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Abstract

Considering the increasing usage of biometrics
as an authentication method by many institu-
tions in order to replace or enhance traditional
security systems, it raises a need to create
and improve biometric recognition systems.
In this work we will discuss about iris recogni-
tion systems and implement a novel technique
of template protection based on key-binding.
It is a scheme that uses neural networks which
nodes are fed by the binary representations of
the iris. Keys are encoded according to the
idea of Trugenberger, i.e. applying the spin
glass and the Hopfield neural network. The
system is implemented on a database of 86
subjects to show its applicability.

1 Introduction

The increasing demand for security, deriving from past
and recent events worldwide, has brought to the front
the necessity to use techniques for the identification of
individuals. Modern societies tend to attribute this in-
creasing importance to systems that provide this type
of service by offering safety and protection towards
information. For this reason, the use of biometric sys-
tems has been encouraged by many public and private
institutions in order to replace or enhance traditional
security systems. In essence, the objective is to estab-
lish the identity of a subject based on what he is (face,
fingerprints, voice, etc), not on what he has (smart-
cards), or what he knows (passwords).

A biometric recognition system is used to identify
a person through the measurement of physiological
or behavioral characteristics and the comparison with
other previously validated and stored references within
a database. These characteristics can be behavioral,
such as voice, handwriting or typing style, or physio-
logical such as iris, fingerprint, hand, face, etc. Con-

sidering that the recognition performance of a biomet-
ric system is achieved, one challenge is to protect our
characteristics in the database where they reside, or
when they pass through communication channels. To
this aim, different protection mechanisms have been
designed to protect the biometric template, the digi-
tal representation of our biometric characteristics. In
this work we will discuss about iris recognition systems
and a novel technique of template protection based on
key-binding. It is a scheme that uses neural networks
which nodes are fed by the binary representations of
the iris. For the key it is used the theory of spin-glasses
where it was tested on a small scale database.

2 Biometric recognition

When designing a system for user authentication we
have to take into consideration three main factors:
the level of security, the convenience and the cost
of authenticators. An authenticator [Ogo03] can be
a password (knowledge-based authenticators), a to-
ken (object-based authenticators), and biometric (ID-
based authenticators). The third type of authentica-
tor, biometrics, is different from the other two since
they depend on the human body traits and features.
Biometric Systems nowadays use different biometric
characteristic types in order to identify individuals.
The biometric signal that is obtained from the cap-
turing device can be stable over time such as our fin-
gerprints or alterable when it depends on human be-
haviors such as the voice [Ogo03]. The former are
called physiological, and the later behavioral biomet-
rics. Klosterman et al. explain that biometric traits
are not secrets and cannot be used in the same way
as passwords or tokens are. They present in [Klo00]
six differences between them which are listed below:
1. Biometrics is not secrets. 2. Biometrics is not
completely accurate. 3. Biometrics can be continu-
ously monitored. 4. Biometrics is expensive to com-
pute. 5. Biometrics is unique per-individual measures.
6. Biometrics is not universally desirable. In any



case it is necessary to emphasize that there is no sys-
tem clearly better than the other, the choice therefore
appears to be a compromise between the qualities of
the properties associated with the selected character-
istic and production costs. These properties include
[Rath11]: universality, uniqueness, permanence, per-
formance, acceptability, collectability, circumvention.

One of the robust biometric characteristics widely
used are irises. The pigmentation and the radial ar-
rangement of the fibers of the iris are unique char-
acteristics to each individual (the iris has 266 unique
features, while the fingerprint has only 90) [Kal13],
[Kha13] and it is also proved that the irises of twins ho-
mozygotes are completely different from one another
(unlike the DNA that is very similar). Even in the
same individual the iris of the right eye is different
from the iris of the left eye [Dau14]. In light of all these
considerations, the choice of the iris as a characteristic
of a biometric system implies an efficient system.

Recognition systems based on iris have been used
with success in distinct sectors, such as the border
check-in, or control of refugees. The iris recognition
technique consists of five steps: acquisition, segmen-
tation, normalization, feature extraction and the
comparing step [Dau14].

(1) Acquisition

During this process the ”captured” image of the
subject must serve as input to the recognition system.
The aspects to be kept in mind at this stage regard
the type of acquisition device.

(2) Segmentation

The region of the iris can be approximated by two
circles, one for the outlined iris / sclera and another,
internal to the first, for the contour of the iris /
pupil. Eyelashes and eyelids can sometimes occlude
the upper and lower parts of this region and for this
reason, in addition to locating the region of interest,
are used techniques to exclude these parts [Mal03].
Two techniques used to implement iris segmentation
are Hough transform and Daugman method.

Hough transform

It is an algorithm commonly used in image process-
ing to determine the parameters of geometric figures
within a simple picture [Illi88]. In the context of iris
recognition this algorithm can be used to derive radii
and centers contours corresponding to the iris and the
pupil. The Hough transform can be seen as a transfor-
mation of a point from the plane (x, y) of the image to
the space of the parameters, in base of the geometric
figure to identify [Mal03].To identify better the circles
that represent the contour between iris and sclera the

algorithm extracts the region of interest [Mal03].

(y′ · cosϑ′−x′ · sinϑ′)2 = a · (x′ · cosϑ′+y′ · sinϑ′) (1)

where y’ and x’ indicate the peak coordinates and ϑ’
is the rotation angle relative to the horizontal axis.

Daugman method
It requires the use of an integro-differential oper-

ator constructed to locate the circular regions of iris
and pupil, and arches that define the contours of the
eyelids. If they have circular shape, the operator is
defined as:

maxr,x0,y0 |Gσ(r) · δ
δr

∮
r,x0,y0

I(x, y)

2πr
ds (2)

where I is the intensity value of the image at the point
of coordinates (x, y), r is the radius, s is the track and
G is a Gaussian filter defined as [Dau14]:

Gσ(r) =
1√
2πσ

e−
(r−r0)2

2σ2 (3)

(3) Normalization
Inconsistencies between different dimensional im-

ages are mainly due to expansion or contraction of the
iris, caused by contraction or expansion of the pupil
in variable lighting conditions [Mal03]. Rubber Sheet
Model of Daugman This normalization model, repre-
sents every point extracted from the iris in a space de-
fined from the coordinates (r, ϑ), where r is included
in [0, 1] and ϑ is the angle in the interval [0, 2π]. The
normalization of points from the Cartesian plane to
polar coordinates is modelled as:

I(x(r, ϑ), y(r, ϑ)) −→ I(r, ϑ) (4)

x(r, ϑ) = (1− r) · xp(ϑ) + r · xi(ϑ) (5)

y(r, ϑ) = (1− r) · yp(ϑ) + r · yi(ϑ) (6)

where, xp and yp indicate the coordinates of the
points on the pupil contour for a certain angle ϑ
[Mal03].

(4) Feature Extraction
To provide an overview of the procedures required

for the extraction and encoding of the biometric fea-
ture, we describe one of the methods discussed in the
literature. This algorithm explained in [Kah10] works
as follows: (1) The normalized template is divided in
rows where every row represents the intensity values
inside of a circular track. (2) The frequency response
of the mono-dimensional Log-Gabor filter is calculated
by means of the formula:

G(f) = e

−(log(
f
f0

))2

2(log( δ
f0

))2

(7)



where f0 is the central frequency.
(3) For every extracted intensity function is calcu-

lated the FFT (Fast Fourier Transform) which is then
multiplied with the frequency response of the Gabor
filter. (4) After calculating the Inverse FFT of the
filtered data, it is then quantized in phase by using
four levels. Phase quantization is obtained by valuing
the complex amplitude values by means of two binary
masks, one for the real part and one for the imaginary
part. The mask relative to the real part will contain
1 if the real part of the filtered data is greater than
zero, and so the mask associated to the imaginary part.

(5) The binary codification of the iris
After being segmented and normalized, it is ob-

tained by placing in columns the two binary masks.
This template is called the Iris Code.

In Fig. 1 are presented the noise detection of an iris
and the segmentation process. The normalization fol-
lowing it, will provide a binary template, as presented
in Fig. 2

Figure 1: Normal iris; noise removal; and segmentation

Figure 2: Binary representation of an iris code.

3 Hopfield networks

One of the major contributions to the study of arti-
ficial neural networks has been given by the work of
Hopfield (from 1982 to 1985 with a series of papers)
who studied a network whose units resemble the per-
ceptron. The Hopfield network consists of a certain
number of nodes totally connected between them but
without auto-connections. The value of output of each
node can be 0 or 1 (using the ’step’), or 1 or -1 (us-
ing the ”sign” function: the output of the unit is 1
if the activation is positive and -1 if the activation is
negative). The Hopfield network does not have a layer
of input and an output, since each node acts both as
input and output [Flo93]. One of the merits of the
original work of Hopfield was to describe the dynam-
ics of the network in terms of energy. Each state of

the network represents a certain value of global en-
ergy. The central property of an energy function is
that it always decreases (or remains constant) when a
system evolves according to its dynamic rule.

The energy landscape of Hopfield networks presents
a hilly view and the rule of adaptation of synaptic
weights associates each pattern with an energy mini-
mum. In the test phase the network starts from a state
energy high enough which corresponds to a new pat-
tern and slopes down towards the most similar vault.
However, energy presents many minima many which
do not correspond to any of the stored patterns: the
most simple of them is a combination of three original
patterns, while a more complex situation can be seen
if a local minimum is not correlated to any pattern.
These are called spin-glasses state, in correlation to the
property of spin glasses in statistical mechanics. Basi-
cally, if we consider N-units (or neurons) indexed 1..N,
the neuron i can be considered connected to the neuron
j with a synaptic weight of W (i, j), where W (i, i) = 0
and W (i, j) = W (j, i). In every instant of time t, the
neuron possess a potential of X(t, i) which can have
one of the two values: 1 or −1. A certain potential
distribution is called state of the system. Considering
that time is discrete, at instant t + 1 the neuron as-
sumes a potential that depends on the weighed sum of
all the other neurons [Ami85].

X(t+ 1, i) = f(
∑
j

(W (i, j)X(t, j)) (8)

where f is the sign function mentioned above. Taking
an initial state X(0, i), the system evolves in a deter-
ministic way, passing from one state to another show-
ing a very particular discrete dynamic system. Such
system, in a finite number of steps arrives in a fixed
point. The fixed point can be one of the minima points
P and Hopfield proofed that these fixed points corre-
spond to the energy function introduced by him:

H(X) = −
∑
i,j

(W (i, j)X(i)X(j)) (9)

His idea was to model the surface of the energy in
such a way that its minima should correspond to the
states that the machine must acquire. If there are
m-configurations to store/memorize it is sufficient to
calculate:

W (i, j) =
∑
t

(M(t, i)M(t, j) (10)

where M(x, y) is the x-configuration (x = 1, ...,m).
The surface of the energy can be imagined made

of holes (the local minima) with different depths and
surrounded of a vault, called the attraction vault. The
initial status is represented by a certain position on



this surface and it must ”fall into” one of these holes.
Probably this will happen with a well-determined hole,
but if there are holes less deep and narrower vaults,
then it would be enough to ”shake” a little bit the
surface and the point would fall into another vault
whose depth is deeper. But what does it mean to
”shake” the surface? How is it possible to change the
energetic values of the points? At this point we can
see an interesting connection between Hopfield Neural
Networks and magnetism.

4 Spin Glasses

There exists an isomorphism between the model of
Hopfield and the Ising model of the magnetism at 0
degrees. The Ising model describes a system made of
atoms which can be considered as tiny magnets that
interact with each other until they reach equilibrium
[Mez86]. These are scattered randomly and the func-
tion that describes the model of Ising has the same
form of the model of Hopfield [Ami85]. In physics
’disorder’ may indicate imperfect structures or impu-
rities in a material. It is the counterpart of order
since sufficient amount of randomness, of imperfec-
tions and inconsistencies may destroy the symmetries
that dramatically simplify certain physical descrip-
tions [Mez86]. For most the history of ’disorder’ was
pushed into a corner and scientists have been dedicated
for decades to the study of ordered systems [Pen98].
One of the most successful attempts to understand the
disordered systems is the study of the so-called ’spin-
glass’. The composition of this material is a mixture
of iron and copper atoms, but its magnetic properties
are very complex and are unpredictable.

The ’spin’ is the mechanical quantum which origi-
nates the magnetic properties and the ’glass’ indicates
the presence of disorder in the orientation of the spin
[Men98]. The spin-glass is an excellent disordered sys-
tem, applied in complex problems and in a plethora
of subjects. Their characteristics, their dynamics and
their complexity are as result of the magnetic interac-
tions between the atoms that compound them. If a
block of this alloy which certain atoms act as magnets
is exposed to an outer magnetic field, the momenta in-
side of it tend to align in a particular direction [Mez86].
Sometimes it can be seen the same reaction as a conse-
quence of strong internal effects [Men98]. As a result
of this, the effect is named ferromagnetism and can be
seen even in other materials (nickel, cobalt, etc.). A
spin glass can have a lot of states of low energy, which
are not separable easily in the same way that energy is
stored in the surface of the Hopfield network. To ob-
tain a state of low energy the temperature of the spin
glass is raised and the direction of the spin is easily in-
vertible. As a result the probability is higher to come

out of holes that are not so deep. The temperature is
introduced by means of a probabilistic technique. As
in [Tru11] the formula that guides the evolution of the
system is P (X(t+ 1), i) = 1) = ϕ(

∑
j(W (i, j)X(t, j)),

where P (x) is the probability that at time t + 1 the
i-neuron takes the value of 1. The function ϕ is not
the sign function any more, but:

ϕ(z) =
1

1 + e
−z
T

(11)

where T represents the temperature. If z → ∞),
ϕ(z) = 1/2, and the system is chaotic. The higher
the temperature the more agitated the system is and
it is easier to go out of small energetic holes. What
the technique suggests is to undergo through a series
of alternating heating and cooling [Spr13]. These are
called evolutions of the system and this kind of system
gives very good results in different applications.

4.1 The idea of Trugenberger

In his paper Trugenberger gives the idea of applying
the spin glass and the Hopfield NN to encode keys as
a local minimum configuration. The key is used to
protect fingerprints in a similar way as the fuzzy vault
technique does [Jue02]. This process passes through
some steps. The first one is quantization where the
fingerprint is represented as a set of M(xi, yi) minutiae
coordinates which create a configuration of the Hop-
field NN. But, since in the Hopfield model we need
a binary representation of data, Trugenberger creates
this input by taking into consideration N-squares of
pixels from the fingerprint image and to each of them
is associated one neuron. If inside the square there
is at least one minutiae, the state of the neuron is 1,
and if there are no minutiae, then the state of the
neuron is −1. Before passing to the second step let’s
suppose that every column of the iris code, which is a
vector of binary values, is represented by one neuron.
If the total number of bits ’1 ’ is more than or equal
two the number of bits ’0 ’ than the neuron will take
status 1, otherwise the neuron will take status 0. This
is a configuration and we call it σiris. As in the fin-
gerprint case, the enrolled iris becomes one particular
state configuration: σirisi .

The next step is the key generation. This key that
will be bounded is created by modifying a certain
amount k of columns of the iris configuration. Let’s
call it σkeyi . The two configurations σirisi and σkeyi

are considered that belong to the same subject if their
Hamming distance is equal to k.

5 Experiments

During verification, the correct iris will evolve toward
one fixed point, which is the key and if it is not, then



the evolution will emerge a completely different key.
According to Trugenberger the number k of patterns
for fingerprints is chosen as α = k/N with values be-
tween 0.051 and 0.138. We will use in our case α = 0.1.

Practically, we generated 86× 7 iris codes and each
one of them is made of 20 rows and 480 columns. We
divided it into blocks of 20× 20 having as a result 24
blocks. These blocks will let us create e Hopfield NN
made of 24 nodes. If we feed the genuine configuration
it always converges to it, otherwise it converges to the
nearest one in terms of Hamming distance. The recog-
nition performance based on the Equal Error Rate of
the system is 5.3%.

6 Conclusions

In this work we discussed about iris recognition sys-
tems and a novel technique of template protection that
uses neural networks. It is a scheme in which nodes are
fed by the binary representations of the iris. For the
key it is used the theory of spin-glasses where it was
tested on a small scale database. As future work, it
still needs a deeper verification of the Neural Network
with different number of nodes. For a more accurate
recognition performance a database with a larger num-
ber of subjects needs to be tested.
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