,v5),01(]; 2:))

01 =05 = (ti{{g,vi} k), ({7525 1 i,))

04 = (€ ({emp(vo, - - - ,v3),avg(vo, - -+ ,v3))), 2 (Vbool; Tavg))
05 = <62 <<Uresi7Ua’ug>>7£3(w're.97wavg)>
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3 Stochastic Semantics

We now show how to generate a Continuous Time Markov Chains (CTMC) from
a transition system (see [17] for more details). First, we introduce functions
over the enhanced labels to associate costs to transitions. Here, the cost of a
system is specified in term of the time spent for transitions, and it depends on the
performed action as well as on the involved nodes. However, we can easily treat
other quantitative properties, e.g. energy consumption. Intuitively, cost functions
define exponential distributions, from which we compute the rates at which a
system evolves and the corresponding CTMC. Then, to evaluate the performance
we calculate the stationary distribution of the CTMC and the transition rewards.

Cost Functions. Our cost functions assign a rate to each transition with label 9.
To define this rate, we suppose to execute each action on a dedicated architecture
that only performs that action, and we estimate the corresponding duration. To
model the performance degradation due to the run-time support, we introduce
a scaling factor for r for each routine called by the implementation under con-
sideration. Here, we just propose a format for these functions, with parameters
that depend on the nodes to be instantiated on need. For instance, in a node
where the cryptographic operations are performed at very high speed (e.g. by a
cryptographic accelerator), but with a slow link (low bandwidth), the time will
be low for encryptions and high for communication; vice versa, in a node offering
a high bandwidth, but poor cryptography resources.

Technically, we interpret costs as parameters of exponential distributions
F(t) = 1 — e "t with rate r and t as time parameter (general distributions
are also possible see [18]): the transition rate r is the parameter that identifies
the exponential distribution of the duration times of the transition, as usual in
stochastic process algebras (e.g. [8]). The shape of F(t) is a curve that grows
from 0 asymptotically approaching 1 for positive values of its argument ¢. The
parameter r determines the slope of the curve: the greater r, the faster F(t)
approaches its asymptotic value. The exponential distributions that we use enjoy
the memoryless property, i.e. the occurrence of a new transition does not depend
on the previous ones. We also assume that transitions are time homogeneous (the
transitions enabled in a given state cannot be disabled by the flow of time).

We define in a few steps the function that associates rates with the (enhanced
labels of) communication and decryption transitions. For the sake of simplicity, we
ignore the costs for other primitives, e.g. constant invocation, parallel composition,
summation, 7 actions (see [17] for a complete treatment); we further neglect the
sensor cost of sensing from the environment We need the auxiliary function
fe: € = R that estimates the effort needed to manipulate terms.

o fr(v) = size(v)
o fE({EL .., Ertky) = fenc(fE(EN), .., fE(EL), crypto_system, kind(Ko))

The size of a value v matters. For an encrypted term, we use the function fe,.,
which depends on the terms to encrypt, on the used crypto-system and on the
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kind (short/long, short-term/long-term) of the key. The function $, : A — R
assigns costs to I/O and decryption prefix actions a € A.

[ ] $a(<E1, e 7l;k» = fout(fE(El)a ceey fE(El); bw)

) $a((E1, . 7Ej; Qj‘j+1, . ,xk)) = ftn(fE(E1)7 ceey fE(Ej),match(j), b?,U)
o S, (decrypt Eas {Eq, -+ ,Ej;Tjq1, -, ThtE,) =

faee(fE(E), crypto__system, kind(Ky), match(j))

the send and receive primitives. Besides the implementation cost due to their
own algorithms, the functions above depend on the bandwidth of the channel
(represented by bw), on the cost of the exchanged terms (computed by fg), and
on the nodes involved in the communication. Moreover, the inter-node commu-
nication depends on the proximity-relation (e.g. the transmission range between
nodes), represented here by the function f<- (¢o,£r). Also, the cost of an input
depends on the number of required matchings (represented by match(j)). Finally,
the function fge. represents the cost of a decryption, whose cost is similar to the
one for encryption, with the additional cost of matchings. Finally, the function
$:0 — IR" associates rates with enhanced labels.

e §((lo out, £y in)) = f<> (Lo, Lr) - min{Sa(out, £o), $alin, £1)}

o (¢ dec) = $,(dec, )

As mentioned above, the two partners independently perform some low-level
operations locally to their nodes, labelled ¢p and ¢;. Each label leads to a delay
in the rate of the corresponding action. Thus, the cost of the slower partner
corresponds to the minimum cost of the operations performed by the participants
in isolation. Indeed the lower the cost, i.e. the rate, the greater the time needed
to complete an action and hence the slower the speed of the transition (and the
slower F(t) =1 — e~ approaches its asymptotic value).

Note that we do not fix the actual cost function: we only propose for it a
set of parameters to reflect some features of an idealised architecture. Although
very abstract, this suffices to make our point. A precise instantiation comes with
the refinement steps from specification to implementations as soon as actual
parameters become available.

Ezample (cont’d) We now associate a rate to each transition in the transition
system of the system of nodes NV, just N for brevity. To illustrate our methodology,
we assume that the coefficients due to the nodes amount to 1. We instantiate the
cost functions given above, by using the following parameters in the denominator:
(i) e and d for encrypting and for decrypting; (i7) s and r for sending and for
receiving; (#i¢) m for pattern matching; and (iv) £ for the application of the
aggregate function f, whose cost is proportional to the number of its arguments.
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* fr(a) =

. fE({Eh o Ek}Ku) =3 '123?:1 fe(Ei) +1

e 3, ((Eq,..., >)*m

e 3, ((E1,... Ej;l'j-kly-'-vxk)):#er-j

o $o(decrypt Eas {E1, -+, Ejizji1, - 0k} Ko) = grta;
o S (f(Er, -, Ey)) = £

These parameters represent the time spent performing the corresponding action
on a single term. Intuitively, the greater the time duration is, the smaller the rate.
Since transmission is usually more time-consuming than reception, the rate of a
communication is that of output. The rates of the transitions of N and N are
¢; = $(0;) and & = $(8;), and ¢;; = $(0;;) and &;; = $(8;:) (j € [4,5], i € [0,1]).

I | 1 A_a 1 oA _ 1
60_62_2757 1 = 3 = 2ets? CO C2 _C3_£7 Cl_28+s
1 1 1 A 1
€4 = 825 G T 5 i = ey G5 =5
For instance, the rate of the second transition is: ¢; = $(61) = ﬁ, where

ﬁ = min{ ﬁ, m} Note that our costs can be further refined; we could
e.g. make the transmission rate also depend on the distance between the nodes,
when non internal to a node.

Stochastic Analysis Now, we transform the transition system N into its corre-
sponding CTMC(N), by using the above rates. Afterwards, we can calculate
the actual performance measures, e.g. the throughput or utilisation of a certain
resource (see [16] for more details on the theory of stochastic processes).

Actually, the transition rate ¢(N;, N;) at which a system jumps from N; to
Nj; is the sum of the single rates ¥ of all the possible transitions from N; to
Nj;. Given a transition system IV, the corresponding CTMC has a state for each
node in N, and the arcs between states are obtained by coalescing all the arcs
with the same source and target in N. Recall that a CTMC can be seen as
a directed graph and that its matrix Q, the generator matriz, (apart from its
diagonal) represents its adjacency matrix. Note that ¢(N;, N;) coincides with
the off-diagonal element g;; of the generator matrix Q. Hence, hereafter we will
use indistinguishably CTMC and its corresponding Q to denote a Markov chain.
More formally, the entries of Q are defined as follows.

a(Ni, N) Z$ ) ifi#j A Ny 25 N,
%ij =
- Z iy ifi=j

§=0,j#i
Performance measures are usually obtained by computing the stationary distribu-
tions of C'T'M C's, since they should be taken over long periods of time to be signif-
icant. The stationary probability distribution of a CTMC is IT = (Xo,..., Xn-1)
s.t. ITQ =0 and Z?:o X; = 1, which uniquely exists if the transition system
is finite and has a cyclic initial state.
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Ezxample (cont’d) Consider the transition system corresponding to N that is,
as required above, finite and with a cyclic initial state. We derive the following
generator matrix Qq of CTMC(N) and the corresponding stationary distribution
II;, where C' = 4s + 2e + 2f, by solving the system of linear equations I1{ Q; =
0 and Y7  X; = 1, where II; = (Xo, -+, Xg). Similarly, we can derive the
generator matrix Q’l and the corresponding stationary distribution I1; for the
transition system corresponding to N , where C = 9s + 2e + 3f.

—Co Co 0 0 0 0 0
0 —C1 C1 0 0 0 0
0 0 —C2 C2 0 0 0
Qi=|0 0 0 —cs3 3 0 0
0 0 0 0 7(640 + C41) c40 C41
C50 0 0 0 0 —C50 0
C51 0 0 0 0 0 —C51

I — |s (2e+s) s (2e+s) (4f+s) s s
1 C C °  2¢  4C’ 4aC

7, — |28 (2e4s) 25 25 (fts) s s
1= & ¢ T e ¢ o 280 26

To define performance measures for a system N, we define the corresponding
reward structure, following [9,8]. Usually, a reward structure is a function that
associates a reward with any state passed through in a computation of N. We
compute rewards from rates of transitions [17]. To measure the throughput of a
system, i.e. the amount of useful work accomplished per unit time, a reasonable
choice is to use as nonzero reward a value equal to the rate of the corresponding
transition. The reward structure of a system N is a vector of rewards, whose size
amounts to the number of N states. By looking at the stationary distribution and
varying the reward structure, we can compute different performance measures.
The total reward is obtained by summing the values of the stationary distribution
I multiplied by the corresponding reward structure p.

Definition 2. Given a system N, let II = (Xo,...,X,—1) be its stationary

distribution and p = p(0), ..., p(n — 1) be its reward structure. The total reward
of N is computed as R(N) =", p(i) - X;.

Ezample (cont’d) To evaluate the relative efficiency of the two systems of nodes,
we compare the throughput of both, i.e. the number of instructions executed per
time unit. The throughput for a given activity is found by first associating a
transition reward equal to the activity rate with each transition. In our systems
each transition is fired only once. Also, the graph of the corresponding CTMC is
cyclic and all the labels represent different activities. Therefore the throughput
of all the activities is the same, and we can freely choose one of them to compute
the throughput of N. Thus we associate a transition reward equal to its rate with
the last communication and a null transition reward with all the others communi-

cations. The total reward R(N) of the system then amounts to m, while

R(N) to m. By comparing the two throughputs, it is straightforward to
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obtain that R(N) < R(N), i.e. that, as expected, N performs better. To use this
measure, it is necessary to instantiate our parameters under various hypotheses,
depending on several factors, such as the network load, the packet size, and so on.
Furthermore, we need to consider the costs of cryptographic algorithms and how
changing their parameters impact on energy consumption and on the guaranteed
security level (see e.g. [15]).

4 Conclusions

In the IoT scenario security is critical but it is hard to address in an affordable
way due to the limited computational capabilities of smart objects. We have
presented the first steps towards a formal framework that supports designers in
specifying an IoT system and in estimating the cost of security mechanisms. A
key feature of our approach is that quantitative aspects are symbolically repre-
sented by parameters. Actual values are obtained as soon as the designer provides
some additional information about the hardware and the network architecture
and the cryptographic algorithms relative to the system in hand. By abstractly
reasoning about these parameters designers can compare different implementa-
tions of the same IoT system, and choose the one that ensures the best trade-off
between security guarantees and their price. In practice, we considered a subset
of the process algebra IoT-LySA [4] and we adapted the technique in [1] to
determine the costs of using/not using cryptographic measures in communica-
tions and to reason about the cost-security trade-offs. In particular, we defined
an enhanced semantics, where each system transition is associated with a rate
in the style of [7,17]. From the rates we derive a CTMC, through which we
could perform cost evaluation, by using standard techniques and tools [19,22].
As future work, we plan to assess our proposal considering a more complete case
study and considering different metrics as time, network bandwidth and energy
consumption.

Our approach follows the well-established line of research about performance
evaluation through process calculi and probabilistic model checking (see [10,11]
for a survey). To the best of our knowledge, the application of formal methods to
IoT systems or to wireless or sensor networks have not been largely studied and
only a limited number of papers in the literature addressed the problem from
a process algebras perspective, e.g. [13,12,14,21], to cite only a few. In [5] the
problem of modelling and estimating the communication cost in an IoT scenario
is tackled through Stochastic Petri Net. Their approach is similar to ours: they
derive a CTMC from a Petri Net describing the system and proceed with the
performance evaluation by using standard tools. Differently from us, they focus
not on the cost of security but only on the one of communication (they do not use
cryptographic primitives). In [20] a performance comparison between the security
protocols IPSec and DTLS is presented, in particular by considering their impact
on the resources of IoT devices with limited computational capabilities. They
modified protocols implementations to make them properly run on the devices.
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An extensive experimental evaluation study on these protocols shows that both
their implementations ensure a good level of end-to-end security.
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