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ABSTRACT
This paper describes the systems developed by PUC Minas
and IRISA for the person discovery task at MediaEval 2016.

We adopt a graph-based representation and investigate
two tag-propagation approaches to associate overlays co-
occurring with some speaking faces to other visually or
audio-visually similar speaking faces.

Given a video, we first build a graph from the detected
speaking faces (nodes) and their audio-visual similarities
(edges). Each node is associated to its co-occurring over-
lays (tags) when they exist. Then, we consider two tag-
propagation approaches, respectively based on a random
walk strategy and on Kruskal’s algorithm.

1. INTRODUCTION
The task of multimodal person discovery in TV broadcast

consists in identifying persons of a video corpus which both
speak and are visible at the same time, in an unsupervised
way [2]. Most approaches to the task use clustering, either
of face tracks or of voice segments (or both) before find-
ing a good match between text in overlays and clusters [6,
4]. While this type of approaches worked well in 2015, we
believe that the clustering steps involved are error prone.
Indeed, errors in the clustering step cannot be undone af-
terwards in the naming stages. In 2015, IRISA and UFMG
proposed a graph-based approach in which each node cor-
responds to a speaking face and edges to the similarity be-
tween its vertices [3]. The similarity can be computed at
the visual level, the voice level or both. Names can be asso-
ciated to nodes based on co-occurrences of a speaking face
and names overlays. However, only a small fraction of the
nodes can be tagged by this method. Hence, in 2016, we
studied tag propagation algorithms that take advantage of
the graph structure to assign tags to nodes with no over-
lapping overlays, thus potentially improving recall. Tab. 1
recaps the different configurations submitted.

2. GRAPH GENERATION
Each video is modeled by a graph where each node repre-

sents a speaking face, and each edge quantifies the visual or
audiovisual similarity between two speaking faces. A speak-
ing face is defined as the association of a facetrack (sequence
of faces related to the same person in adjacent video frames)
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Submission
Similarity

Tag propagation
audio video

primary (p) binary CNN hierarchical
contrast 1 (c1) GMM CNN random walk
contrast 2 (c2) – CNN hierarchical
contrast 3 (c3) GMM CNN hierarchical
contrast 4 (c4) – – –

Table 1: Components of the systems at the origin of
our 5 submissions.

with the speech segment for which the overlap is maximum
and at least 60 %. The facetracks and speech segments are
the ones provided by MediaEval, the latter being extracted
from the speaker diarization result disregarding the arbi-
trary speaker number.

2.1 Audiovisual similarities
We consider three weighting schemes for the edges in the

graphs, resulting from the combination of different strategies
to combine visual similarity and voice similarity.

The visual similarity SV
ij between two facetracks i and j is

calculated as follows. A key face is selected from the central
frame of each facetrack, from which a generic image descrip-
tor is computed by applying a very-deep convolutional neu-
ral network pre-trained on the ImageNet dataset [8]. Specif-
ically, we extract the last convolutional layer [9] and perform
average pooling and “power normalization”, i.e., square-root
compression followed by L2-normalization. Finally, SV

ij is
calculated as the cosine similarity between the descriptors
of the two key face images.

Voice similarity can be computed two ways. A simple
binary audio similarity is derived from the speaker diariza-
tion provided by MediaEval, where the similarity is 1 if the
two segments are labeled with the same speaker in the di-
arization. Alternately, the audio similarity SA

ij between two
segments can be calculated as follows. Each speech segment
is modeled with a 16-Gaussian mixture model (GMM) over
Mel cepstral features. The distance DA

ij is computed using
the Euclidean-based approximation of the KL2 divergence
between the two GMMs [1], and turned into a similarity ac-
cording to SA

ij = exp(log (α) DA
ij), where α = 0.25 in the

experiments here.
Fusion of the visual and voice similarities is done by a

weighted average, SAV
ij = βSV

ij + (1− β)SA
ij . We experimen-

tally set β = 0.85 in the case of binary voice comparison and
β = 0.5 for the GMM-based comparison.



2.2 Tag initialization
Initially, each node in the graph is tagged using the overlay

for which the overlap with the facetrack is maximum. We
used the overlay detection and name recognition provided
(output from the OCR system 2), which we filtered using
the named entity detector NERO [7], keeping only words
tagged as “pers” by the named entity recognition. Note that
this approach is rather aggressive as NERO was initially de-
signed for the speech transcription in the French language.
In practice, many nodes are not tagged as they do not over-
lap with a valid overlay (Sets T15 and T16, introduced in
Section 4, show respectively 25.5% and 6.6% of nodes ini-
tially tagged). This is why tag propagation is required.

3. TAG PROPAGATION APPROACHES
Two different approaches are considered for the propaga-

tion of the initial tags: a random walk approach and a hi-
erarchical one based on Kruskal’s algorithm. In both cases,
every node will be associated a particular tag with a confi-
dence score at the end of the propagation phase.

3.1 Random walk tag propagation
In a graph where transition probabilities between nodes

are known, the probability of ever reaching node j starting
from node i can be calculated using a random walk strategy
with absorbing states [10]. Let n be the number of nodes
of the graph, we define a symmetrical weight matrix W =
{Wij}1≤i,j≤n, where Wij is the similarity between nodes
i and j, and a diagonal degree matrix D = {Dij}1≤i,j≤n,
where Dii =

∑
j Wij . The transition probability matrix

P0 = {P0
ij}1≤i,j≤n, where P0

ij is the probability of reaching

node j from node i in one step, is given by P0 = D−1W.
Tagged nodes are set as absorbing states in P, according to

P =

(
I 0

Pul Puu

)
,

where l is the set of tagged nodes, u is the set of untagged
nodes, I is an identity matrix of size |l| × |l|, Pul contains
probabilities of untagged nodes ending their walk on tagged
nodes, and Puu contains probabilities of untagged nodes get-
ting to other untagged nodes. We denote Pt the transition
probability after t iterations. The random walk iteration
is performed according to Pt+1 = (1 − γ) P0 Pt + γ P0,
where γ is a parameter enforcing the consistency of the ini-
tial state (here, γ = 0.4). Once the random walk has con-
verged (

∑
i,j |P

t+1
i,j − Pt

i,j | < 10−9), each untagged node is
associated to the tagged one on which it has the highest
probability to end its walk, i.e., each row index of Pul is
matched with the column index with maximal probability.
This maximal probability is kept as the confidence score.

3.2 Hierarchical tag propagation
This method is based on the computation of a minimum

spanning tree (MST) from an undirected weighted graph, us-
ing Kruskal’s algorithm. The MST establishes a hierarchical
partition of a set [5]. A connected graph G is given (see Sec-
tion 2), where edge weights represent distances (functions of
their respective similarities SAV ). To propagate the initial
tags, we start from a null graph H on G’s nodes, and the
following process is repeated, until all edges of G are exam-
ined: from G, the unexamined edge e corresponding to the
smallest distance is chosen. If it does not link different trees

MAP@1 MAP@10 MAP@100
T15 T16 T15 T16 T15 T16

primary (p) 87.9 64.4 82.1 49.3 81.9 47.8
contrast 1 (c1) 87.9 64.4 79.8 48.4 79.6 46.7
contrast 2 (c2) 87.9 62.9 81.7 46.2 81.5 44.8
contrast 3 (c3) 87.9 63.6 80.2 49.3 80.0 47.5
contrast 4 (c4) 87.9 56.8 79.7 36.1 79.5 35.1

(p− c4)/c4 0.0 13.4 3.0 36.6 3.0 36.2

Table 2: Mean average precision at different ranks
(in %) for the 5 submissions. Last row gives the
relative improvement of the primary run over the
no-propagation baseline (c4).

T15 T16

MAP@1 p = c1 = c2 = c3 = c4 p = c1, c3, c2, c4
MAP@10 p, c2, c3, c1, c4 p, c2, c3, c1, c4
MAP@100 p, c2, c3, c1, c4 p, c3, c1, c2, c4

Table 3: Ranking (best first) of the submissions.

in H, skip it; otherwise, it links trees T1 and T2 (thus form-
ing T3), and e is added to the minimum spanning forest H
being created; three cases are possible: I. None of T1, T2 is
tagged: T3 will not be tagged II. Only T1 is tagged, with
confidence score CT1 : T1’s tag is assigned to the entire T3

(i.e., to all its unlabelled nodes), with a confidence score
CT3 = CT1 × (1−we), where we is the weight of e in G. III.
Both T1 and T2 are tagged: one of the tags (of T1 or of T2)
is picked (at random), and assigned to T3 with confidence
scores as in case II.

4. RESULTS
Tab. 2 reports the results obtained on the 2015 and 2016

test data (T15=development data for 2016, and T16, re-
spectively). For T16, the reference annotation dump of
2016/09/14 is used. The rank of the submissions is shown
in Tab. 3. All tag propagation approaches improve over the
no-propagation baseline (c4), the interest of tag propagation
being much clearer on T16. The baseline highlights notice-
able differences between T15 and T16. In T15, propagation
was almost useless as most nodes could be tagged in the ini-
tial stage. This is not the case in T16 where tag propagation
yields significant gain. The hierarchical tag propagation on
graphs combining CNN visual similarity and binary voice
similarity (primary) consistently outperforms other combi-
nations, showing the interest of combining audio and visual
similarities. Comparing approaches, c3 usually (except for
T16, MAP@1) performs better than c1, indicating that the
hierarchical tag propagation performs better than the ran-
dom walk, at least with GMM-CNN audiovisual similari-
ties. The comparison of c3 and c1 shows the weakness of
the GMM-based voice comparison over the state-of-the-art
approach used for diarization. Finally, the comparison of
c3 and c2 gives mixed feelings. The use of the GMM-based
voice comparison decreases performance in most cases ex-
cept on T16 at K = 1, 100.
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