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Abstract. Feature selection is used to select a subset of relevant features
in machine learning, and is vital for simplification, improving efficiency
and reducing overfitting. In filter-based feature selection, a statistic such
as correlation or entropy is computed between each feature and the target
variable to evaluate feature relevance. A relevance threshold is typically
used to limit the set of selected features, and features can also be removed
based on redundancy (similarity to other features). Some methods are de-
signed for use with a specific statistic or certain types of data. We present
a new filter-based method called Relevance-Redundancy Dominance that
applies to mixed data types, can use a wide variety of statistics, and does
not require a threshold. Finally, we provide preliminary results, through
extensive numerical experiments on public credit datasets.

1 Introduction

Many real-world applications deal with high-dimensional data, and feature selec-
tion is a well-known and important class of methods for reducing dimensionality.
Feature selection reduces data size, and improves learning accuracy and compre-
hensibility. The methods are usually categorized as filter , wrapper or embedded
[7]. Filter methods rely on the general characteristics of the training data to
select features with independence of any predictor, wrapper methods involve
optimizing a predictor as part of the selection process, and embedded methods
try to combine the advantages of both. In this paper we focus on filter-based
methods, which are considered to be most scalable to big data. Furthermore, we
focus on univariate methods which evaluate (and usually rank) single features,
as multivariate methods are computationally expensive.

We propose a new filter-based feature selection method called Relevance-
Redundancy Dominance (RRD) feature selection, with a simple feature elimi-
nation strategy based on relevance and redundancy. It can be applied to mixed
data types, can use a wide variety of statistics, requires no threshold for choos-
ing a feature subset, and in experiments outperforms published methods on four
credit datasets.



2 Related Work

Feature selection strategies based on filter methods have received attention from
many researchers in statistics and machine learning. Their advantages are that
they are fast, independent of the classifier/predictor method, scalable and easy
to interpret.

The RELIEF algorithm [12] estimates the quality of attributes according to
how well their values distinguish between instances that are near to each other.
It can deal with discrete and continuous features but was initially limited to
two-class problems. An extension, ReliefF [13], not only deals with multiclass
problems but is also more robust and capable of dealing with incomplete and
noisy data. The Relief family of methods are especially attractive because they
may be applied in all situations, have low bias, include interaction among features
and may capture local dependencies that other methods miss. However, they
select features based only on relevance and do not remove redundant features.

Correlation-based Feature Selection (CFS) [8] is a simple filter algorithm
that ranks feature subsets according to a correlation-based heuristic evaluation
function. The bias of the evaluation function is toward subsets that contain
features that are highly correlated with the class and uncorrelated with each
other. Irrelevant features should be ignored because they will have low correlation
with the class. Redundant features should be screened out as they will be highly
correlated with one or more of the remaining features. Moreover, there exists an
improved CFS version called Fast Correlated-Based Filter (FCBF) method [27]
based on symmetrical uncertainty (SU) [20], which is defined as the ratio between
the information gain (IG) and the entropy (H) of two features. This method
was designed for high-dimensionality data and has been shown to be effective
in removing both irrelevant and redundant features (although it fails to take
into consideration interactions between features). The INTERACT algorithm
[28] uses the same goodness measure as the FCBF filter [20], but also includes
the consistency contribution (c-contribution). The c-contribution of a feature
indicates how significantly the elimination of that feature will affect consistency.
The algorithm consists of two major parts. In the first part, the features are
ranked in descending order based on their SU values. In the second part, features
are evaluated one by one starting from the end of the ranked feature list. If the
c-contribution of a feature is less than a given threshold the feature is removed,
otherwise it is selected.

Finally, the Minimum Redundancy-Maximum Relevance (MRMR) [15] is a
heuristic framework which minimizes redundancy, using a series of measures of
relevance and redundancy to select promising features for both continuous and
discrete data sets. Particularly, for discrete variables it applies Mutual Informa-
tion, while for continuous variables it mainly uses the F-test and correlation.

3 The proposed method

RRD is a univariate filter-based feature selection method, which can use any
suitable statistic to select a good subset of features in a dataset. The statistic can



be symmetric (s(f, f ′) ≡ s(f ′, f) for example correlation or mutual information)
or asymmetric (for example Goodman and Kruskal’s λ [6]).

Given a binary statistic s, features f ∈ F and a target variable t, the RRD
method works as follows. As in other methods, the features are ranked for rele-
vance using s: f is more relevant than f ′ if s(f, t) > s(f ′, t). We shall say that
f dominates f ′ if s(f, t) > s(f ′, t) and s(f, f ′) > s(f ′, t). We shall also say that
f ′ is redundant if it is dominated by f and f is not dominated by any other
feature. RRD selects all non-redundant features.

This leads to the feature selection method shown in Algorithm 1. First we
precompute the statistics xft = s(f, t) between each feature f and the target
variable t, and initialise the set of selected features to the empty set ∅. Then we
select the feature f̂ ∈ F with greatest relevance xf̂ t, generate the set R of f ∈ F
that are made redundant by f̂ , add R to S, and remove R ∪ {f̂} from F . The
last few steps are repeated until F is empty, then we return the set S of selected
features.

Algorithm 1 RRD Feature Selection Algorithm

given features F and target t
∀f ∈ F

xft ← s(f, t)
S ← ∅
while F 6= ∅

f̂ ← arg maxf∈F xft
R← {f | f ∈ F ∧ s(f̂ , f) > xft}
F ← F \ (R ∪ {f̂})
S ← S ∪ {f̂}

return S

Note that Algorithm 1 typically does not compute all s-values between fea-
tures (for example a full correlation matrix). This is because after a feature has
been removed from F no further statistics on it need be computed. This means
that it will often compute fewer statistics than (say) the MRMR method of [15],
though in the worst case it computes the same number. It is possible to construct
datasets for which RRD removes no features at all, or removes all but one, but
in practice we find that it usually generates a small subset of features.

Finally, it should be pointed out that RRD assumes that we can compute
statistic s(x, y) for all x, y ∈ F∪{t}. Thus before we can apply RRD, if the target
and/or features have mixed types (numerical, ordinal, nominal) they must be
first preprocessed so that they are all of the same type. This preprocessing is
detailed in the next section.



4 Experiments on real datasets

We performed extensive experiments on 4 datasets using 12 statistics, 7 dis-
cretization methods, and 3 classifiers.

Datasets

RRD was evaluated on 4 credit datasets from the UCI Machine Learning Reposi-
tory [14], each with a binary target variable. We decided to evaluate our method
thoroughly on one type of data, rather than partially on several data types,
though we are also working on other datasets. Feature selection for credit data
has been the subject of several recent papers.

Table 1 provides an overview of the 4 datasets used in the numerical experi-
ments. The German dataset has 3 continuous features, 4 ordinal features and 13
nominal features, while the numerical version of the German dataset has 24 con-
tinuous features. Both the Australian and Japanese datasets have 6 continuous
features, the Australian dataset also has 8 nominal features, and the Japanese
dataset has 9 nominal features. These are popular datasets for evaluating clas-
sification and feature selection methods, especially where credit scoring is the
research topic.

Table 1. Credit datasets

Dataset Size Continous / Nominal Features Train / Test

German 1000 17 / 3 700 / 300

German (numeric) 1000 24 / 0 700 / 300

Australian 690 8 / 6 483 / 207

Japanese 684 9 / 6 479 / 205

Discretization

In classification problems we are typically faced with mixed-type features and a
nominal (often binary) target, so we may apply preprocessing. In this work we
transform all data to nominal form via discretization, which groups continuous
feature values into bins. We used 7 binning methods including 2 supervised (Chi2

and Extended Chi2 which are based on information theory) and 5 unsupervised.
The unsupervised binning methods were: equal frequency and equal width, in
which the cube root of the number of samples was used to determine the num-
ber of bins; k-means clustering, where the value of k was determined using the√

n
2 method, the elbow method, and the floor value of the natural log of the

continuous data.
It should be noted that if the dataset being analysed has all continuous

numerical features and either a binary or continuous target variable, RRD can
use statistics such as Spearman’s correlation to reduce the number of features.



This removes the need for discretization, which simplifies RRD and improves its
computational efficency.

Statistics

RRD is capable of analysing all types of data, including hybrid data, using any
suitable statistic whether they are use correlation criteria (such as Pearson’s
correlation coefficient) or information-based (such as mutual information) [1, 18,
22–25, 27]. In this paper 12 different statistics were used to select the optimal
subsets for the credit datasets.

Classifiers

We used 3 classifiers: Logistic Regression, Random Forests and Naive Bayes. A
Logistic Regression model can be used as a classifier when the target variable
is binary. It uses a sigmoid function to calculate to which class a test subject
belongs. Random Forests [2] is an ensemble learning algorithm. Naive Bayes
classifiers are based on Bayes’ Theorem. We chose these three methods because
they are popular yet distinct. All three can handle mixed data types, but often
perform better when continuous features are transformed into nominal form [5].

Cross-validation

We used stratified 100-fold Monte Carlo cross-validation with 70%/30% train-
ing/testing splitting of the data, as follows: (i) randomly split the data set
samples into 70% training set and 30% testing set; (ii) using only the training
set, create bins for the discretization method; (iii) run RRD on the discretized
training set to find the optimal features; (iv) using the training set subset, build
the predictor model (e.g. Naive Bayes); (v) select the same features in the test
set as RRD selected in the training set; (vi) using the bin cut-points found in
step (ii) discretize the test set; (vii) evaluate the predictor model built in step
(iv) using the test set, which has been kept completely isolated from the training
set, and finally (viii) repeat steps (i) to (vii) k times (in this paper k = 100).
Average prediction accuracy and number of selected features, along with their
corresponding standard deviations, are reported in each case.

Results

The best results for each classifier and statistic are shown in Tables 3–5 in the
Appendix (results for the numerical German dataset are omitted due to lack of
space). These can be compared to published results from various papers using
both new and well established filter feature selection methods, shown in Table
2.

The best RRD result on the German dataset was 76.13% ± 1.76% with
13.3 ± 0.46 selected features, using Messenger & Mandell’s Θ [19] and k-means



discretization, which outperformed the majority of the other methods, and was
on par with the best, the selective Bayesian classifier of [21] with 76.21% and
6 selected features. The worst result was 70.99% ± 1.67% with Goodman &
Kruskal λ using Naive Bayes as the classifier and k-means elbow discretization
method.

On the numerical German dataset our best result was 75.38% ± 1.69% us-
ing Messenger & Mandell’s Θ and equal width discretization, with 11.99 ± 0.1
selected features. This is beaten by the SVM + Grid search + F-score method
of [10] with 77.50% and approximately 20 selected features, so our accuracy is
slightly worse but with 8 fewer features selected. The worst result was 70.32%
± 3.34% with Somers’ δ using Naive Bayes as the classifier and k-means elbow
discretization method.

On the Australian dataset Goodman & Kruskal’s λ with Chi2 binning and
the Naive Bayes classifier was the most accurate with 86.29% ± 1.97%. This was
better than the result from Chen [3] using DT + SVM. The worst result was
84.54% ± 2.53% with Mutual Information I using Naive Bayes as the classifier
and equal frequency discretization method.

On the Japanese dataset Somers’ δ with equal frequency discretization was
the most accurate: 87.04% ± 1.94% and 3.95 ± 0.39 selected features. This beats
the ECMBF method of Jiang [11] with 2 selected features and 85.45%. The worst
result was 85.68% ± 2.18% with Mutual Information I, Naive Bayes and equal
width discretization.

In summary, the best results were found by Random Forests, the most robust
statistics were Messenger & Mandell’s Θ and Cramer’s φc, and the best binning
methods were generally the unsupervised k-means and equal width discretiza-
tion. Overall RRD performed excellently, selecting 6%– 65% of features while
achieving very competitive accuracies compared to published results.

5 Conclusion

We proposed a new filter-based feature selection algorithm called RRD with
several advantages over existing methods: it can use a variety of statistics; it
can handle combinations of nominal, ordinal and numerical data; it takes both
relevance and redundancy into account; and it automatically decides how many
features to select without the need for a threshold or cut-off (though one could
be added if necessary). In experiments on credit data it outperformed published
methods.

In future work we shall test RRD further, especially investigating its scal-
ability to big data. We shall also investigate whether it continues to select an
appropriate number of features on other datasets. An early result in this direc-
tion uses the Musk dataset from the UCI Machine Learning Repository [14],
which involves predicting whether a molecule is a musk or not. It has 166 nu-
meric features, a binary target variable, and 6598 samples. RRD’s best result
so far is 95.58% ± 0.44% with 9.5 ± 1.18 selected features, using Cramer’s φc
and equal frequency discretization. This beats the published result of Lou [16]



of 92.4% with 6 features using HSMB algorithm, and is similar to the best result
of [26] with 96.35%± 0.51% with 25 selected features using FCBF-P.
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Table 2. Feature selection results from related work

dataset selected accuracy algorithm paper

German 6 76.21% SBC [21]
6 76.13% ABC [21]
7 75.85% NN [4]
4 74.38% NB ECMBF [11]
20 74.32% NB Full-set [11]
14 73.87% NB Consistency [11]
4 73.76% NB FCBF [11]
3 73.24% NB CFS [11]
4 72.18% C4.5 ECMBF [11]
3 71.47% C4.5 CFS [11]
4 71.32% C4.5 FCBF [11]
14 71.26% C4.5 Consistency [11]
20 71.26% C4.5 Full-set [11]

German 20.4 77.50% SVM + Grid search+ F-Score [10]
(numerical) 12 76.70% F-score + SVM [3]

12 76.10% LDA + SVM [3]
12 75.60% RST + SVM [3]
24 75.40% Full-set + SVM [3]
12 73.70% DT + SVM [3]

Australian 7 86.52% LDA + SVM [3]
7 86.29% DT + SVM [3]
2 85.79% C4.5 ECMBF [11]
2 85.79% NB ECMBF [11]
7 85.22% RST + SVM [3]
7 85.10% F-score + SVM [3]
5 84.80% C4.5 - LV F [17]
1 84.65% IB1-CFS [9]
14 84.34% Full-set + SVM [3]
7.6 84.20% SVM + Grid search+ F-Score [10]
14 83.91% C4.5 Full-set [11]
13 83.83% C4.5 Consistency [11]
1 83.78% Naive-CFS [9]
7 83.49% C4.5 FCBF [11]
7 83.32% C4.5 CFS [11]
5 80.30% ID3 - LV F [17]
14 76.09% NB Full-set [11]
7 75.32% NB CFS [11]
13 74.89% NB Consistency [11]
7 73.57% NB FCBF [11]

Japanese 2 85.45% C4.5 ECMBF [11]
15 85.83% C4.5 Full-set [11]
7 85.28% C4.5 CFS [11]
2 84.94% NB ECMBF [11]
6 84.77% C4.5 FCBF [11]
13 84.68% C4.5 Consistency [11]
15 78.13% NB Full-set [11]
13 75.32% NB Consistency [11]
6 75.23% NB FCBF [11]
7 74.81% NB CFS [11]



Table 3. German credit dataset RRD results

Classifier Statistic Selected Accuracy Discretization

Logistic Messenger & Mandell’s Θ 13.27 ± 0.45 75.32 ± 2.12 Equal Width
Model Cramer’s φc 5.18 ± 0.78 74.64 ± 2.33 k-means Elbow

Stuart’s τc 5.19 ± 0.9 73.92 ± 2.02 k-means Elbow
Tschuprow’s T 3.59 ± 0.55 73.7 ± 2.1 k-means Elbow
Theil’s U 3.61 ± 0.75 73.58 ± 2.11 k-means Elbow
Mutual Information I 2.17 ± 0.38 72.73 ± 2.06 k-means Elbow
Goodman & Kruskal’s γ 5.05 ± 0.9 72.69 ± 1.84 Chi2

Contingency Coefficient C 2.26 ± 0.52 72.62 ± 1.9 k-means Elbow
Pearson’s χ2 2.24 ± 0.51 72.62 ± 1.89 k-means Elbow
Somers’ δ 4.32 ± 0.74 71.69 ± 2.14 Chi2

Goodman & Kruskal’s λ 1.12 ± 0.33 71.6 ± 1.44 Floor (ln)

Naive Messenger & Mandell’s Θ 13.27 ± 0.45 75.66 ± 2.32 k-means
Bayes Cramer’s φc 5.22 ± 0.73 74.44 ± 2.1 k-means Elbow

Stuart’s τc 5.18 ± 0.94 74.31 ± 2.27 k-means Elbow
Tschuprow’s T 3.6 ± 0.64 73.74 ± 2.16 k-means Elbow
Theil’s U 3.56 ± 0.74 73.65 ± 2.28 k-means Elbow
Mutual Information I 2.21 ± 0.43 72.54 ± 2.38 k-means Elbow
Pearson’s χ2 2.2 ± 0.43 72.49 ± 2.3 k-means Elbow
Contingency Coefficient C 2.24 ± 0.45 72.46 ± 2.33 k-means Elbow
Goodman & Kruskal’s γ 5.09 ± 1.04 71.99 ± 2.34 Chi2

Somers’ δ 4.2 ± 0.71 71.67 ± 2.49 Chi2

Goodman & Kruskal’s λ 2.07 ± 0.36 70.99 ± 1.67 k-means Elbow

Random Messenger & Mandell’s Θ 13.3 ± 0.46 76.13 ± 1.76 k-means
Forest Cramer’s φc 5.12 ± 0.74 73.74 ± 2.35 k-means Elbow

Theil’s U 3.55 ± 0.73 73.22 ± 2.39 k-means Elbow
Tschuprow’s T 3.51 ± 0.56 73.18 ± 2.29 k-means Elbow
Stuart’s τc 5.16 ± 0.88 72.56 ± 2.43 k-means Elbow
Mutual Information I 2.22 ± 0.44 72.07 ± 1.8 k-means Elbow
Pearson’s χ2 2.23 ± 0.49 71.97 ± 1.7 k-means Elbow
Contingency Coefficient C 2.27 ± 0.51 71.95 ± 1.71 k-means Elbow
Somers’ δ 4.77 ± 0.79 71.7 ± 2.29 Extended Chi2

Goodman & Kruskal’s λ 2.08 ± 0.34 71.66 ± 1.44 k-means Elbow
Goodman & Kruskal’s γ 5.05 ± 1.08 71.65 ± 2.07 Extended Chi2



Table 4. Australian credit dataset RRD results

Classifier Statistic Selected Accuracy Discretization

Logistic Goodman & Kruskal’s λ 7.62 ± 0.92 85.98 ± 2.14 Extended Chi2

Model Tschuprow’s T 6 ± 0.79 85.86 ± 2.07 Extended Chi2

Cramer’s φc 5.62 ± 0.81 85.83 ± 2.09 Extended Chi2

Goodman & Kruskal’s γ 5.32 ± 0.74 85.78 ± 1.99 k-means
Stuart’s τc 5.33 ± 0.55 85.78 ± 1.78 Equal Freq
Messenger & Mandell’s Θ 8 ± 0 85.74 ± 1.87 Chi2

Theil’s U 4.88 ± 0.79 85.54 ± 2.01 Extended Chi2

Somers’ δ 6.08 ± 0.84 85.37 ± 1.97 Extended Chi2

Mutual Information I 4.28 ± 0.9 85.29 ± 1.88 Extended Chi2

Pearson’s χ2 4 ± 0.85 85.27 ± 1.91 Extended Chi2

Contingency Coefficient C 4.07 ± 0.84 85.26 ± 1.9 Extended Chi2

Naive Somers’ δ 3.94 ± 0.28 85.9 ± 2.19 Equal Freq
Bayes Tschuprow’s T 5.38 ± 0.68 85.53 ± 2.46 Equal Freq

Messenger & Mandell’s Θ 5.4 ± 0.49 85.47 ± 2.68 Equal Width
Cramer’s φc 6.21 ± 0.73 85.34 ± 2.62 Equal Freq
Goodman & Kruskal’s γ 4.99 ± 0.54 85.33 ± 2.3 Equal Freq
Theil’s U 5.45 ± 0.66 85.31 ± 2.46 Equal Freq
Goodman & Kruskal’s λ 7.91 ± 0.6 85.08 ± 2.21 Equal Freq
Stuart’s τc 5.24 ± 0.57 84.98 ± 2.47 Equal Freq
Contingency Coefficient C 3.05 ± 0.46 84.63 ± 2.53 Equal Freq
Pearson’s χ2 3.05 ± 0.46 84.63 ± 2.53 Equal Freq
Mutual Information I 3.28 ± 0.71 84.54 ± 2.53 Equal Freq

Random Goodman & Kruskal’s λ 8.58 ± 0.55 86.29 ± 1.97 Chi2

Forest Messenger & Mandell’s Θ 8.05 ± 0.22 86.09 ± 1.87 k-means
Cramer’s φc 7.4 ± 0.55 86.06 ± 1.83 Chi2

Somers’ δ 6.09 ± 0.87 85.71 ± 2.09 Extended Chi2

Stuart’s τc 6.49 ± 0.8 85.69 ± 1.92 Floor (ln)
Tschuprow’s T 5.2 ± 0.71 85.57 ± 2.05 Floor (ln)
Goodman & Kruskal’s γ 5.63 ± 0.77 85.49 ± 2.1 k-means Elbow
Contingency Coefficient C 2.04 ± 0.2 85.34 ± 2.15 k-means
Pearson’s χ2 2.04 ± 0.2 85.34 ± 2.15 k-means
Mutual Information I 2.13 ± 0.34 85.33 ± 2.15 k-means
Theil’s U 2.97 ± 0.36 85.06 ± 2.13 Equal Width



Table 5. Japanese credit dataset RRD results

Classifier Statistic Selected Accuracy Discretization

Logistic Goodman & Kruskal’s λ 7.43 ± 0.9 86.56 ± 2.07 Extended Chi2

Model Stuart’s τc 5.79 ± 0.82 86.55 ± 2.12 Extended Chi2

Tschuprow’s T 6.17 ± 0.88 86.44 ± 2.1 Extended Chi2

Cramer’s φc 6.28 ± 0.87 86.42 ± 2.23 Equal Freq
Goodman & Kruskal’s γ 5.43 ± 0.98 86.31 ± 2.01 Extended Chi2

Messenger & Mandell’s Θ 7.98 ± 0.14 86.24 ± 2.25 Chi2

Theil’s U 5.29 ± 0.91 86.24 ± 2.19 Extended Chi2

Mutual Information I 4.64 ± 0.96 86.18 ± 2 Extended Chi2

Somers’ δ 6 ± 0.91 86.14 ± 2.05 Extended Chi2

Contingency Coefficient C 4.53 ± 0.89 86.1 ± 2.06 Extended Chi2

Pearson’s χ2 4.45 ± 0.91 86.1 ± 2.03 Extended Chi2

Naive Somers’ δ 3.95 ± 0.39 87.04 ± 1.94 Equal Freq
Bayes Cramer’s φc 6.2 ± 0.77 86.47 ± 2.02 Equal Freq

Messenger & Mandell’s Θ 5.28 ± 0.45 86.45 ± 1.96 Equal Width
Theil’s U 5.52 ± 0.63 86.33 ± 2.09 Equal Freq
Goodman & Kruskal’s γ 4.65 ± 0.73 86.32 ± 1.89 Equal Freq
Tschuprow’s T 5.49 ± 0.88 86.22 ± 2.09 Equal Freq
Stuart’s τc 5.43 ± 0.86 86.12 ± 1.91 Equal Freq
Goodman & Kruskal’s λ 7.55 ± 0.61 85.86 ± 1.94 Equal Freq
Contingency Coefficient C 3.03 ± 0.17 85.76 ± 1.94 Equal Width
Pearson’s χ2 3.03 ± 0.17 85.71 ± 1.92 Equal Width
Mutual Information I 3.06 ± 0.28 85.68 ± 2.18 Equal Width

Random Messenger & Mandell’s Θ 8.13 ± 0.34 86.58 ± 2.14 k-means
Forest Somers’ δ 3.97 ± 0.3 86.52 ± 2.2 Chi2

Goodman & Kruskal’s λ 8.16 ± 0.39 86.51 ± 1.97 Chi2

Tschuprow’s T 6.19 ± 0.94 86.49 ± 2.22 Chi2

Cramer’s φc 7.65 ± 0.48 86.41 ± 1.88 Chi2

Stuart’s τc 5.97 ± 0.73 86.37 ± 2.18 k-means
Goodman & Kruskal’s γ 5.18 ± 0.99 86.3 ± 2.06 k-means
Contingency Coefficient C 2.06 ± 0.24 86.13 ± 1.98 k-means
Pearson’s χ2 2.06 ± 0.24 86.13 ± 1.98 k-means
Mutual Information I 2.16 ± 0.37 86.12 ± 2.01 k-means
Theil’s U 4.57 ± 0.71 85.95 ± 1.85 k-means Elbow


